
The Emacs Muse

John Wiegley and Michael Olson

August 24, 2007

Emacs Muse is an authoring and publishing environment for Emacs. It
simpli�es the process of writings documents and publishing them to various
output formats.

Muse consists of two main parts: an enhanced text-mode for authoring doc-
uments and navigating within Muse projects, and a set of publishing styles for
generating di�erent kinds of output.

1 About this document

This document provides an example of Muse markup and also functions as a
quickstart for Muse.

To see what it looks like when published, type make examples. You will then
get an Info document, an HTML document, and a PDF document (provided
you have an implementation of LaTeX installed with the necessary fonts).

2 Getting Started

To use Muse, add the directory containing its �les to your load-path variable,
in your .emacs �le. Then, load in the authoring mode, and the styles you wish
to publish to. For example:

(add-to-list 'load-path "<path to Muse>")

(require 'muse-mode) ; load authoring mode

(require 'muse-html) ; load publishing styles I use

(require 'muse-latex)

(require 'muse-texinfo)

(require 'muse-docbook)

(require 'muse-project) ; publish files in projects

Once loaded, the command M-x muse-publish-this-file will publish an
input document to any available style. If you enable muse-mode within a bu�er,
by typing M-x muse-mode, this command will be bound to C-c C-t.

1

3 Creating a Muse project

Often you will want to publish all the �les within a directory to a particular
set of output styles automatically. To support, Muse allows for the creations of
�projects�. Here is a sample project, to be de�ned in your .emacs �le:

(setq muse-project-alist

'(("website" ("~/Pages" :default "index")

(:base "html" :path "~/public_html")

(:base "pdf" :path "~/public_html/pdf"))))

The above de�nes a project named �website�, whose �les are located in the
directory �/Pages. The default page to visit is index. When this project is
published, each page will be output as HTML to the directory �/public_html,
and as PDF to the directory �/public_html/pdf. Within any project page,
you may create a link to other pages using the syntax [[pagename]].

4 Markup rules

A Muse document uses special, contextual markup rules to determine how to
format the output result. For example, if a paragraph is indented, Muse assumes
it should be quoted.

There are not too many markup rules, and all of them strive to be as simple
as possible so that you can focus on document creation, rather than formatting.

4.1 Paragraphs

Separate paragraphs in Muse must be separate by a blank line.
For example, the input text used for this section is:

Separate paragraphs in Muse must be separate by a blank line.

For example, the input text used for this section is:

4.2 Centered paragraphs and quotations

A line that begins with six or more columns of whitespace (either tabs or spaces)
indicates a centered paragraph.

This is centered

But if a line begins with whitespace, though less than six columns,
it indicates a quoted paragraph.

2

4.3 Headings

A heading becomes a chapter or section in printed output�depending on the
style. To indicate a heading, start a new paragraph with one to three asterices,
followed by a space and the heading title. Then begin another paragraph to
enter the text for that section.

* First level

** Second level

*** Third level

4.4 Horizontal rules

Four or more dashes indicate a horizontal rule. Be sure to put blank lines around
it, or it will be considered part of the proceeding or following paragraph!

The separator above was produced by typing:

4.5 Emphasizing text

To emphasize text, surround it with certain specially recognized characters:

emphasis

strong emphasis

very strong emphasis

underlined

=verbatim and monospace=

The above list renders as:

emphasis

strong emphasis

very strong emphasis

underlined
verbatim and monospace

4.6 Adding footnotes

A footnote reference is simply a number in square brackets[1].1 To de�ne the
footnote, place this de�nition at the bottom of your �le. footnote-mode can
be used to greatly facilitate the creation of these kinds of footnotes.

1This is a footnote.

3

Footnotes:

[1] Footnotes are defined by the same number in brackets

occurring at the beginning of a line. Use footnote-mode's

C-c ! a command, to very easily insert footnotes while

typing. Use C-x C-x to return to the point of insertion.

4.7 Verse

Poetry requires that whitespace be preserved, but without resorting to monospace.
To indicate this, use the following markup, reminiscent of e-mail quotations:

> A line of Emacs verse;

> forgive its being so terse.

The above is rendered as:

A line of Emacs verse;
forgive its being so terse.

You can also use the <verse> tag, if you prefer:

<verse>

A line of Emacs verse;

forgive its being so terse.

</verse>

4.8 Literal paragraphs

The <example> tag is used for examples, where whitespace should be preserved,
the text rendered in monospace, and any characters special to the output style
escaped.

There is also the <literal> tag, which causes a marked block to be entirely
left alone. This can be used for inserting a hand-coded HTML blocks into
HTML output, for example.

If you want some text to only be inserted when publishing to a particular
format, use the style attribute for the <literal> tag. Some examples follow.

You are reading the

<literal style="html">HTML</literal>

<literal style="pdf">PDF</literal>

<literal style="info">Info</literal>

version of this document.

Produces:
You are reading the PDF version of this document.

<literal style="latex">

LaTeX was used in the publishing of this document.

</literal>

4

Produces:
LaTeX was used in the publishing of this document.

4.9 Lists

Lists are given using special characters at the beginning of a line. Whitespace
must occur before bullets or numbered items, to distinguish from the possibility
of those characters occurring in a real sentence.

The supported kinds of lists are:

- bullet item one

- bullet item two

1. Enumerated item one

2. Enumerated item two

Term1 :: A definition one

Term2 :: A definition two

These are rendered as a bullet list:

• bullet item one

• bullet item two

An enumerated list:

1. Enum item one

2. Enum item two

And a de�nition list:

Term1

This is a �rst de�nition And it has two lines; no, make that three.

Term2

This is a second de�nition

Lists may be nested inside of one another. The level of nesting is determined
by the amount of leading whitespace.

- Level 1, bullet item one

1. Level 2, enum item one

2. Level 2, enum item two

- Level 1, bullet item two

This is rendered as:

5

• Level 1, bullet item one

1. Level 2, enum item one

2. Level 2, enum item two

• Level 1, bullet item two

4.10 Tables

Simple tables are supported. The syntax is:

Double bars || Separate header fields

Single bars | Separate body fields

Here are more | body fields

Triple bars ||| Separate footer fields

The above is rendered as:
Double bars Separate header �elds
Single bars Separate body �elds
Here are more body �elds
Triple bars Separate footer �elds

It is also possible to make tables that look like:

| Single bars | Separate body fields |

| Here are more | body fields |

This publishes as:
Single bars Separate body �elds
Here are more body �elds

If you are familiar with Org-mode

style tables, simple variants (no column groups or autogenerated formulas) will
publish �ne. Also, table.el style tables will be published, provided that the
output format is something that table.el supports.

4.11 Anchors and tagged links

If you begin a line with �#anchor��where �anchor� can be any word that doesn't
contain whitespace�it de�nes an anchor at that point into the document. This
point can be referenced using �page#anchor� as the target in a Muse link (see
below).

Click ?? to go back to the previous paragraph.

4.12 URLs and E-mail addresses

A URL or e-mail address encountered in the input text is published as a hyper-
link if the output style supports it. For example, the latest Muse source can be
downloaded at http://download.gna.org/muse-el and mail may be sent to
mwolson@gnu.org.

6

http://download.gna.org/muse-el

4.13 Images

If a URL has an extension of a known image format, it will be inlined if possi-
ble. To create a link to an image, rather than inlining it, put the text �URL:�
immediately in front of the link.

This is an inlined image example:

Made with [[muse-made-with.png]] Emacs Muse.

This publishes as:
Made with Emacs Muse.

Here is an example of a captioned image:

[[emacs-muse.png][Muse, the publishing choice of (a subset of) Great Thinkers]]

This publishes as:

Figure 1: Emacs Muse, the publishing choice of (a subset of) Great Thinkers

The following will be published as a link only.

The Muse logo: [[URL:http://mwolson.org/static/logos/emacs-muse.png]].

The Muse logo: http://mwolson.org/static/logos/emacs-muse.png.

7

http://mwolson.org/static/logos/emacs-muse.png

4.14 Links

A hyperlink can reference a URL, or another page within a Muse project. In
addition, descriptive text can be speci�ed, which should be displayed rather
than the link text in output styles that supports link descriptions. The syntax
is:

[[link target][link description]]

[[link target without description]]

Thus, the text:

Muse can be downloaded [[http://download.gna.org/muse-el/][here]], or at

[[http://download.gna.org/muse-el/]].

Publishes as:
Muse can be downloaded here2, or at http://download.gna.org/muse-el/.

4.15 Source code

If you have htmlize.el version 1.34 or later installed, you can publish colorized
HTML for source code in any major mode that Emacs supports by using the
<src> tag. If not publishing to HTML, the text between the tags will be treated
like an <example> tag.

Here is some example C code. Muse takes the lang element and appends
"-mode" to it in order to determine which major mode to use when colorizing
the code.

<src lang="c">

#include <stdlib.h>

char *unused;

int main (int argc, char *argv[])

{

puts("Hello, world!\n");

}

</src>

Here is the colorized output. This may look di�erent if you have customized
some faces. Also, it may look di�erent depending on whether you are publishing
from Emacs on the console, or Emacs on X� what you see when viewing (in
this case) a C �le is what you get.

#include <stdlib.h>

2http://download.gna.org/muse-el/

8

http://download.gna.org/muse-el/
http://download.gna.org/muse-el/

char *unused;

int main (int argc, char *argv[])

{

puts("Hello, world!\n");

}

4.16 Embedded Lisp, Perl, Ruby, Python, or Shell

Arbitrary kinds of markup can be achieved using the <lisp> tag, which is the
only Muse tag supported in a style's header and footer text. With the <lisp>

tag, you may generated whatever output text you wish. The inserted output will
get marked up, if the <lisp> tag appears within the main text of the document.

<lisp>(concat "This form gets " "inserted")</lisp>

The above renders as: This form gets inserted.
It is also possible to treat the output as if it were surrounded by the <example>,

<src>, or <verse> tags, by specifying "example", "src", or "verse" as the
markup attribute of the tag.

For example:

<lisp markup="example">

(concat "Insert" " me")

</lisp>

The output is:

Insert me

This markup attribute can also be passed to the <perl>, <ruby>, <python>,
and <command> tags, which interpret Perl, Ruby, Python, and Shell code, re-
spectively.

5 Publishing styles

One of the principle features of Muse is the ability to publish a simple input
text to a variety of di�erent output styles. Muse also makes it easy to create
new styles, or derive from an existing style.

5.1 Deriving from an existing style

To create a new style from an existing one, use muse-derive-style:

(muse-derive-style DERIVED-NAME BASE-NAME STYLE-PARAMETERS)

9

The derived name is a string de�ning the new style, such as �my-html�. The
base name must identify an existing style, such as �html��if you have loaded
muse-html. The style parameters are the same as those used to create a style,
except that they override whatever de�nitions exist in the base style.

Most often, this will come in handy for using a custom header, footer, and/or
stylesheet for a project. Here is one such example.

(setq my-different-style-sheet

(concat "<link rel=\"stylesheet\" type=\"text/css\""

" charset=\"utf-8\" media=\"all\""

" href=\"/different.css\" />"))

(muse-derive-style "my-xhtml" "xhtml"

:header "~/.emacs.d/muse/different-header.html"

:footer "~/.emacs.d/muse/different-footer.html"

:style-sheet my-different-style-sheet)

Many parameters support being partially overridden. As an example: with
:functions, if a markup function is not found in the derived style's function
list, the base style's function list will be queried.

If a parameter takes the name of a function, then returning non-nil from
that function causes no further processing to be done. If the function returns
nil, any other functions in the base style will be called.

5.2 Creating a new style

To create a new style, use muse-define-style:

(muse-define-style NAME STYLE-PARAMETERS)

If you want to create a new style, it is best to examine the source code for
other styles �rst, to get an idea of what needs to be done. Each output format
should have its own �le, containing all styles based on it. For example. the
latex, latex-slides, and pdf styles are all contained in muse-latex.el.

If you are willing to sign copyright papers for the Free Software Founda-
tion (we will help you with this step), the Muse authors may be interested in
including your work in future versions of Muse.

6 License

This QuickStart document may be redistributed and/or modi�ed under the
terms of the GNU General Public License as published by the Free Software
Foundation; either version 3, or (at your option) any later version.

Another footnote, this one unreferenced.

10

