LilyPond

The music typesetter

Program usage

The LilyPond development team
Copyright (©) 1999-2009 by the authors

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.1 or any later version
published by the Free Software Foundation; with no Invariant Sections. A copy of
the license is included in the section entitled “GNU Free Documentation License”.

For LilyPond version 2.12.2

Table of Contents

1

Imstall. 1
1.1 Precompiled DIinariesoooiiii it e 1
Downloading 1
1.2 Compiling from SOUTCE.ottt e 1
1.2.1 Downloading source codeo 1
1.2.2 ReqUirements.o e 1
Compilation 1
Running requirements 2
Requirements for building documentation............. i i 2

1.2.3 Building LilyPond e 2
CompPiling 3
Compiling for multiple platforms 3
Compiling outside the source tree....... ... i 3
Useful make variables 3

1.2.4 Building documentation i 3
Commands for building documentation i, 3
Building documentation without compiling LilyPond 4

1.2.5 Testing LilyPond 5
1.2.6 Problems 5
BiSomn L 87D . 5
SOLATIS - v ettt 6
Free B S D 6
International fonts. 6
SetUD ... 7
2.1 Setup for specific Operating Systems.t 7
2.1.1 Setup for MacOS X 7
2.2 Text editor SUPPOTt. . oot e 8
2.2.1 Emacs Mode.o 8
2.2.2 VIM MOAE . ..ottt 8
2.2.3 JEAIt . 8
22,4 TeX S0P - . vttt 8
2.2.0 TextMate. . ..o e 8
2.2.6 LilyKDE .. 9
2.3 Point and click 9
Running LilyPond........... 10
3.1 Normal USAZE .« o vttt 10
3.2 Command-line WSAZE\ttt 10
3.2.1 Invoking Ti1ypomndo.ueonteitt ettt 10
3.2.2 Command line options for 1ilypondooitiiiiiiiiiiiienneann.. 10
3.2.3 Environment variables............ . 13
3.3 BITOT MESSAZESttt t et e 14
3.4 Updating files with convert-1y i 14
3.4.1 Command line options for convert-1y......... ..., 15
3.4.2 Problems with convert=1y i 15

3.5 Reporting Dugs. . ..o 16

4 1lilypond-book: Integrating text and music................. 18
4.1 An example of a musicological document.......... i 18
4.2 Integrating music and teXt.ttt e 21

4.2 A R ot 21
4.2.2 TexingO . . oo 22
4.2.3 H ML .o 23
4.2.4 DocBoOK . .. 23
4.3 Music fragment OptioNS. 24
4.4 Invoking 1ilypond=—booKttt 27
4.5 Filename eXtensiOnSttt 29
4.6 Alternative methods of mixing text and music i, 30
Many quotes from a large SCoreo 30
Inserting LilyPond output into OpenOffice.org........ i .. 30
Inserting LilyPond output into other programs.............., 30

5 Converting from other formats.............................. 31
5.1 Invoking midi2ly ... 31
5.2 Invoking musicxmI2Ly.ttt e 32
5.3 InVOKING @bC2Ly. . ettt e 33
5.4 Invoking etf 2Ly 34
5.5 Generating LilyPond files. ... 34

Appendix A GNU Free Documentation License............. 35

Appendix B LilyPond index 41

Chapter 1: Install 1

1 Install

There are two sets of releases for LilyPond: stable releases, and unstable development releases.
Stable versions have an even-numbered ‘minor’ version number (i.e. 2.8, 2.10, 2.12, etc). Devel-
opment versions have an odd-numbered ‘minor’ version number (i.e. 2.7, 2.9, 2.11, etc).

Building LilyPond is a very involved process, so we highly recommend using the precompiled
binaries.

1.1 Precompiled binaries

Downloading

Check out http://lilypond.org/web/install/ for up to date information on binary packages
for your platform. If your operating system is not covered on that general page, please see the
complete list at http://download.linuxaudio.org/lilypond/binaries/

We currently create binaries for
darwin-ppc - MacOS X powerpc
darwin-x86 - MacOS X intel

freebsd-64 - FreeBSD 6.x, x86_64
freebsd-x86 - FreeBSD 4.x, x86

linux-64 - Any GNU/Linux distribution, x86_64
linux-ppc - Any GNU/Linux distribution, powerpc
linux-x86 - Any GNU/Linux distribution, x86
mingw - Windows x86

Known issues and warnings

If you have MacOS 10.3 or 10.4 and you would like to use Python scripts such as convert-1y
and 1ilypond-book, see Section “Setup for MacOS X” in Application Usage.

1.2 Compiling from source

1.2.1 Downloading source code
Download source
e tarballs from http://1lilypond.org/download/ by HTTP.
e tarballs from http://download.linuxaudio.org/lilypond/ by HTTP.
e GIT from git.sv.gnu.org
git clone git://git.sv.gnu.org/lilypond.git
The repository does not contain generated files. To create ‘configure’, run

./autogen.sh

For information on packaging, see http://lilypond.org/devel.

1.2.2 Requirements

Compilation
In addition to the packages needed for running LilyPond (see below), you need the following
extra packages for building.

When installing a binary package FOO, you may need to install the FOO-devel, libFOO-dev
or FOO-dev package too.

e FontForge 20060125 or newer.

http://lilypond.org/web/install/
http://download.linuxaudio.org/lilypond/binaries/
http://lilypond.org/download/
http://download.linuxaudio.org/lilypond/
http://git.sv.gnu.org/gitweb/?p=lilypond.git;a=summary
http://lilypond.org/devel
http://fontforge.sf.net/

Chapter 1: Install 2

e MetaFont (mf-nowin, mf, mfw or mfont binaries) and MetaPost (mpost binary), usually
packaged with a IXTEX distribution like tetex or texlive.

e tlutils (version 1.33 or newer recommended).

e New Century Schoolbook fonts, as PFB files. These are shipped with X11 and Ghostscript,
and are named ‘c0590331.pfb’ ‘c0590361.pfb’, ‘c0590131.pfb’ and ‘c0590161.pfb’.

e GUILE (version 1.8.2 or newer). If you are installing binary packages, you may need to
install guile-devel or guile-dev or libguile-dev too.

e Texinfo (version 4.11 or newer).

e The GNU c++ compiler (version 3.4 or newer. 4.x is strongly recommended).
e Python (version 2.4 or newer)

e GNU Make (version 3.78 or newer).

e gettext (version 0.17 or newer).

o Flex.

e Perl.

e GNU Bison.

e All packages required for running, including development packages with header files and
libraries.

Running requirements
Running LilyPond requires proper installation of the following software
e Freetype (version 2.1.10 or newer).
e FontConfig (version 2.2 or newer).
e Pango (version 1.12 or newer).
e GUILE (version 1.8.2 or newer), or patch 1.8.1 with http://1lilypond.org/vc/gub.darcs/patches/guile
e Python (version 2.4 or newer).
e Ghostscript (version 8.15 or newer. 8.60 recommended)

e Decjaview. (This is normally installed by default)

International fonts are required to create music with international text or lyrics.

Requirements for building documentation

You can view the documentation online at http://1lilypond.org/doc/, but you can also build
it locally. This process requires a successful compile of LilyPond, and some additional tools and
packages:

e The netpbm utilities
e ImageMagick

e International fonts (see input/regression/utf-8.ly for hints about which font packages are
necessary for your platform)

e Ghostscript 8.60 or newer, or 8.50 with the patch from http://bugs.ghostscript.com/show_
bug.cgi?id=688154 and the patch from http://bugs.ghostscript.com/show_
bug. cgi?id=688017.

o Texi2HTML 1.79 or newer is strongly recommended to build documentation in HTML; sup-
port for building HTML documentation using makeinfo from GNU Texinfo is deprecated.

e rSync

1.2.3 Building LilyPond

http://metafont.tutorial.free.fr/
http://cm.bell-labs.com/who/hobby/MetaPost.html
http://www.lcdf.org/~eddietwo/type/#t1utils
http://www.gnu.org/software/guile/guile.html
ftp://ftp.gnu.org/gnu/texinfo/
http://gcc.gnu.org/
http://www.python.org
ftp://ftp.gnu.org/gnu/make/
http://www.gnu.org/software/gettext/gettext.html
http://www.gnu.org/software/flex/
http://www.perl.org/
http://www.gnu.org/software/flex/
http://www.freetype.org/
http://fontconfig.org/
http://www.pango.org/
http://www.gnu.org/software/guile/guile.html
http://lilypond.org/vc/gub.darcs/patches/guile-1.8-rational.patch
http://www.python.org
http://www.ghostscript.com
http://lilypond.org/doc/
http://netpbm.sourceforge.net/
http://bugs.ghostscript.com/show_bug.cgi?id=688154
http://bugs.ghostscript.com/show_bug.cgi?id=688154
http://bugs.ghostscript.com/show_bug.cgi?id=688017
http://bugs.ghostscript.com/show_bug.cgi?id=688017
http://www.nongnu.org/texi2html/

Chapter 1: Install 3

Compiling
To install GNU LilyPond, type

gunzip -c lilypond-x.y.z | tar xf -

cd lilypond-x.y.z

./configure # run with --help for applicable options
make

su —-c¢ 'make install'

If you are not root, you should choose a —-prefix argument that points into your home directory,
e.g.
./configure --prefix=$HOME/usr

Compiling for multiple platforms

If you want to build multiple versions of LilyPond with different configuration settings, you
can use the ——enable-config=CONF option of configure. You should use make conf=CONF to
generate the output in ‘out-CONF’. For example, suppose you want to build with and without
profiling, then use the following for the normal build

./configure --prefix=$HOME/usr/ --enable-checking
make
make install

and for the profiling version, specify a different configuration

./configure --prefix=$HOME/usr/ --enable-profiling --enable-config=prof --disable-chec!
make conf=prof
make conf=prof install

Compiling outside the source tree

It is possible to compile LilyPond in a build tree different from the source tree, with —-srcdir
option of configure:

mkdir lily-build && cd lily-build
sourcedir/configure --srcdir=sourcedir

Useful make variables

If a less verbose build output if desired, the variable QUIET_BUILD may be set to 1 on make
command line, or in ‘local.make’ at top of the build tree.

1.2.4 Building documentation

This requires a successful compile of LilyPond, or using an external LilyPond binary.

Commands for building documentation
The documentation is built by issuing
make web

After compilation, the HTML documentation tree is available in ‘out-www/offline-root/’,
and can be browsed locally.

The HTML and PDF files can be installed into the standard documentation path by issuing
make web-install

This also installs Info documentation with images if the installation prefix is properly set; other-
wise, instructions for manual installation of Info documentation are printed on standard output.

Chapter 1: Install 4

It is also possible to build a documentation tree in ‘out-www/online-root/’, with special
processing, so it can be used on a website with content negotiation for automatic language
selection; this can be achieved by issuing

make WEB_TARGETS=online web
and both ‘offline’ and ‘online’ targets can be generated by issuing
make WEB_TARGETS="offline online" web

Several targets are available to clean the documentation build and help with maintaining
documentation; an overview of these targets is available with

make help

from every directory in the build tree. Most targets for documentation maintenance are avail-
able from ‘Documentation/’; for more information, see ‘Documentation/user/README. txt’ and
‘Documentation/TRANSLATION .

The makefile variable QUIET_BUILD may be set to 1 for a less verbose build output, just like
for building the programs.

Known issues and warnings

The most time consuming task for building the documentation is running LilyPond to build
images of music, and there cannot be several simultaneously running 1ilypond-book instances,
so —-j make option does not significantly speed up the build process. To help speed it up, the
makefile variable CPU_COUNT may be set in ‘local.make’ or on the command line to the
number of .1y files that LilyPond should process simultaneously, e.g. on a bi-processor or dual
core machine

make -3j3 CPU_COUNT=3 web

The recommended value of CPU_COUNT is one plus the number of cores or processors, but it
is advisable to set it to a smaller value if your system has not enough RAM to run that many
simultaneous LilyPond instances.

If source files have changed since last documentation build, output files that need to be
rebuilt are normally rebuilt, even if you do not run make web-clean first. However, building
dependencies in the documentation are so complex that rebuilding of some targets may not be
triggered as they should be; a workaround is to force rebuilding by touching appropriate files,
e.g.

touch Documentation/user/*.itely
touch input/lsr/*.ly

Building documentation without compiling LilyPond

The documentation can be built locally without compiling LilyPond binary, if LilyPond is already
installed on your system.

From a fresh Git checkout, do

./autogen.sh # ignore any warning messages

cp GNUmakefile.in GNUmakefile

make -C python

nice make LILYPOND_EXTERNAL_BINARY=/path/to/bin/lilypond web

Please note that this may break sometimes — for example, if a new feature is added with a
test file in input/regression, even the latest development release of LilyPond will fail to build
the docs.

You may build the manual without building all the ‘input/*’ stuff: change directory, for
example to ‘Documentation/user’, issue make web, which will build documentation in a sub-
directory ‘out-www’ from the source files in current directory. In this case, if you also want to
browse the documentation in its post-processed form, change back to top directory and issue

Chapter 1: Install 5

make out=www WWW-post

Known issues and warnings
You may also need to create a script for pngtopnm and pnmtopng. On GNU /Linux, I use this:

export LD_LIBRARY_PATH=/usr/lib
exec /usr/bin/pngtopnm "$@"

On MacOS X, I use this

export DYLD_LIBRARY_PATH=/sw/lib
exec /sw/bin/pngtopnm "$e"

1.2.5 Testing LilyPond

LilyPond comes with an extensive suite that exercises the entire program. This suite can be
used to automatically check the impact of a change. This is done as follows

make test-baseline
apply your changes, compile
make check

This will leave an HTML page ‘out/test-results/index.html’. This page shows all the
important differences that your change introduced, whether in the layout, MIDI, performance
or error reporting.

To rerun tests, use

make test-redo ## redo files differing from baseline
make test-clean ## remove all test results

and then run make check again.

For tracking memory usage as part of this test, you will need GUILE CVS; especially the
following patch: http://1lilypond.org/vc/gub.darcs/patches/guile-1.9-gcstats.patch.

For checking the coverage of the test suite, do the following

./scripts/auxiliar/build-coverage.sh
uncovered files, least covered first

./scripts/auxiliar/coverage.py --summary out-cov/*.cc
consecutive uncovered lines, longest first
./scripts/auxiliar/coverage.py --uncovered out-cov/*.cc

1.2.6 Problems

For help and questions wuse 1lilypond-user@gnu.org. Send bug reports to
bug-lilypond@gnu.org.

Bugs that are not fault of LilyPond are documented here.

Bison 1.875

There is a bug in bison-1.875: compilation fails with "parse error before ‘goto’ in line 4922 due
to a bug in bison. To fix, please recompile bison 1.875 with the following fix

$ cd lily; make out/parser.cc

$ vi +4919 out/parser.cc

append a semicolon to the line containing "__attribute__ ((__unused__))
save

$

make

http://lilypond.org/vc/gub.darcs/patches/guile-1.9-gcstats.patch
mailto:lilypond-user@gnu.org
mailto:bug-lilypond@gnu.org

Chapter 1: Install 6

Solaris

Solaris7, ./configure

‘./configure’ needs a POSIX compliant shell. On Solaris7, ‘/bin/sh’ is not yet POSIX
compliant, but ‘/bin/ksh’ or bash is. Run configure like

CONFIG_SHELL=/bin/ksh ksh -c ./configure
or
CONFIG_SHELL=/bin/bash bash -c ./configure

FreeBSD

To use system fonts, dejaview must be installed. With the default port, the fonts are installed
in ‘usr/X11R6/1ib/X11/fonts/dejavu’.

Open the file ‘SLILYPONDBASE/usr/etc/fonts/local.conf’ and add the following line just
after the <fontconfig> line. (Adjust as necessary for your hierarchy.)

<dir>/usr/X11R6/1ib/X11/fonts</dir>

International fonts
On MacOS X, all fonts are installed by default. However, finding all system fonts requires a bit
of configuration; see this post on the 1ilypond-user mailing list.

On Linux, international fonts are installed by different means on every distribution. We
cannot list the exact commands or packages that are necessary, as each distribution is different,
and the exact package names within each distribution changes. Here are some hints, though:

Red Hat Fedora

taipeifonts fonts-xorg-truetype ttfonts-ja fonts-arabic \
ttfonts-zh_CN fonts-ja fonts-hebrew

Debian GNU/Linux
apt-get install emacs-intl-fonts xfonts-intl-.* \

ttf-kochi-gothic ttf-kochi-mincho \
xfonts-bolkhov-75dpi xfonts-cronyx-100dpi xfonts-cronyx-75dpi

http://lists.gnu.org/archive/html/lilypond-user/2007-03/msg00472.html

Chapter 2: Setup 7

2 Setup

This chapter discusses various post-install configuration options for LilyPond and various other
programs. This chapter may be safely treated as a reference: only read a section if it applies to
you.

2.1 Setup for specific Operating Systems

This section explains how to perform additional setup for specific operating systems.
2.1.1 Setup for MacOS X

Using Python scripts on MacOS 10.3 or 10.4

LilyPond binaries for MacOS X do not provide Python, but Python 2.4 or newer is required by
convert-1ly. Therefore, if you use MacOS 10.3 or 10.4, you must install a newer Python version
from http://python.org/download/, then edit the first line of convert-ly and lilypond-
book as follows: if the Python binary you just installed is in your PATH, the first line should
be

#!/usr/bin/env python
otherwise it should be

#!/path/to/newly_installed/python

MacOS X on the command line

The scripts — such as 1lilypond-book, convert-ly, abc2ly, and even lilypond itself — are
included inside the .app file for MacOS X. They can be run from the command line by invoking
them directly, e.g.

path/to/LilyPond.app/Contents/Resources/bin/lilypond

The same is true of the other scripts in that directory, including 1ilypond-book, convert-1ly,
abc2ly, etc.

Alternatively, you may create scripts which add the path automatically. Create a directory
to store these scripts,

mkdir -p “/bin
cd “/bin
Create a file called 1ilypond which contains
exec path/to/LilyPond.app/Contents/Resources/bin/lilypond "$@"

Create similar files 1ilypond-book, convert-1ly, and any other helper programs you use
(abc2ly, midi2ly, etc). Simply replace the bin/lilypond with bin/convert-1y (or other
program name) in the above file.

Make the file executable,
chmod u+x lilypond

Now, add this directory to your path. Modify (or create) a file called .profile in your home
directory such that it contains

export PATH=$PATH:~/bin
This file should end with a blank line.
Note that path/to will generally be /Applications/.

http://python.org/download/

Chapter 2: Setup 8

2.2 Text editor support
There is support from different text editors for LilyPond.

2.2.1 Emacs mode

FEmacs has a ‘lilypond-mode’, which provides keyword autocompletion, indentation, LilyPond
specific parenthesis matching and syntax coloring, handy compile short-cuts and reading Lily-
Pond manuals using Info. If ‘1ilypond-mode’ is not installed on your platform, see below.

An Emacs mode for entering music and running LilyPond is contained in the source
archive in the ‘elisp’ directory. Do make install to install it to elispdir. The file
‘lilypond-init.el’ should be placed to load-path‘/site-start.d/’ or appended to your
‘~/.emacs’ or ‘~/.emacs.el’.

As a user, you may want add your source path (e.g. ‘~/site-lisp/’) to your load-path by
appending the following line (as modified) to your ‘~/.emacs’

(setq load-path (append (list (expand-file-name "~/site-lisp")) load-path))

2.2.2 Vim mode

For VIM, a ‘vimrc’ is supplied, along with syntax coloring tools. A Vim mode for entering music
and running LilyPond is contained in the source archive in $VIM directory.

The LilyPond file type is detected if the file **/.vim/filetype.vim’ has the following content
if exists("did_load_filetypes")
finish
endif
augroup filetypedetect

au! BufNewFile,BufRead *.ly setf lilypond
augroup END

Please include this path by appending the following line to your ‘*~/.vimrc’
set runtimepath+=/usr/local/share/lilypond/${LILYPOND_VERSION}/vim/

where ${LILYPOND_VERSION? is your LilyPond version. If LilyPond was not installed in
‘/usr/local/’, then change this path accordingly.

2.2.3 jEdit

Created as a plugin for the jEdit text editor, LilyPondTool is the most feature-rich text-based
tool for editing LilyPond scores. Its features include a Document Wizard with lyrics support
to set up documents easier, and embedded PDF viewer with advanced point-and-click support.
For screenshots, demos and installation instructions, visit http://lilypondtool.organum.hu

2.2.4 TexShop

The TexShop editor for MacOS X can be extended to run LilyPond, lilypond-book and
convert-ly from within the editor, using the extensions available at http://www.dimi.uniud
.it/vitacolo/freesoftware.html.

2.2.5 TextMate

There is a LilyPond bundle for TextMate. It may be installed by running

mkdir -p /Library/Application\ Support/TextMate/Bundles
cd /Library/Application\ Support/TextMate/Bundles
svn co http://macromates.com/svn/Bundles/trunk/Bundles/Lilypond.tmbundle/

http://www.vim.org
http://www.jedit.org
http://lilypondtool.organum.hu
http://www.uoregon.edu/~koch/texshop/index.html
http://www.dimi.uniud.it/vitacolo/freesoftware.html
http://www.dimi.uniud.it/vitacolo/freesoftware.html

Chapter 2: Setup 9

2.2.6 LilyKDE

LilyKDE is a plugin for KDE’s text editor Kate. It has a powerful Score Wizard to quickly
setup a LilyPond document and an embedded PDF viewer.

LilyKDE can use Rumor, so music can entered by playing on a MIDI keyboard.

Other features are lyric hyphenation and running LilyPond on multiple files at once from
within the KDE file manager.

2.3 Point and click

Point and click lets you find notes in the input by clicking on them in the PDF viewer. This
makes it easier to find input that causes some error in the sheet music.

When this functionality is active, LilyPond adds hyperlinks to the PDF file. These hyperlinks
are sent to the web-browser, which opens a text-editor with the cursor in the right place.

To make this chain work, you should configure your PDF viewer to follow hyperlinks using
the ‘1ilypond-invoke-editor’ script supplied with LilyPond.

For Xpdf on UNIX, the following should be present in ‘xpdfrc’!

urlCommand "lilypond-invoke-editor ¥%s"

The program ‘lilypond-invoke-editor’ is a small helper program. It will invoke an editor
for the special textedit URIs, and run a web browser for others. It tests the environment
variable EDITOR for the following patterns,
emacs this will invoke

emacsclient —-—-no-wait +line:column file

vim this will invoke

gvim --remote +:line:normchar file

nedit this will invoke
nc -noask +line file'
The environment variable LYEDITOR is used to override this. It contains the command line to

start the editor, where % (file)s, %(column)s, %(1line)s is replaced with the file, column and
line respectively. The setting

emacsclient --no-wait +%(line)s:%(column)s %(file)s
for LYEDITOR is equivalent to the standard emacsclient invocation.

The point and click links enlarge the output files significantly. For reducing the size of PDF
and PS files, point and click may be switched off by issuing

\pointAndClickOff
in a .1y’ file. Point and click may be explicitly enabled with
\pointAndClickOn
Alternately, you may disable point and click with a command-line option:

lilypond -dno-point-and-click file.ly

Note: You should always turn off point and click in any LilyPond files to
be distributed to avoid including path information about your computer
in the .pdf file, which can pose a security risk.

1 On UNIX, this file is found either in ‘/etc/xpdfrc’ or as ‘.xpdfrc’ in your home directory.

http://lilykde.googlecode.com/
http://kate-editor.org/
http://www.volny.cz/smilauer/rumor/

Chapter 3: Running LilyPond 10

3 Running LilyPond
This chapter details the technicalities of running LilyPond.

3.1 Normal usage

Most users run LilyPond through a GUI; see Section “First steps” in Learning Manual if you
have not read this already.

3.2 Command-line usage

This section contains extra information about using LilyPond on the command-line. This may
be desirable to pass extra options to the program. In addition, there are certain extra ‘helper’
programs (such as midi2ly) which are only available on the command-line.

By ‘command-line’, we mean the command line in the operating system. Windows users
might be more familiar with the terms ‘DOS shell’ or ‘command shell’; MacOS X users might
be more familiar with the terms ‘terminal’ or ‘console’. They should also consult Section 2.1.1
[Setup for MacOS X], page 7.

Describing how to use this part of an operating system is outside the scope of this manual;
please consult other documentation on this topic if you are unfamiliar with the command-line.

3.2.1 Invoking lilypond
The 1lilypond executable may be called as follows from the command line.
lilypond [option]... file...

When invoked with a filename that has no extension, the .1y’ extension is tried first. To
read input from stdin, use a dash (-) for file.

When ‘filename.ly’ is processed it will produce ‘filename.ps’ and ‘filename.pdf’ as out-
put. Several files can be specified; they will each be processed independently.!

If ‘filename.ly’ contains more than one \score block, then the rest of the scores will be
output in numbered files, starting with ‘filename-1.pdf’. In addition, the value of output-
suffix will be inserted between the basename and the number. An input file containing

#(define output-suffix "violin")

\book { ... }
#(define output-suffix "cello")
\book { ... }

will output base‘-violin.pdf’ and base‘-cello-1.pdf’ .

3.2.2 Command line options for 1ilypond
The following options are supported:
-e,——evaluate=expr

Evaluate the Scheme expr before parsing any ‘.1y’ files. Multiple —e options may
be given, they will be evaluated sequentially.

The expression will be evaluated in the guile-user module, so if you want to use
definitions in expr, use

lilypond -e '(define-public a 42)'

on the command-line, and include

1 The status of GUILE is not reset after processing a .1y file, so be careful not to change any system defaults
from within Scheme.

Chapter 3: Running LilyPond 11

#(use-modules (guile-user))
at the top of the .1y file.

-f,-—-format=format

which formats should be written. Choices for format are svg, ps, pdf, and png.

Example: 1ilypond -fpng filename.ly

-d,--define-default=var=val
This sets the internal program option var to the Scheme value val. If val is not
supplied, then #t is used. To switch off an option, no- may be prefixed to var, e.g.

—-dno-point-and-click

is the same as
-dpoint-and-click="'#f"'

Here are a few interesting options.

‘help’

Running 1ilypond -dhelp will print all of the -d options available.

‘paper-size’

‘safe’

‘backend’

This option sets the default paper-size,
-dpaper-size=\"letter\"
Note that the string must be enclosed in escaped quotes (\").

Do not trust the .1y input.

When LilyPond formatting is available through a web server, either the
--safe or the --jail option MUST be passed. The --safe option will
prevent inline Scheme code from wreaking havoc, for example

#(system "rm -rf /")
{
c4"#(ly:export (ly:gulp-file "/etc/passwd"))

}
The -dsafe option works by evaluating in-line Scheme expressions
in a special safe module. This safe module is derived from GUILE
‘safe-rbrs’ module, but adds a number of functions of the LilyPond
API. These functions are listed in ‘scm/safe-1ily.scm’.

In addition, safe mode disallows \include directives and disables the
use of backslashes in TEX strings.

In safe mode, it is not possible to import LilyPond variables into Scheme.

-dsafe does not detect resource overuse. It is still possible to make the
program hang indefinitely, for example by feeding cyclic data structures
into the backend. Therefore, if using LilyPond on a publicly accessible
webserver, the process should be limited in both CPU and memory
usage.

The safe mode will prevent many useful LilyPond snippets from being
compiled. The --jail is a more secure alternative, but requires more
work to set up.

the output format to use for the back-end. Choices for format are

ps for PostScript.
Postscript files include TTF, Typel and OTF fonts. No
subsetting of these fonts is done. When using oriental char-
acter sets, this can lead to huge files.

Chapter 3:

-h,--help

Running LilyPond 12

eps for encapsulated PostScript. This dumps every page (sys-
tem) as a separate ‘EPS’ file, without fonts, and as one col-
lated ‘EPS’ file with all pages (systems) including fonts.

This mode is used by default by 1ilypond-book.

svg for SVG (Scalable Vector Graphics). This dumps every
page as a separate ‘SVG’ file, with embedded fonts.
You need a SVG viewer which supports embedded
fonts, or a SVG viewer which is able to replace the
embedded fonts with OTF fonts. Under UNIX, you
may use Inkscape (version 0.42 or later), after copying
the OTF fonts from the LilyPond directory (typically

‘/usr/share/lilypond/VERSION/fonts/otf/’) to
‘~/.fonts/’.

scm for a dump of the raw, internal Scheme-based drawing com-
mands.

null do not output a printed score; has the same effect as —~dno-

print-pages.
Example: 1ilypond -dbackend=svg filename.ly
‘preview’ Generate an output file containing the titles and the first system

‘print-pages’
Generate the full pages, the default. -dno-print-pages is useful in
combination with -dpreview.

Show a summary of usage.

-H,--header=FIELD

Dump a header field to file ‘BASENAME. FIELD’.

--include, -I=directory

Add directory to the search path for input files.

-i,--init=file

Set init file to file (default: ‘init.ly’).

-0,——output=FILE

--ps
~~png

--pdf

Set the default output file to FILE. The appropriate suffix will be added (e.g. .pdf
for pdf)

Generate PostScript.

Generate pictures of each page, in PNG format. This implies ——ps. The resolution
in DPI of the image may be set with

—-dresolution=110

Generate PDF. This implies —-ps.

-j,——jail=user ,group, jail ,dir

Run lilypond in a chroot jail.

The --jail option provides a more flexible alternative to --safe when LilyPond
formatting is available through a web server or whenever LilyPond executes exter-
nally provided sources.

The --jail option works by changing the root of 1ilypond to jail just before
starting the actual compilation process. The user and group are then changed to

http://www.inkscape.org

Chapter 3: Running LilyPond 13

match those provided, and the current directory is changed to dir. This setup
guarantees that it is not possible (at least in theory) to escape from the jail. Note
that for --jail to work 1ilypond must be run as root, which is usually accomplished
in a safe way using sudo.

Setting up a jail is a slightly delicate matter, as we must be sure that LilyPond is
able to find whatever it needs to compile the source inside the jail. A typical setup
comprises the following items:

Setting up a separate filesystem

A separate filesystem should be created for LilyPond, so that it can be
mounted with safe options such as noexec, nodev, and nosuid. In this
way, it is impossible to run executables or to write directly to a device
from LilyPond. If you do not want to create a separate partition, just
create a file of reasonable size and use it to mount a loop device. A
separate filesystem also guarantees that LilyPond cannot write more
space than it is allowed.

Setting up a separate user

A separate user and group (say, 1ily/1lily) with low privileges should
be used to run LilyPond inside the jail. There should be a single direc-
tory writable by this user, which should be passed in dir.

Preparing the jail

LilyPond needs to read a number of files while running. All these files
are to be copied into the jail, under the same path they appear in the
real root filesystem. The entire content of the LilyPond installation
(e.g., ‘/usr/share/lilypond’) should be copied.

If problems arise, the simplest way to trace them down is to run Lily-
Pond using strace, which will allow you to determine which files are
missing.

Running LilyPond

-v,—--version

In a jail mounted with noexec it is impossible to execute any external
program. Therefore LilyPond must be run with a backend that does
not require any such program. As we already mentioned, it must be
also run with superuser privileges (which, of course, it will lose imme-
diately), possibly using sudo. It is a good idea to limit the number of
seconds of CPU time LilyPond can use (e.g., using ulimit -t), and, if
your operating system supports it, the amount of memory that can be
allocated.

Show version information.

-V,--verbose

Be verbose: show full paths of all files read, and give timing information.

-w,--warranty

Show the warranty with which GNU LilyPond comes. (It comes with NO WAR-

RANTY!)

3.2.3 Environment variables

lilypond recognizes the following environment variables:

LILYPOND_DATADIR

This specifies a directory where locale messages and data files will be looked up by
default. The directory should contain subdirectories called ‘1y/’, ‘ps/’, ‘tex/’, etc.

Chapter 3: Running LilyPond 14

LANG This selects the language for the warning messages.

LILYPOND_GC_YIELD
With this variable the memory footprint and performance can be adjusted. It is a
percentage tunes memory management behavior. With higher values, the program
uses more memory, with smaller values, it uses more CPU time. The default value
is 70.

3.3 Error messages
Different error messages can appear while compiling a file:

Warning Something looks suspect. If you are requesting something out of the ordinary then
you will understand the message, and can ignore it. However, warnings usually
indicate that something is wrong with the input file.

Error Something is definitely wrong. The current processing step (parsing, interpreting,
or formatting) will be finished, but the next step will be skipped.

Fatal error
Something is definitely wrong, and LilyPond cannot continue. This happens rarely.
The most usual cause is misinstalled fonts.

Scheme error
Errors that occur while executing Scheme code are caught by the Scheme inter-
preter. If running with the verbose option (-V or --verbose) then a call trace of
the offending function call is printed.

Programming error
There was some internal inconsistency. These error messages are intended to help
the programmers and debuggers. Usually, they can be ignored. Sometimes, they
come in such big quantities that they obscure other output.

Aborted (core dumped)
This signals a serious programming error that caused the program to crash. Such
errors are considered critical. If you stumble on one, send a bug-report.

If warnings and errors can be linked to some part of the input file, then error messages have
the following form

filename :lineno:columnno: message
offending input line
A line-break is inserted in the offending line to indicate the column where the error was
found. For example,

test.ly:2:19: error: not a duration: 5
{c'4 e
5g'}

These locations are LilyPond’s best guess about where the warning or error occurred, but
(by their very nature) warnings and errors occur when something unexpected happens. If you
can’t see an error in the indicated line of your input file, try checking one or two lines above the
indicated position.

3.4 Updating files with convert-1ly

The LilyPond input syntax is routinely changed to simplify it or improve it in different ways.
As a side effect of this, the LilyPond interpreter often is no longer compatible with older input
files. To remedy this, the program convert-1ly can be used to deal with most of the syntax
changes between LilyPond versions.

Chapter 3: Running LilyPond 15

It uses \version statements in the input files to detect the old version number. In most
cases, to upgrade your input file it is sufficient to run

convert-ly -e myfile.ly
MacOS X users may execute this command under the menu entry Compile > Update syntax.

If there are no changes to myfile.ly and file called myfile.ly. NEW is created, then myfile.ly is
already updated.

3.4.1 Command line options for convert-1ly

convert-1ly always converts up to the last syntax change handled by it. This means that the
\version number left in the file is usually lower than the version of convert-1ly itself.

To upgrade LilyPond fragments in texinfo files, use
convert-ly ——from=... --to=... —-—-no-version *.itely

To see the changes in the LilyPond syntax between two versions, use
convert-ly -—-from=... --to=... -s

To upgrade many files at once, combine convert-1y with standard UNIX commands. This
example will upgrade all .1y files in the current directory

for £ in *.ly; do convert-ly -e $f; done;
In general, the program is invoked as follows:
convert-ly [option]... file...
The following options can be given:
-e,——edit
Do an inline edit of the input file. Overrides ——output.
-f,-—from=from-patchlevel
Set the version to convert from. If this is not set, convert-1y will guess this, on
the basis of \version strings in the file.
-n,--no-version
Normally, convert-1y adds a \version indicator to the output. Specifying this
option suppresses this.

-8, ——show-rules
Show all known conversions and exit.

--to=to-patchlevel
Set the goal version of the conversion. It defaults to the latest available version.

-h, —-help
Print usage help.

3.4.2 Problems with convert-1ly

Not all language changes are handled. Only one output option can be specified. Automatically
updating scheme and LilyPond scheme interfaces is quite unlikely; be prepared to tweak scheme
code manually.

There are a few things that the convert-ly cannot handle. Here's a list
of limitations that the community has complained about.

This bug report structure has been chosen because convert-ly has a
structure that doesn't allow to smoothly implement all needed changes.
Thus this is just a wishlist, placed here for reference.

Chapter 3: Running LilyPond 16

1.6->2.0:

Doesn't always convert figured bass correctly, specifically things like {<

>}. Mats' comment on working around this:
To be able to run convert-ly
on it, I first replaced all occurrences of '{<' to some dummy like '{#'
and similarly I replaced '>}' with '&}'. After the conversion, I could
then change back from '{ #' to '{ <' and from '& }' to '> }'.

Doesn't convert all text markup correctly. In the old markup syntax,

it was possible to group a number of markup commands together within

parentheses, e.g.
-#'((bold italic) "string")
This will incorrectly be converted into
-\markup{{\bold italic} "string"}
instead of the correct
—\markup{\bold \italic "string"}

2.0->2.2:

Doesn't handle \partcombine

Doesn't do \addlyrics => \lyricsto, this breaks some scores with multiple

stanzas.

2.0->2.4:

\magnify isn't changed to \fontsize.
- \magnify #m => \fontsize #f, where f = 61ln(m)/1n(2)

remove-tag isn't changed.
- \applyMusic #(remove-tag '. . .) => \keepWithTag #'.

first-page-number isn't changed.
- first-page-number no => print-first-page-number = ##f

Line breaks in header strings aren't converted.
- \\\\ as line break in \header strings => \markup \center-align <

"First Line" "Second Line" >
Crescendo and decrescendo terminators aren't converted.

- \rced => \!
- \rc => \!
2.2->2.4:

\turnOff (used in \set Staff.VoltaBracket = \turnOff) is not properly
converted.

2.4.2->2.5.9

\markup{ \center-align <{ ... }> } should be converted to:
\markup{ \center-align {\line { ... }} }

but now, \line is missing.
2.4->2.6

Special LaTeX characters such as $°$ in text are not converted to UTF8.
2.8

\score{} must now begin with a music expression. Anything else
(particularly \header{}) must come after the music.

3.5 Reporting bugs

If you have input that results in a crash or an erroneous output, then that is a bug. There is a

list of current bugs on our Google bug tracker,
http://code.google.com/p/lilypond/issues/list

If you have discovered a bug which is not listed, please report the bug by following the
directions on

http://code.google.com/p/lilypond/issues/list

Chapter 3: Running LilyPond 17

http://lilypond.org/web/devel/participating/bugs

Please construct and submit minimal examples of bugs in reports. We do not have the
resources to investigate reports which are not as small as possible.

http://lilypond.org/web/devel/participating/bugs

Chapter 4: 1ilypond-book: Integrating text and music 18

4 lilypond-book: Integrating text and music

If you want to add pictures of music to a document, you can simply do it the way you would do
with other types of pictures. The pictures are created separately, yielding PostScript output or
PNG images, and those are included into a N TEX or HTML document.

lilypond-book provides a way to automate this process: This program extracts snippets of
music from your document, runs 1ilypond on them, and outputs the document with pictures
substituted for the music. The line width and font size definitions for the music are adjusted to
match the layout of your document.

This is a separate program from lilypond itself, and is run on the command line; for more

information, see Section 3.2 [Command-line usage], page 10. If you have MacOS 10.3 or 10.4
and you have trouble running 1ilypond-book, see Section 2.1.1 [Setup for MacOS X], page 7.

This procedure may be applied to KIEX, HTML, Texinfo or DocBook documents.

4.1 An example of a musicological document

Some texts contain music examples. These texts are musicological treatises, songbooks, or
manuals like this. Such texts can be made by hand, simply by importing a PostScript figure
into the word processor. However, there is an automated procedure to reduce the amount of
work involved in HTML, ITEX, Texinfo and DocBook documents.

A script called 1ilypond-book will extract the music fragments, format them, and put back
the resulting notation. Here we show a small example for use with I¥TEX. The example also
contains explanatory text, so we will not comment on it further.

Input

\documentclass [adpaper]{article}
\begin{document}

Documents for \verb+lilypond-book+ may freely mix music and text.
For example,

\begin{lilypond}
\relative c' {
c2 g'2 \times 2/3 { f8 e d } c'2 g4
}
\end{1lilypond}

Options are put in brackets.

\begin[fragment,quote,staffsize=26,verbatim] {1ilypond}
c'd 16

\end{1lilypond}

Larger examples can be put into a separate file, and introduced with
\verb+\lilypondfile+.

\lilypondfile[quote,noindent]{screech-boink.ly}

(If needed, replace screech-boink.ly by any .ly file you put in the same
directory as this file.)

Chapter 4: 1ilypond-book: Integrating text and music 19

\end{document}

Processing

Save the code above to a file called ‘1ilybook.lytex’, then in a terminal run

lilypond-book --output=out --pdf lilybook.lytex
lilypond-book (GNU LilyPond) 2.12.2

Reading lilybook.lytex...

..lots of stuff deleted..

Compiling lilybook.tex...

cd out

pdflatex lilybook

..lots of stuff deleted..

xpdf lilybook

(replace xpdf by your favorite PDF viewer)

Running 1ilypond-book and latex creates a lot of temporary files, which would clutter up
the working directory. To remedy this, use the -—output=dir option. It will create the files in
a separate subdirectory ‘dir’.

Finally the result of the IXTEX example shown above.! This finishes the tutorial section.

1 This tutorial is processed with Texinfo, so the example gives slightly different results in layout.

Chapter 4: 1ilypond-book: Integrating text and music

Output

Documents for 1ilypond-book may freely mix music and text. For example,

_3
| o

QUL

G St

-

Options are put in brackets.
c'4 f16

4]

)" 4
4\ 4o
[an Y W
AN2 Y \)

e o —)

r—y

Larger examples can be put into a separate file, and introduced with \1ilypondfile.

Screech and boink
Random complex notation

Han-Wen Nienhuys
/\
n I : q: { ‘. ‘. -
NV D Q] 1
;\)U (&]

!

LA
<
= v v

20

Chapter 4: 1ilypond-book: Integrating text and music

4.2 Integrating music and text

Here we explain how to integrate LilyPond with various output formats.

4.2.1 BIEX

21

IXTEX is the de-facto standard for publishing layouts in the exact sciences. It is built on top of

the TEX typesetting engine, providing the best typography available anywhere.

See The Not So Short Introduction to IATEX for an overview on how to use INTEX.

Music is entered using
\begin[options,go,here]{lilypond}
YOUR LILYPOND CODE
\end{1lilypond}

or
\lilypondfile[options,go,here]l{filename}
or
\1lilypond{ YOUR LILYPOND CODE }

Additionally, \lilypondversion displays the current version of lilypond.

lilypond-book yields a file that can be further processed with IXTEX.
We show some examples here. The 1ilypond environment
\begin[quote,fragment,staffsize=26]{1lilypond}
c'd' e' f' g'2 g'2
\end{1lilypond}
produces

a=r

e &

The short version
\lilypond[quote,fragment,staffsize=11]{<c' e' g'>}

produces

=

Running

Currently, you cannot include { or } within \1ilypond{}, so this command is only useful with

the fragment option.

The default line width of the music will be adjusted by examining the commands in the
document preamble, the part of the document before \begin{document}. The 1ilypond-book
command sends these to INTEX to find out how wide the text is. The line width for the music
fragments is then adjusted to the text width. Note that this heuristic algorithm can fail easily;

in such cases it is necessary to use the line-width music fragment option.

Each snippet will call the following macros if they have been defined by the user:

e \preLilyPondExample called before the music,
e \postLilyPondExample called after the music,

e \betweenLilyPondSystem[1] is called between systems if 1ilypond-book has split the
snippet into several PostScript files. It must be defined as taking one parameter and will be
passed the number of files already included in this snippet. The default is to simply insert

a \linebreak.

http://www.ctan.org/tex-archive/info/lshort/english/

Chapter 4: 1ilypond-book: Integrating text and music 22

Selected Snippets

Sometimes it is useful to display music elements (such as ties and slurs) as if they continued
after the end of the fragment. This can be done by breaking the staff and suppressing inclusion
of the rest of the LilyPond output.

In BTEX, define \betweenLilyPondSystem in such a way that inclusion of other systems is
terminated once the required number of systems are included. Since \betweenLilypondSystem
is first called after the first system, including only the first system is trivial.

\def\betweenLilyPondSystem#1{\endinput}

\begin[fragment]{lilypond}
c'I\C e'(c'” \break c' d) e f\)
\end{lilypond}

If a greater number of systems is requested, a TEX conditional must be used before the
\endinput. In this example, replace ‘2’ by the number of systems you want in the output,
\def\betweenlLilyPondSystem#1{
\ifnum##1<2\else\endinput\fi
}

Remember that the definition of \betweenLilyPondSystenm is effective until TEX quits the
current group (such as the IXTEX environment) or is overridden by another definition (which is,
in most cases, for the rest of the document). To reset your definition, write

\let\betweenlLilyPondSystem\undefined
in your KIEX source.
This may be simplified by defining a TEX macro

\def\onlyFirstNSystems#1{
\def\betweenLilyPondSystem##1{\ifnum##1<#1\else\endinput\fi}
}

and then saying only how many systems you want before each fragment,

\onlyFirstNSystems{3}
\begin{lilypond}...\end{lilypond}
\onlyFirstNSystems{1}
\begin{lilypond}...\end{lilypond}

See also

There are specific 1ilypond-book command line options and other details to know when
processing INTEX documents, see Section 4.4 [Invoking lilypond-book], page 27.

4.2.2 Texinfo

Texinfo is the standard format for documentation of the GNU project. An example of a Texinfo
document is this manual. The HTML, PDF, and Info versions of the manual are made from the
Texinfo document.

In the input file, music is specified with

@lilypond[options,go,here]
YOUR LILYPOND CODE
@end lilypond

or
@lilypond[options,go,here]{ YOUR LILYPOND CODE }

or

Chapter 4: 1ilypond-book: Integrating text and music 23

@lilypondfile[options,go,herel{filename}

Additionally, @1ilypondversion displays the current version of lilypond.

When lilypond-book is run on it, this results in a Texinfo file (with extension ‘.texi’)
containing @image tags for HTML, Info and printed output. lilypond-book generates images
of the music in EPS and PDF formats for use in the printed output, and in PNG format for use
in HTML and Info output.

We show two simple examples here. A lilypond environment

@lilypond[fragment]
c] d 1 e] f 1 g] 2 g !
@end lilypond

produces
"4 ! !
/\ r) | |
[[YA W = ~
L4 L4

) e

The short version
@lilypond[fragment,staffsize=11]{<c' e' g'>}

produces

=

Contrary to IWTEX, @lilypond{...} does not generate an in-line image. It always gets a
paragraph of its own.

4.2.3 HTML

Music is entered using

<lilypond fragment relative=2>

\key c \minor c4 es g2

</lilypond>
lilypond-book then produces an HTML file with appropriate image tags for the music frag-
ments:

For inline pictures, use <1ilypond ... />, where the options are separated by a colon from
the music, for example

Some music in <lilypond relative=2: a b c/> a line of text.
To include separate files, say

<lilypondfile optionl option2 ...>filename</lilypondfile>
Additionally, <1ilypondversion/> displays the current version of lilypond.

4.2.4 DocBook

For inserting LilyPond snippets it is good to keep the conformity of our DocBook document,
thus allowing us to use DocBook editors, validation etc. So we don’t use custom tags, only
specify a convention based on the standard DocBook elements.

Chapter 4: 1ilypond-book: Integrating text and music 24

Common conventions

For inserting all type of snippets we use the mediaobject and inlinemediaobject element, so
our snippets can be formatted inline or not inline. The snippet formatting options are always
provided in the role property of the innermost element (see in next sections). Tags are chosen
to allow DocBook editors format the content gracefully. The DocBook files to be processed with
lilypond-book should have the extension ‘.1lyxml’.

Including a LilyPond file

This is the most simple case. We must use the ‘.1y’ extension for the included file, and insert
it as a standard imageobject, with the following structure:

<mediaobject>
<imageobject>
<imagedata fileref="musicl.ly" role="printfilename" />
</imageobject>
</mediaobject>

Note that you can use mediaobject or inlinemediaobject as the outermost element as you
wish.

Including LilyPond code

Including LilyPond code is possible by using a programlisting, where the language is set to
lilypond with the following structure:

<inlinemediaobject>
<textobject>
<programlisting language="lilypond" role="fragment verbatim staffsize=16 ragged-rij
\context Staff \with {
\remove Time_signature_engraver
\remove Clef_engraver}
{ c4(fis) }
</programlisting>
</textobject>
</inlinemediaobject>

As you can see, the outermost element is a mediaobject or inlinemediaobject, and there
is a textobject containing the programlisting inside.

Processing the DocBook document

Running 1ilypond-book on our ‘. lyxml’ file will create a valid DocBook document to be further
processed with ‘.xml1’ extension. If you use dblatex, it will create a PDF file from this document
automatically. For HTML (HTML Help, JavaHelp etc.) generation you can use the official
DocBook XSL stylesheets, however, it is possible that you have to make some customization for
it.

4.3 Music fragment options

In the following, a ‘LilyPond command’ refers to any command described in the previous sections
which is handled by lilypond-book to produce a music snippet. For simplicity, LilyPond
commands are only shown in KTEX syntax.

Note that the option string is parsed from left to right; if an option occurs multiple times,
the last one is taken.

The following options are available for LilyPond commands:

http://dblatex.sourceforge.net

Chapter 4: 1ilypond-book: Integrating text and music 25

staffsize=ht
Set staff size to ht, which is measured in points.

ragged-right
Produce ragged-right lines with natural spacing, i.e., ragged-right = ##t is added
to the LilyPond snippet. This is the default for the \1ilypond{} command if no
line-width option is present. It is also the default for the 1ilypond environment
if the fragment option is set, and no line width is explicitly specified.

noragged-right
For single-line snippets, allow the staff length to be stretched to equal that of the
line width, i.e., ragged-right = ##f is added to the LilyPond snippet.

line-width

line-width=size\unit
Set line width to size, using unit as units. unit is one of the following strings: cm,
mm, in, or pt. This option affects LilyPond output (this is, the staff length of the
music snippet), not the text layout.

If used without an argument, set line width to a default value (as computed with a
heuristic algorithm).

If no line-width option is given, lilypond-book tries to guess a default for
lilypond environments which don’t use the ragged-right option.

notime Do not print the time signature, and turns off the timing (time signature, bar lines)
in the score.

fragment Make lilypond-book add some boilerplate code so that you can simply enter, say,
c'4
without \layout, \score, etc.

nofragment
Do not add additional code to complete LilyPond code in music snippets. Since this
is the default, nofragment is redundant normally.

indent=size\unit
Set indentation of the first music system to size, using unit as units. unit is one of
the following strings: cm, mm, in, or pt. This option affects LilyPond, not the text
layout.

noindent Set indentation of the first music system to zero. This option affects LilyPond, not
the text layout. Since no indentation is the default, noindent is redundant normally.

quote Reduce line length of a music snippet by 2%0.4 in and put the output into a quotation
block. The value ‘0.4in’ can be controlled with the exampleindent option.

exampleindent
Set the amount by which the quote option indents a music snippet.

relative

relative=n
Use relative octave mode. By default, notes are specified relative to middle C.
The optional integer argument specifies the octave of the starting note, where the
default 1 is middle C. relative option only works when fragment option is set, so
fragment is automatically implied by relative, regardless of the presence of any
(no) fragment option in the source.

LilyPond also uses 1ilypond-book to produce its own documentation. To do that, some
more obscure music fragment options are available.

Chapter 4: 1ilypond-book: Integrating text and music 26

verbatim

addversion

texidoc

lilyquote

The argument of a LilyPond command is copied to the output file and enclosed
in a verbatim block, followed by any text given with the intertext option (not
implemented yet); then the actual music is displayed. This option does not work
well with \1ilypond{} if it is part of a paragraph.
If verbatim is used in a 1ilypondfile command, it is possible to enclose verbatim
only a part of the source file. If the source file contain a comment containing ‘begin
verbatim’ (without quotes), quoting the source in the verbatim block will start
after the last occurrence of such a comment; similarly, quoting the source verbatim
will stop just before the first occurrence of a comment containing ‘end verbatim’,
if there is any. In the following source file example, the music will be interpreted in
relative mode, but the verbatim quote will not show the relative block, i.e.
\relative c' { % begin verbatim
c4d e2 g4
f2 e % end verbatim

}
will be printed with a verbatim block like

cd e2 g4

f2 e
If you would like to translate comments and variable names in verbatim output but
not in the sources, you may set the environment variable LYDOC_LOCALEDIR to a
directory path; the directory should contain a tree of ‘.mo’ message catalogs with
lilypond-doc as a domain.

(Only for Texinfo output.) Prepend line \version @w{"@version{}"} to verbatim
output.

(Only for Texinfo output.) If lilypond is called with the ‘--header=texidoc’
option, and the file to be processed is called ‘foo.1ly’, it creates a file ‘foo.texidoc’
if there is a texidoc field in the \header. The texidoc option makes 1ilypond-
book include such files, adding its contents as a documentation block right before
the music snippet.

Assuming the file ‘foo.1ly’ contains

\header {
texidoc = "This file demonstrates a single note."
}
{ca?
and we have this in our Texinfo document ‘test.texinfo’
@lilypondfile[texidoc]{foo.ly}
the following command line gives the expected result
lilypond-book --pdf --process="lilypond \
-dbackend=eps --header=texidoc" test.texinfo
Most LilyPond test documents (in the ‘input’ directory of the distribution) are
small ‘.1y’ files which look exactly like this.
For localization purpose, if the Texinfo document contains @documentlanguage
LANG and ‘foo.ly’ header contains a texidocLANG field, and if 1ilypond is called
with ‘--header=texidocLANG’, then ‘foo.texidocLANG’ will be included instead of
‘foo.texidoc’.

(Only for Texinfo output.) This option is similar to quote, but only the music
snippet (and the optional verbatim block implied by verbatim option) is put into

Chapter 4: 1ilypond-book: Integrating text and music 27

a quotation block. This option is useful if you want to quote the music snippet but
not the texidoc documentation block.

doctitle (Only for Texinfo output.) This option works similarly to texidoc option: if
lilypond is called with the ‘--header=doctitle’ option, and the file to be processed
is called ‘foo.1ly’ and contains a doctitle field in the \header, it creates a file ‘foo
.doctitle’. When doctitle option is used, the contents of ‘foo.doctitle’, which
should be a single line of text, is inserted in the Texinfo document as @lydoctitle
text. @lydoctitle should be a macro defined in the Texinfo document. The same
remark about texidoc processing with localized languages also applies to doctitle.

nogettext
(Only for Texinfo output.) Do not translate comments and variable names in the
snippet quoted verbatim.

printfilename
If a LilyPond input file is included with \1ilypondfile, print the file name right
before the music snippet. For HTML output, this is a link. Only the base name of
the file is printed, i.e. the directory part of the file path is stripped.

fontload This option includes fonts in all of the generated EPS-files for this snippet. This
should be used if the snippet uses any font that IATEX cannot find on its own.

4.4 Invoking lilypond-book

lilypond-book produces a file with one of the following extensions: ‘.tex’, ‘.texi’, ‘.html’
or ‘.xml’, depending on the output format. All of ‘.tex’, ‘.texi’ and ‘.xml’ files need further
processing.

Format-specific instructions

BTEX

There are two ways of processing your I TEX document for printing or publishing: getting a PDF
file directly with PDFIXTEX, or getting a PostScript file with IXTEX via a DVI to PostScript
translator like dvips. The first way is simpler and recommended®, and whichever way you use,
you can easily convert between PostScript and PDF with tools, like ps2pdf and pdf2ps included
in Ghostscript package.

To produce a PDF file through PDFITEX, use

lilypond-book --pdf yourfile.pdftex
pdflatex yourfile.tex

To produce PDF output via ITEX/dvips/ps2pdf, you should do

lilypond-book yourfile.lytex

latex yourfile.tex

dvips -Ppdf yourfile.dvi

ps2pdf yourfile.ps
The ‘.dvi’ file created by this process will not contain note heads. This is normal; if you follow
the instructions, they will be included in the ‘.ps’ and ‘.pdf’ files.

Running dvips may produce some warnings about fonts; these are harmless and may be
ignored. If you are running latex in twocolumn mode, remember to add -t landscape to the
dvips options.

1 Note that PDFIATEX and IATEX may not be both usable to compile any IATEX document, that is why we
explain the two ways.

Chapter 4: 1ilypond-book: Integrating text and music 28

Texinfo

To produce a Texinfo document (in any output format), follow the normal procedures for Texinfo;
this is, either call texi2pdf or texi2dvi or makeinfo, depending on the output format you want
to create. See the documentation of Texinfo for further details.

Command line options

lilypond-book accepts the following command line options:

-f format

-—format=format
Specify the document type to process: html, latex, texi (the default) or docbook.
If this option is missing, 1ilypond-book tries to detect the format automatically,
see Section 4.5 [Filename extensions], page 29. Currently, texi is the same as
texi-html.

-F filter

-—filter=filter
Pipe snippets through filter. 1ilypond-book will not —filter and —process at the
same time. For example,

lilypond-book --filter='convert-ly --from=2.0.0 -' my-book.tely

-h
--help Print a short help message.

-Idir

-—include=dir
Add dir to the include path. 1ilypond-book also looks for already compiled snippets
in the include path, and does not write them back to the output directory, so in
some cases it is necessary to invoke further processing commands such as makeinfo
or latex with the same -I dir options.

-o dir

--output=dir
Place generated files in directory dir. Running lilypond-book generates lots of
small files that LilyPond will process. To avoid all that garbage in the source
directory, use the ‘--output’ command line option, and change to that directory
before running latex or makeinfo.

lilypond-book --output=out yourfile.lytex
cd out

Chapter 4: 1ilypond-book: Integrating text and music 29

—--skip-lily-check
Do not fail if no lilypond output is found. It is used for LilyPond Info documentation
without images.
--skip-png-check
Do not fail if no PNG images are found for EPS files. It is used for LilyPond Info
documentation without images.
--lily-output-dir=dir
Write lily-XXX files to directory dir, link into —-output directory. Use this option
to save building time for documents in different directories which share a lot of
identical snippets.
--info-images-dir=dir
Format Texinfo output so that Info will look for images of music in dir.
--latex-program=prog
Run executable prog instead of latex. This is useful if your document is processed
with xelatex, for example.

-—left-padding=amount
Pad EPS boxes by this much. amount is measured in millimeters, and is 3.0 by
default. This option should be used if the lines of music stick out of the right
margin.
The width of a tightly clipped system can vary, due to notation elements that stick
into the left margin, such as bar numbers and instrument names. This option will
shorten each line and move each line to the right by the same amount.

-P command

—--process=command
Process LilyPond snippets using command. The default command is 1ilypond.
lilypond-book will not —-filter and --process at the same time.

-—pdf Create PDF files for use with PDFIATEX.

-V
—--verbose
Be verbose.
-v
—--version
Print version information.

Known issues and warnings

The Texinfo command @pagesizes is not interpreted. Similarly, M TEX commands that change
margins and line widths after the preamble are ignored.

Only the first \score of a LilyPond block is processed.

4.5 Filename extensions

You can use any filename extension for the input file, but if you do not use the recommended
extension for a particular format you may need to manually specify the output format; for details,
see Section 4.4 [Invoking lilypond-book], page 27. Otherwise, 1ilypond-book automatically
selects the output format based on the input filename’s extension.

extension output format
‘. html’ HTML

Chapter 4: 1ilypond-book: Integrating text and music 30

‘Litely’ Texinfo
‘.latex’ BTEX
‘.lytex’ ETEX

‘. 1lyxml’ DocBook
‘.tely’ Texinfo
‘.tex’ ITREX

‘. texi’ Texinfo
‘.texinfo’ Texinfo
‘. xml’ HTML

If you use the same filename extension for the input file than the extension 1ilypond-book
uses for the output file, and if the input file is in the same directory as 1ilypond-book working
directory, you must use ——output option to make 1ilypond-book running, otherwise it will exit
with an error message like “Output would overwrite input file”.

4.6 Alternative methods of mixing text and music

This section shows methods to integrate text and music, different than the automated method
with 1ilypond-book.

Many quotes from a large score

If you need to quote many fragments from a large score, you can also use the clip systems feature,
see Section “Extracting fragments of music” in Notation Reference.

Inserting LilyPond output into OpenOffice.org
LilyPond notation can be added to OpenOffice.org with OOoLilyPond.

Inserting LilyPond output into other programs

To insert LilyPond output in other programs, use lilypond instead of 1ilypond-book. Each
example must be created individually and added to the document; consult the documentation
for that program. Most programs will be able to insert LilyPond output in ‘PNG’, ‘EPS’, or ‘PDF’
formats.
To reduce the white space around your LilyPond score, use the following options
\paper{

indent=0\mm

line-width=120\mm

oddFooterMarkup=##f

oddHeaderMarkup=##f

bookTitleMarkup = ##f

scoreTitleMarkup = ##f

{ct}
To produce a useful ‘EPS’ file, use

lilypond -dbackend=eps -dno-gs-load-fonts -dinclude-eps-fonts myfile.ly

‘PNG’:
lilypond -dbackend=eps -dno-gs-load-fonts -dinclude-eps-fonts --png myfile.ly

http://ooolilypond.sourceforge.net

Chapter 5: Converting from other formats 31

5 Converting from other formats

Music can be entered also by importing it from other formats. This chapter documents the tools
included in the distribution to do so. There are other tools that produce LilyPond input, for
example GUI sequencers and XML converters. Refer to the website for more details.

These are separate programs from lilypond itself, and are run on the command line; see
Section 3.2 [Command-line usage|, page 10 for more information. If you have MacOS 10.3 or
10.4 and you have trouble running some of these scripts, e.g. convert-ly, see Section 2.1.1
[Setup for MacOS X], page 7.

Known issues and warnings

We unfortunately do not have the resources to maintain these programs; please consider them
“as-is”. Patches are appreciated, but bug reports will almost certainly not be resolved.

5.1 Invoking midi2ly
midi2ly translates a Type 1 MIDI file to a LilyPond source file.

MIDI (Music Instrument Digital Interface) is a standard for digital instruments: it specifies
cabling, a serial protocol and a file format. The MIDI file format is a de facto standard format
for exporting music from other programs, so this capability may come in useful when importing
files from a program that has a converter for a direct format.

midi2ly converts tracks into Section “Staff” in Internals Reference and channels into Section
“Voice” in Internals Reference contexts. Relative mode is used for pitches, durations are only
written when necessary.

¢ 9

It is possible to record a MIDI file using a digital keyboard, and then convert it to ‘.1y’.
However, human players are not rhythmically exact enough to make a MIDI to LY conversion
trivial. When invoked with quantizing (-s and -d options) midi21y tries to compensate for these
timing errors, but is not very good at this. It is therefore not recommended to use midi21ly for
human-generated midi files.

It is invoked from the command-line as follows,

midi2ly [option]... midi-file

Note that by ‘command-line’, we mean the command line of the operating system. See

Chapter 5 [Converting from other formats], page 31, for more information about this.

The following options are supported by midi2ly.

-a, ——absolute-pitches
Print absolute pitches.

-d, ——duration-quant=DUR
Quantize note durations on DUR.

-e, ——explicit-durations
Print explicit durations.
-h,--help
Show summary of usage.
-k, --key=acc [:minor]
Set default key. acc > 0 sets number of sharps; acc < 0 sets number of flats. A
minor key is indicated by :1.
-0, ——output=~file
Write output to file.

http://lilypond.org

Chapter 5: Converting from other formats 32

-s, ——start-quant=DUR
Quantize note starts on DUR.

-t, ——allow-tuplet=DUR*NUM/DEN
Allow tuplet durations DUR*NUM /DEN.

-v, ——verbose
Be verbose.
-V, ——version

Print version number.

-w, —-warranty
Show warranty and copyright.

-x, ——text-lyrics
Treat every text as a lyric.

Known issues and warnings

Overlapping notes in an arpeggio will not be correctly rendered. The first note will be read and
the others will be ignored. Set them all to a single duration and add phrase markings or pedal
indicators.

5.2 Invoking musicxml2ly

MusicXML is an XML dialect for representing music notation.

musicxml2ly extracts the notes, articulations, score structure, lyrics, etc. from part-wise
MusicXML files, and writes them to a .ly file. It is invoked from the command-line.

It is invoked from the command-line as follows,
musicxml2ly [option]... xml-file

Note that by ‘command-line’, we mean the command line of the operating system. See
Chapter 5 [Converting from other formats|, page 31, for more information about this.

If the given filename is ‘~’, musicxml2ly reads input from the command line.
The following options are supported by musicxml21ly:

-a, ——absolute
convert pitches in absolute mode.

-h,--help
print usage and option summary.

-1, ——language=LANG
use a different language file 'LANG.ly’ and corresponding pitch names, e.g. ’deutsch’
for deutsch.ly and German note names.

--1xml use the Ixml.etree Python package for XML-parsing; uses less memory and cpu time.

-—nd ——no-articulation-directions
do not convert directions (=, _ or =) for articulations, dynamics, etc.

--no-beaming
do not convert beaming information, use LilyPond’s automatic beaming instead.
-o0,-—output=file
set output filename to file. If file is ‘=’, the output will be printed on stdout. If not
given, xml-file‘.1y’ will be used.

http://www.musicxml.org/

Chapter 5: Converting from other formats

-r,--relative
convert pitches in relative mode (default).

-v,--verbose
be verbose.

--version
print version information.

-z,-—compressed
input file is a zip-compressed MusicXML file.

5.3 Invoking abc2ly

ABC is a fairly simple ASCII based format. It is described at the ABC site:

http://www.walshaw.plus.com/abc/learn.html.

abc2ly translates from ABC to LilyPond. It is invoked as follows:
abc2ly [option]... abc-file

The following options are supported by abc2ly:

-b,——-beams=None
preserve ABC’s notion of beams

-h,--help
this help

-o,-—output=file
set output filename to file.

-s,—-—-strict
be strict about success

—--version
print version information.

33

There is a rudimentary facility for adding LilyPond code to the ABC source file. If you say:

hhLY voices \set autoBeaming = ##f

This will cause the text following the keyword ‘voices’ to be inserted into the current voice

of the LilyPond output file.
Similarly,

WHLY slyrics more words

will cause the text following the ‘slyrics’ keyword to be inserted into the current line of lyrics.

Known issues and warnings

The ABC standard is not very ‘standard’. For extended features (e.g., polyphonic music) dif-

ferent conventions exist.

Multiple tunes in one file cannot be converted.

ABC synchronizes words and notes at the beginning of a line; abc21ly does not.

abc2ly ignores the ABC beaming.

http://www.walshaw.plus.com/abc/learn.html

Chapter 5: Converting from other formats 34

5.4 Invoking etf2ly
ETF (Enigma Transport Format) is a format used by Coda Music Technology’s Finale product.
etf2ly will convert part of an ETF file to a ready-to-use LilyPond file.
It is invoked from the command-line as follows.
etf2ly [option]... etf-file

Note that by ‘command-line’, we mean the command line of the operating system. See
Chapter 5 [Converting from other formats|, page 31, for more information about this.

The following options are supported by etf21ly:

-h,--help
this help

-0,——output=FILE
set output filename to FILE

—--version
version information

Known issues and warnings

The list of articulation scripts is incomplete. Empty measures confuse etf2ly. Sequences of
grace notes are ended improperly.

5.5 Generating LilyPond files
LilyPond itself does not come with support for any other formats, but there are some external
tools that also generate LilyPond files.
These tools include

e Denemo, a graphical score editor.

e Rumor, a realtime monophonic MIDI to LilyPond converter.

e lyqi, an Emacs major mode.

e xml2ly, which imports MusicXML

e Notekdit which imports MusicXML

e Rosegarden, which imports MIDI

e FOMUS, a LISP library to generate music notation

e http://vsr.informatik.tu-chemnitz.de/staff/jan/nted/nted.xhtml, has experimen-
tal export for LilyPond.

e http://www.tuxguitar.com.ar/, can export to LilyPond.

e http://musescore.org can also export to LilyPond.

http://www.denemo.org/
http://www.volny.cz/smilauer/rumor/rumor.html
http://nicolas.sceaux.free.fr/lilypond/lyqi.html
http://www.nongnu.org/xml2ly/
http://www.musicxml.com/xml.html
http://noteedit.berlios.de
http://www.musicxml.com/xml.html
http://www.rosegardenmusic.com
http://common-lisp.net/project/fomus/
http://vsr.informatik.tu-chemnitz.de/staff/jan/nted/nted.xhtml
http://www.tuxguitar.com.ar/
http://musescore.org

Appendix A: GNU Free Documentation License 35

Appendix A GNU Free Documentation License

Version 1.1, March 2000

Copyright (©) 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document free
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute
it, with or without modifying it, either commercially or noncommercially. Secondarily, this
License preserves for the author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.

This License is a kind of ‘copyleft’, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the copy-
right holder saying it can be distributed under the terms of this License. The ‘Document’,
below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as ‘you’.

A ‘Modified Version’ of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A ‘Secondary Section’ is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the
Document’s overall subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (For example, if the Document is in part a textbook
of mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The ‘Invariant Sections’ are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License.

The ‘Cover Texts’ are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.

A ‘Transparent’ copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, whose contents can be viewed
and edited directly and straightforwardly with generic text editors or (for images composed
of pixels) generic paint programs or (for drawings) some widely available drawing editor,
and that is suitable for input to text formatters or for automatic translation to a variety of
formats suitable for input to text formatters. A copy made in an otherwise Transparent file

Appendix A: GNU Free Documentation License 36

format whose markup has been designed to thwart or discourage subsequent modification
by readers is not Transparent. A copy that is not ‘Transparent’ is called ‘Opaque’.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTgX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML designed for human modification. Opaque formats
include PostScript, PDF, proprietary formats that can be read and edited only by propri-
etary word processors, SGML or XML for which the DTD and/or processing tools are not
generally available, and the machine-generated HTML produced by some word processors
for output purposes only.

The ‘Title Page’ means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, ‘Title Page’ means the text
near the most prominent appearance of the work’s title, preceding the beginning of the
body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.
3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Docu-
ment’s license notice requires Cover Texts, you must enclose the copies in covers that carry,
clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-
Cover Texts on the back cover. Both covers must also clearly and legibly identify you as
the publisher of these copies. The front cover must present the full title with all words
of the title equally prominent and visible. You may add other material on the covers in
addition. Copying with changes limited to the covers, as long as they preserve the title of
the Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible computer-network location
containing a complete Transparent copy of the Document, free of added material, which
the general network-using public has access to download anonymously at no charge using
public-standard network protocols. If you use the latter option, you must take reasonably
prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location until at least one
year after the last time you distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

Appendix A: GNU Free Documentation License 37

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A.

O

N.

Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has less than
five).

State on the Title page the name of the publisher of the Modified Version, as the
publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other copy-
right notices.

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

Include an unaltered copy of this License.

Preserve the section entitled ‘History’, and its title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section entitled ‘History’ in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the ‘History’
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

In any section entitled ‘Acknowledgments’ or ‘Dedications’, preserve the section’s ti-
tle, and preserve in the section all the substance and tone of each of the contributor
acknowledgments and/or dedications given therein.

Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

Delete any section entitled ‘Endorsements’. Such a section may not be included in the
Modified Version.
Do not retitle any existing section as ‘Endorsements’ or to conflict in title with any
Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to

Appendix A: GNU Free Documentation License 38

the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section entitled ‘Endorsements’, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.
In the combination, you must combine any sections entitled ‘History’ in the various original
documents, forming one section entitled ‘History’; likewise combine any sections entitled
‘Acknowledgments’, and any sections entitled ‘Dedications’. You must delete all sections
entitled ‘Endorsements.’

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not as a
whole count as a Modified Version of the Document, provided no compilation copyright is
claimed for the compilation. Such a compilation is called an ‘aggregate’, and this License
does not apply to the other self-contained works thus compiled with the Document, on
account of their being thus compiled, if they are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one quarter of the entire aggregate, the Document’s Cover Texts
may be placed on covers that surround only the Document within the aggregate. Otherwise
they must appear on covers around the whole aggregate.

Appendix A: GNU Free Documentation License 39

8.

10.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License provided that you also include the
original English version of this License. In case of a disagreement between the translation
and the original English version of this License, the original English version will prevail.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or distribute
the Document is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License ‘or any later version’ applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.

http://www.gnu.org/copyleft/

Appendix A: GNU Free Documentation License 40

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation;
with the Invariant Sections being list their titles, with the
Front-Cover Texts being list, and with the Back-Cover Texts being list.
A copy of the license is included in the section entitled ‘GNU

Free Documentation License’

If you have no Invariant Sections, write ‘with no Invariant Sections’ instead of saying which
ones are invariant. If you have no Front-Cover Texts, write ‘no Front-Cover Texts’ instead of
‘Front-Cover Texts being list’; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

Appendix B: LilyPond index

41

Appendix B: LilyPond index

Appendix B LilyPond index

\

\header in IATEX documents 21

call trace.o 14
Coda Technology......... oo oL, 34
coloring, syntax o il 8
command line options for 1ilypond............... 10
convert-ly 14

D

docbook ... 18
DocBook, musicin...................oooi 18
documents, adding music to................... ... 18
AVIPS oot 27

E

editors 8
CINLACS « .« v et ettt e e 8
EIIGINA . o vttt et 34
1S5 5 o) 14
EITOT INESSAZES « « v v v v v e ettt e i e e e 14
errors, message format oL 14
ETE ..o 34
External programs, generating LilyPond files 34
Extracting fragments of music.................... 30

F

fatal error. i 14
FDL, GNU Free Documentation License.......... 35
file searching....... i 12
file size, output........ .o 9
Finale ... 34
First steps ... 10

I

invoking dvips 27
Invoking lilypond................ 10

42
IATEX, music in........ooooiiiiiiiiiiii . 18
LILYPOND DATADIR ... 13
M
MIDI . 31
modes, editor 8
musicology 18
MusicXML. ... 32
OpenOffice.org........o oo 30
options, command line 10
outline fonts 27
output format, setting.............. 11
P
point and click o 9
point and click, command line.................... 11
PostScript output ... 11
Preview Imageovvituin i 23
Programming error............. ool 14
R
reporting bugs i 16
Scheme dump ... 12
Scheme error. ... 14
search path 12
Staff ..o 31
SVG (Scalable Vector Graphics).................. 12
switcheso 10
syntax coloring............. ool 8
T
L7155 18
texinfo. 18
Texinfo, music in........... ... i 18
thumbnail. ... 23
titling and lilypond-book............ 21
titling in HTML ... o o 23
trace, Scheme........ i i 14
typel fonts....... 27
U
Updating a LilyPond file................, 14
VvV
VIID .o 8
VOICE « 31

	Install
	Precompiled binaries
	Downloading

	Compiling from source
	Downloading source code
	Requirements
	Compilation
	Running requirements
	Requirements for building documentation

	Building LilyPond
	Compiling
	Compiling for multiple platforms
	Compiling outside the source tree
	Useful make variables

	Building documentation
	Commands for building documentation
	Building documentation without compiling LilyPond

	Testing LilyPond
	Problems
	Bison 1.875
	Solaris
	FreeBSD
	International fonts

	Setup
	Setup for specific Operating Systems
	Setup for MacOS X

	Text editor support
	Emacs mode
	Vim mode
	jEdit
	TexShop
	TextMate
	LilyKDE

	Point and click

	Running LilyPond
	Normal usage
	Command-line usage
	Invoking lilypond
	Command line options for lilypond
	Environment variables

	Error messages
	Updating files with convert-ly
	Command line options for convert-ly
	Problems with convert-ly

	Reporting bugs

	lilypond-book: Integrating text and music
	An example of a musicological document
	Integrating music and text
	LaTeX{}
	Texinfo
	HTML
	DocBook

	Music fragment options
	Invoking lilypond-book
	Filename extensions
	Alternative methods of mixing text and music
	Many quotes from a large score
	Inserting LilyPond output into OpenOffice.org
	Inserting LilyPond output into other programs

	Converting from other formats
	Invoking midi2ly
	Invoking musicxml2ly
	Invoking abc2ly
	Invoking etf2ly
	Generating LilyPond files

	GNU Free Documentation License
	LilyPond index

