Open Object Rexx

Reference

Version 3.1.1 Revision 4 Edition
November 7 2006

W. David Ashley
Mark Hessling
Rony G. Flatscher
Rick McGuire

Open Object Rexx: Reference
by

W. David Ashley

Mark Hessling

Rony G. Flatscher

Rick McGuire

Version 3.1.1 Revision 4 Edition

Published November 7 2006

Copyright © 1995, 2004 IBM Corporation and others. All rights reserved.
Copyright © 2005, 2006 Rexx Language Association. All rights reserved.

This program and the accompanying materials are made available under the termSafitinen Public License Version 1.0

Before using this information and the product it supports, be sure to read the general informatioN etiwier

This document was originally owned and copyrighted by IBM Corporation 1995, 2004. It was donated as open source Godantire Public
License Version 1.t the Rexx Language Association in 2004.

Thanks to Julian Choy for the ooRexx logo design.

Table of Contents

ADOUL THIS BOOK ...ttt n et ner e i
1. Related INfOrMALION.ceirerererc e i
2. How to Read the Syntax DIagramiS.........cccureerrerrienenieie sttt st s nees i
3. A Note About Program Examples in this DOCUMENL.........c.cccveireiirnenne e ii
A, GELUNG HEIP.oceeeeeeeee bbbttt bbbt ek st b e b et iii

4.1. The Rexx Language Association Mailing LiSt........c.cccoeirrinninninnenecnecseeenes iii
4.2. The Open Object ReXX SOUICEFOrgE Site.......ccovrirriireirieerrereeseeesee e iii
4.3. coOmMP.IANG.rEXX NEWSGIOUP.ceetirerreirieiirieierieie st st sestesesree s e seeseseereseesesessenens iv

1. REXX GENEIAI CONCEPLS ..ctieeieuirteiterieeierie ettt et s e seese et e e e st sae st te e e e e eaeebeseeseesseneeneenesaeseensenseneaneanens 1
1.1. What Is Object-Oriented Programming2.........cccccueereineennensenesesesiee s sessesesnens 1
1.2. MOAUIANZING DALA.......ceiteeireiiiieieiteie ettt sttt e enene 1
RS 1V o Yo (1 1 g o T @] o] = ox £ PSR 3
1.4, HOW ODJECES INTEIACT.....c.eiiiietiitesie ettt ettt st et sb e b e e e e enennas 4
T 1V =1 1 T To LS PP 5
1.6. POIYMOIPRISITL. ...ttt ettt bbbt b b e e e e enennas 5
1.7. Classes and INSTANCES.......c.eirreirieireee sttt sttt n e 6
1.8. Data ADSITACTION.cecveeereierecieee ettt 7
1.9. Subclasses, Superclasses, and INNEMtANCE. ..o veeveveceere e 8
1.10. Structure and GeNEral SYNIAX........ccvvceeieiieiierieeeere e ree st sre e e st e e e sre e enas 8

N O I 1 T= T = Tod (=T =SSOSR 9
1.10.2. COMMENLS.....coiiiiiiitiic e e s 9
1.00.3. TOKENS....cceiectieetee ettt ettt n e 11
I 2 7 O) =Y = LS 0T o 11
1.10.3.2. Hexadecimal StrHNQS.....cccivierereeerenesiesiesieesese e e e see e sse s ssensenenns 12
1.10.3.3. BiNArY StHNQS...ccvceeerestisteseseesesestesestesaeaeesesse e e e saeseesessessessessensensnnes 12
T 20 B V71 o T RS 13
1.20.3.5. NUMDELS c.ciiicicereresr e 13
1.10.3.6. Operator CharaCterS......ccvevereerereresereeeeesese e e esee e sseneeeenes 14
1.10.3.7. Special CharaCters.........cccuveerrenirieiere s 15
1.00.3.8. EXAMPIE.ceiitiitee e 15
1.10.4. IMplied SEMICOIONS. ..ot 15
1.10.5. CONLINUALIONS.ceiieeeieeee ettt st se e e sessesne s eseneens 16
1.11. Terms, EXpressions, and OPEratQrS.........ccocurerereeeeererereeseeeseseessesseseeseeessessesseseeseesens 16
1.11.1. Terms and EXPrESSIQNS.ouureirieirieerieieresiesesieesieesie sttt sse e sessens 16
O B @ o T=T = 0] =TSP PP TSP PT 17
1.11.2.1. String CONCAENALIONcereeiererieeriee ettt 18

O O N 11 1 1= [T RS 19
1.12.2.3. COMPATISAN....eeteiiieiirieiereete sttt sr et st seese bbbt b et b e s s b e s 19
1.11.2.4. Logical (BOOIEAN).........ccuieuirerteririeesiet ettt 21
1.11.3. Parentheses and Operator PreCedBNCEe........ccouvererrieeierese e 22
1.11.4. MESSAQE TOIMIS...cotiitieiietieeertt et ettt sttt e se e e e e s b e e e e b e sae e s e sae e e e seesaeenrees 24
1.11.5. MESSAQE SEOUENCES. .. .etteeueirtteteereesteeeestesseesesseeeessesaesssesbesssessesaeansesnesneeseesasansenes 26
1.12. Clauses and INSIIUCTIQNS..........ciirieeerere ettt be st ee et sbe st e seeneeneas 26
L1.22. 0. NUI CIAUSES....eieeeeeeieeie ettt sttt b e se et ae b e s 27
1.02.2. DIFECHVES... vttt sttt n e 27

IR T = o 1= SRR 27

O 2 S [1S3 0o T RS 27
1.02.5. ASSIGNIMENTS.....cuiiitiiitiirteirt sttt b ettt b et b et s bbb 28
1.12.6. MESSAQE INSIIUCTIONS......ueueeiiirieiirieierieies et 28
1.12.7. KEYWOId INSTIUCTIONS.....cviieeiirieiirieitsiees et 28
1.12.8. COMMANAS....ctiieieieeierierie ettt ettt se e ae b ee b e e e e e st ebesbeseeseeneenesaesaesseseneann 28

1.13. Assignments and SYMDOLS..........oiii e e 28
1.13.1. Constant SYMDQIS........ccoi i e 29
1.13.2. SIMPIE SYMDBOIS.......oiiiiii e e e 30
T B 1 (T 0 - F OO UU PRSP 30
1.13.4. CompPoUNd SYMDOIS......coiiiiieieeeese et b e 32
1.13.4.1. Evaluated Compound Variahles..........cccoeoririiiinieneneeeenene e 33

1.13.5. ENVIronmMeNnt SYMDOIS.......cciiiiiiee ettt s 34
1.14. MESSAQE INSITUCHIONS.....ccticueeieceeesie sttt sttt na e s ae e s tesraebesteeneesnesnnennens 35
1.15. Commands to External ENVIFONMENLS........ccooiiriririre e s 35
1.15.2. ENVIFONMEBNL.....iiiiiiiiieeeie sttt sttt b b s se e s aesn b 35
1.15.2. COMMANTAS....cotiitiiiieiieierie ettt b e bbbt b e e e e st eaesaesn e s e e s 36

1.16. Using Rexx on WINAOWS aNd UNIX.......cccoviirereieeieeeeese e seeseeesesessesesaeseeessessesseseesassens 37
2. KEYWOIA INSITUCTIONS ...ttt sttt sttt sttt sttt st ettt ettt b b et e b 39
2.1, ADDRESSottt sttt bbb e e bbbt b bbb b et b 39
2.2, ARG b e e etk e b e bbbt e et e b 40
228G TR O N SRS 42
S I [0 S 45
2 TR I 1 {0] S 46
2 TR = S 47
A R = = @] =SS 48
2.8. FORWARD.......c.ot ettt sttt et te e te et e s e et e et e e s aeeeaeeeateesseesseesnteeseenseesaaeanseenseessees 49
A TR 10 7Y I PR 51
0 O TR | SRS 52
I I N = o d e PSS 53
A I A I OSSR 54
e T Y TSRS 55
2 S N] OSSR 56
2.15. NUMERIC.......oiitiiet ettt sttt st sttt st st st se et st et e et e e be s sbesestesesansenensens 56
2.16. PARSE ...ttt ettt bt et ettt b e b ne et a ettt 57
2.17. PROCEDURE........cotiitictesisets ettt sttt sttt sttt sttt sanse et 60
22 T L TSRS 62
FZ e T U OSSR 63
2.20. QUEUE ...ttt ettt st sttt sttt e et st et et et e ettt ne et se ettt 64
FZ A T 3 A 1S TSSO 64
2,22, REPLY .ttt ettt s et sttt et ek ekt b et bttt R et et 66
2.23. RETURN....o ottt sttt sttt st se et se et e et e e e b et sbesesbesenanbe e ntens 67
2,24, SAY e b et E et R ARt e Rtk ne b et b et b et bRt et et 67
p S TS | = = O OSSO 68
2.26. SIGNAL ...ttt et sttt sttt st et ekt bbbt Re e b et 69
F A I O OSSO 71
2.27.1. Alphabetic Character (Word) OPtiOnNS........ccceivrerereeeeeresestesereesesesresteseeseeneesens 72

2.27.2. PrefiX OPHOML.... .o ettt st s bbb 73

2.27.3. NUMETIC OPLIONS....uiietiirtirisieirteie ettt ettt se bbb e b sbe e 73
2.27.3.1. TIACING TIPS ectirerteirteerteierteieseete st se bbbt sre e se b se b e b e b et e b e 73

2.27.3.2. EXAMPIE....octiiitiettetee ettt e et 74

2.27.3.3. The Format of Trace OULPUL........ccoreeririerenieeriee et 74

2.28. USE ...ttt sttt sttt ettt b e bRt Re et et b et bt Ee e et st s e se et 75
T B 1 (=T od 1Y SRR RS 77
L. IO LASS et E et E et E et R e A e Rt et e e e Re e et et ebeneebe e teneneas 77
I Y i I] TSRS 78
3.3, IREQUIRES. ...ttt sttt st ettt sttt bttt st na et et 80
B (@ U I I NSRS 81
4. ODJECES ANA CIASSES.ueitiriiititeieeee ettt sttt sttt bttt b et e e se et e s e e ae s bt sb e b et e e e aeebesbeseeseeneeneas 83
o I 1 V] 0T TSR0) O F= 1Y 83
N @ | o =Tt @ =TT TS 83
V1] I O F= TS TSR 83
I Y o153 = ot O = LS =TSR 84
4.1.3.1. MEACIASSES......eieeirieiireeieete ettt 84

4.1.3.2. Creating Classes and MethOdS.......ccccvvvvvvereiecene s 87

4.1.3.3. USING ClaSSES......eririeeeeeeeisestesieieee s e e se et sae e saena e sre s nseneens 88

R B oo o TSP P TSRS PPTPP PP 88

4.1.3.5. Defining Instance Methods with SETMETHOD or ENHANCED............ 88

4.1.3.6. Method NAMES.......ceieeeeeeiresesereeee e se et sre e e neeneens 89

4.1.3.7. Default Search Order for Method Selection..........ccccocvveeeercenvnnnceneene 89

4.1.3.8. Defining an UNKNOWN Method........c.cccveireinninnieeneseesecsieies 89

4.1.3.9. Changing the Search Order for Methads.........c.cccovirniinncnccnecee 90

4.1.3.10. Public and Private MethodsS........ccccvovririreneieeirese e 20

4.1.3.11. The Class HIirarChy..........couurireneircinecseeese s 91

O T 2 1 T = 1 2= L1 T PSS 91

4.1.3.13. Object Destruction and Uninitialization.............cccoveeveineenenecnieeenns 92

4.1.3.14. Required String ValUES.........coovuiiriireireeree s 92

4.1.3.15. CONCUITENCY. ..cuerueeterteetesteeeesseseestesteesessessessesaeessesseesesbesasessesaeessessesnsanes 94

4.1.3.16. Classes and Methods Provided by ReXX......ccccoverireneieninienenene e 94

4.1.3.17. Summary of Methods by Class.......c.ccouiiiiieinnere e 97

5. Te COllECHION CIASSES.....cueiuiitiiiiriiieeeeeie ettt sttt be st st se e et b bt b e b e b e e neeaesbe e es 105
R N 0 T3 N = |V O =T PSS 106
5.1.1. NEW (Class MEthOQ)......ccueciieeie ettt sttt ese e e st nneens 107

LT I © | (@ F= 11 1Y = 1 o o) S 107

LS 0 T [PSPPSRSO 107

LI S [TSRS 107

LS T OSSPSR 108
5.1.6. DIMENSION.coiitiiiirietessteses ettt sttt st st se et e sbe e be e sbenen 108
LI A 1) TSSOSO 108
5,18 HASINDEX ... ittt sttt st sttt st sttt st seebe e be e sbenea 108
BLLLO. ITEMS .ttt s skttt sttt et st ettt nesbene 108
D100, LAS T ettt et e bbbt bbb st b et b et bene 109

L T It I Y S L 109
5.1.12. MAKESTRING......oi ittt ettt te e st ae et e e e enae et e e sneesnneennis 109

LR I R 1 PSSP T PRSPPI 109

B5.1.14. PREVIOUS......coeeeee ettt sttt s ae e sae e tenbens 109
L T 0 RS T . U F PP URPTOPPRPP 109
B5.1.16. REMONVE ...ttt ettt s b e s s et e ae et see s e e nbesnens 110
5.1.17. SECTION. ..ttt sttt ettt bbbttt sttt b et et bbbttt be e 110
DL L8, SIZE ..ttt bbb bbbt 110
5.1.19. SUPPLIER. ...ttt sttt sttt 110
LT 2 O = 11 41 0] [SO 111
I N g o3 = 7= To T O TP 111
5.2.1. OF (Class MEthO@)........ccouruirireeireiisiesiese ettt s sbe s e 112
L3 | OSSOSO USROS 112
LI T | OO ST USSP UTPRT PO 113
5,24, HASINDEX ...ttt sttt bbbttt 113
5.2.5. MAKEARRAY ...ttt sttt sttt 113
D208, PUT..e ettt 113
5.2.7. SUPPLIER......ci ittt 113
LT TR = 1 2] 0] =SSP 113
5.3. The CircularQUEUE CIASS........coviiiieieirictece s sttt st te e e et st sre st e e ese e snesrennn 114
5.3.1. OF (Class MEthOd)........cccceierereeiererieseseseseeseees e sesrestese e e se e e e saeeesessesseseens 115
D32, INIT e 115
5.3.3. MAKEARRAYoitititeitiiitris ettt 115
B304, PUSHL ..ot 115
5.3.5. QUEUE ..ottt 116
LR T TR 0] 74 =SS 116
L T 01 17 PSS 116
LR 78 T I | RSP 116
5.3.9. SUPPLIER. ...ttt st sttt et eesee e tenneens 117
5.3.10. EXAMPIE.....oiiiiieeee ettt ettt b e et 117
5.4. The DiIr€COIY CIaSS......ceiiruiirieirieie sttt sttt st st st b et bbb e 118
B4 L. []eeueeeeieeeeeeeeeesesesess s esssssees e ssenssssessees s st s s ees sttt en s s s eesses e anssnnes 119
L | TR 120
L FR N USRS 120
L N I 8 2T 120
5.5, HASENTRY. ...ttt sttt sttt sttt sttt sttt b bt s 120
B5.4.6. HASINDEX ...ttt sttt sttt st bbbttt 120
BT ITEMS .ttt bbbttt b bttt b bbb s 120
5.4.8. MAKEARRALY ..ottt ettt sttt sttt sttt ettt 121
B9, PUT. ettt bbbt bbb bbbt s 121
5.4.10. REMOVE ..ottt bbbttt 121
5,411, SETENTRY ..ottt sttt 121
5.4.12. SETMETHOD. ..ottt sttt 121
B5.4.13. SUPPLIER. ..ottt 122
5.4.14. UNKNOWN.....ctiiirteitieriris ettt st 122
5.4.15. DIFFERENCE.........ci ittt 122
5.4.16. INTERSECTION. ..ottt 122
D417, SUBSET....co ittt 123
5.4 18, UNION. ..ottt 123

5.4.20. EXAMPIES...c.oiiiiiiiiece ettt b e st b e 123

T T I 4 (S0 I £ A O = Tt OO 124
5.5.1. OF (Class MEtOM).......ccerruiririiirieirieicieeeneete sttt 125
B.5.2. []eeuueeeeeeeeemeseeeseeeseesaessseessees s sees s ees e st ees e ees et s e s s eensnnes 125
LT T0C T [TSRS PSTORPRN 125
LR T S A PR 126
LT T T [ISR 126
5.5.6. FIRSTITEM. ..o ettt ettt sttt et st s sa et esbesnsesbeeneeseesrnenbestenns 126
.57 HASINDEXo ittt ettt ettt ettt b et sts s stesbessae st e ebeentesbeenessaesneesbestenns 126
B 5.8 INSERT. .. .o cei ettt ettt ettt et st e b e et e stesbeestesbessaesbesbesnseebeenteseesseentesrenns 126
D59 ITEMS ..ttt ettt e b e et e s be et e s beese e beebeentesbeeneestesanebesrenns 127
LR 700 O TR 1N DO 127
5.5, 10. LASTITEM...o oottt ettt sttt et st st et sbesbeentesbeentesaesneebesteens 127
5.5.12. MAKEARRAY ... oottt ettt ettt ettt s stesbessaesbesbeensssbeentesaesneebestenns 127
LT TN G TR 1 OO 128
B5.5.14. PREVIOUS.......ooti ittt sttt sttt st ste b st sbesbeentesbeennestesneenbestanns 128
LR 700 I T = U SO 128
B5.5.16. REMOVE ...ttt ettt sttt ettt steestesbessaesbesbsentesbeennesaesneenbestenns 128
B5.5.07. SECTION. ...t icie ittt ettt sttt e ebe st e sbe s e e sbesbesssesbesbeensesbeensesbesseenbessenns 128
B5.5.18. SUPPLIER.....co oottt ettt ettt sttt e et enbesbeenesresneebestaens 129

5.6. THE QUEUE CIASS.....ccuiitiieeiteitieiteiteete ettt e ste st e steste e e e besbeetesbeeneesbesssebesbeensessesseeseesanenbessenns 129
LG 0 R S 130
LG | S 130
LT T TR I 130
5.6, 4. HASINDEX......coie et eeeee e eet et e et e et e e aee e st e ee e s eesaeessseeeeseeesnseessnreeeenseseenneas 130
LT R TR I =11V ST 130
5.6.6. MAKEARRAY ..ottt ettt ettt e sttt e ettt e e aee e st eseatessesseessbeeeeaseeesnseessabeesensesessneas 130
LI A =t = R 131
LT < TR L 1 N OO 131
D.B.9. PUSHL ...ttt e st e et e e eatee e bt e e e te e e sbeeeebeeeenteeeeaneas 131
LT 0t KO R = U N DSOS 131
Lo 0 5 I 10 RO S 131
5.6.12. REMONVE ...ttt sttt sttt st st b st et esbesntssbeentestesreebesbeens 131
5.6.13. SUPPLIER.. ...ttt ettt sttt be e be s besbe e eneeneebesaeanens 132

5.7. The REIAION ClASS.....uuiictieiie ettt ettt e te et e te e et e s e s ebeeebeesteesabeeeseesseesasesseeseees 132
L 0 O [TSSO 133
L A [TSSO 133
LT TR A N I L OO RUURRR 133
B.7. 4. ALLINDEX ...t iieitiiteeie ettt ettt et st et s ebe et e stssbeesaesbessaesbeebesnsesseenessaesneentestenns 133
LT T A SO URSRPR 133
B.7.6. HASINDEXo oiiitiiticie ettt ettt ae sttt eebe et e saesaeestesbesssesbesbeensesseensesaesseensestenns 133
7.7 HASITEM....oi ittt ettt sttt et st estesbesaaesbeebeentesbeensesaesneenbestenns 134
B.7.8. INDEX ... oottt sttt sttt sttt b e et sbeesbesbesaa e beebeenbesbeennesaesaeenbesreens 134
7.9 ITEMS.... oottt ettt st st b e et sae et e sbesaa e b e sbeenbesbeennesbesaeenbestenns 134
5.7.10. MAKEARRAYoo ittt ettt ettt tte sttt ebe et e stesteestesbessaesbeebeessesseennesaesseenbessenns 134
LT 00 O = U OO 134
B.7.12. REMOVE ...ttt ettt st st b e sttt sbeestesbessaesbesbeensesbeennesaesneenbestanns 134
5.7.13. REMOVEITEM.....coiiii ittt sttt ettt s stestessaesbesbeensesseennestesnnebessenns 135

Vi

5.7.14. SUPPLIER.. ..ottt st nn e 135

5.7.15. DIFFERENCE.........ctitririrteiee sttt et 135
5.7.16. INTERSECTION. ...ttt sttt s bbb besenene s 135

L 0 S U2 1] =i TSP 135
B.7.18. UNION. ..ottt sttt bbbt s 135
B.7.19. XOR. ..ttt ettt b e e e bbbt bbbt bbbt s 136
LT A O = 11 41 0] [TSR 136

5.8. THE SELE ClIASS...c.ui ittt ettt s b ettt be b e b e e e e e ae e e saesbenas 137
5.8.1. OF (Class MEthOd)........coeruiruriieirere ettt sbe s e 137

LR JZ 2 | OSSOSO UTP PP 138

LR TR T | OO SO ST U PTOTR 138

BB AT bbb bRt bbbttt 138
5.8.5. HASINDEX ...ttt stttk 138
D86, ITEMS ..ottt bbbt 138
5.8.7. MAKEARRAYoitiiteitititris ettt s 138
D88, PUT...t et 139
5.8.9. REMOVE ..ottt 139
5.8.10. SUPPLIER. ..ottt 139

5.9. THE TAbBIE CIASS....c it 139
LIRSS ST SP 140

LR T | SRS R 140

LI TR R TSR TTRP 140
5.9.4. HASINDEX ..ottt 140

LT TR T I =T 141
5.9.6. MAKEARRAYootiiteitieiressieteieseses st sesese st sssesese st sesssesessssessssnesessssesssensssssesesenees 141
LT T LU R 141
5.9.8. REMOVE ..ottt sttt et es e et ese e besenene s 141
5.9.9. SUPPLIER......c ittt sttt st s st s ese e tesenene s 141
5.9.10. DIFFERENCE.........ctoiotriririeieit sttt sttt s s 141
5.9.11. INTERSECTION.ctiitriririeieie sttt sttt s s e besenene s 142
5.9.12. SUBSET.....oitiiiriierteieie ettt ettt b e st se bbb e e s et b ese e bebenene s 142

5.9, 13, UNION. ..ttt et st b et s et eb s e s 142
59,14, XOR...c ittt sttt et e e bbb bbbttt be s 142
5.10. The Concept Of Set OPEratiQNS........cocerrerrierinieeree ettt 143
5.10.1. The Principles oOf OPEratiOn.........ccoirerereirerese et 143
5.10.1.1. Set Operations on Collections without Duplicates...........ccccceeervruenen. 144

5.10.1.2. Set-Like Operations on Collections with Duplicates.............ccccceeeeuenee. 144

5.10.2. Determining the Identity of an [teM.........cccooririii i 145
5.10.3. The Argument ColleCtion ClaSSES........courerrerere et 146
5.10.4. The Receiver ColleCtion ClIaSSES.......cccuveereernrenerieenree et 146
5.10.5. Classifying CoOllECONS........cccceii ettt sreens 147

B. OLNEI ClASSES....uereuiireiireete ettt ettt e e s b et r et r et r et r et nn e nn s 149
6.1. The AlGIM ClASS....ccireeereereeeeer ettt ettt 149
B.1. 1. CANCEL ..ottt 150

B. 1.2, INIT et 150
LN R v T 0]] T SR 150

6.2. THE ClASS ClASS....c.cirerriereiiririireieeere sttt 151

viii

B.2.1. BASECLASS ... oottt et et ae e saeeneenrs 152
6.2.2. DEFAULTNAME.......i ittt ettt sttt st e ae et e st e snae et e e snaesnneenns 152
B.2.3. DEFINE..... .ottt e te e e st e st e e ae et e s e e enae e re e raeeneeenrs 152
B.2.4. DELETEottt ettt ettt ettt st e e ae et e s e e e nae e beesnaeenneenrn 153
6.2.5. ENHANGCED.......coct ettt st sttt sttt st sa et e ebesaesanesteneas 153
L0220 T | TSSO 154
B.2.7. INHERIT ...ttt sttt st sttt st s s etesaebeseebesestenenteneas 154
L0728 TR |1 TSSO 155
6.2.9. METACLASS ... oottt sttt st sttt b e st se s et seeteseebesestenesteneas 155
6.2.10. METHONDL......cciiiiiieirieterietesie ettt sttt st sttt st sessetesaeteseesesestenensenens 155
6.2.11. METHODScooiieerietesiete ettt st st sttt se et seeteseetesestenensenens 155
6.2.12. MIXINCLASS ..ottt sttt ettt s et seetesesbeseetenestenens 156
B.2.13. NEW....oiteiisieiesieie ettt sttt sttt sttt et st s e et e ne et e seebe e te e nteneas 156
6.2.14. QUERYMIXINCLASScoo ottt sttt sttt st st seste et e ssenens 157
B.2.15. SUBCLASS ...ttt st sttt sttt sttt ne et sesbe e be e steneas 157
6.2.16. SUBCLASSES.......coi ittt st sttt sttt st st sesbe e sta e ssenens 158
6.2.17. SUPERCLASSES.ottt sttt ettt st st st et estenea 158
6.2.18. UNINHERIT ..ottt sttt st st st st et e stenea 158
6.3. The WIiNdoWSMENUODJECT ClIaSS....cciereierireresiereeeeere e st e e e e ste e seessesasses e snesreses 159
6.3 1. ISMENUL....cuiiiiiiieiiriee ettt st sttt a et se et seebeseebe e sbe e stenea 159
B.3.2. ITEMS ...ttt st sttt st b e et s et e seebe e be e sbenea 159
B.3.3. IDOF .. bbb etk sk e b e bt tene 159
6.3.4. TEXTOR(POSITION).....cciiirieitiseeeeestesesies e eseeseesessesseseessessesessessessessessessensesessessessens 160
8.3.5. TEXTOR(IA)....ovuoveereeeeeeseeseesieseesseseessesssseessssssssssssesssssssssssssssssssssssssnssssessnssssnssnnes 160
6.3.6. SUBMENUL.....oooiiiie ettt st st ae et e e e e ae et e e sraeenneeneas 160
6.3.7. FINDSUBMENU.......ccttiiieiie ettt sttt ae et esaesne et e s e snneenns 160
(ST IR S T e 1N 5 =1 R 160
6.3.9. PROCESSITEM.....ooi ittt ettt te et e st eeae et e s aaesnne e beesnaeenneenns 161
6.4. The MESSAGE ClaSS....cci ittt sttt b e 161
6.4.1. COMPLETED. ..ottt ettt st te e ae et e s aae s ae et e e sneeenneenrs 162
L T2 | RS 162
LR R NN I | SO S 162
B.4.4. RESULT.....ociiieiieee ettt sttt et st e st et e s aesesaebesaeteseebeseetenesteneas 163
B.4.5. SEND.....coitiiiieisiee ettt sttt ettt st r e et et st ebe e te e eteneas 164
B.4.6. START ...ttt ettt sa et seebese et e e e be e saesesaesessebeseeteseetesentenentenens 164
Lo = 1 0] o] =TSRSS 164
6.5. The METNOO CIASS....cuiieeieeirtirierie e ettt b e e e e sae b e 165
6.5.1. NEW (Class Method)........ccoreiririririenesieee ettt s 166
6.5.2. NEWFILE (Class Method)........ccccuouveirrinieinieesisesesteesee st ssenens 166
6.5.3. SETGUARDENDL........coiiitirieieieeisteesiee sttt sttt st st e b e te e ssenens 166
6.5.4. SETPRIVATE.....coc ittt sttt st sttt sttt se et seebesesbesestenestenens 166
6.5.5. SETPROTECTED......ccctieteieieisieisieiesiete st sttt sseseseetesessesessenessenens 167
6.5.6. SETSECURITYMANAGER.......cccoeitiiirieiree sttt st 167
6.5.7. SETUNGUARDEDL.......ccosttisteisieirieesieie sttt s be st sesbesessenessenens 167
6.5.8. SOURCKE......ccuciiieiiriete ettt sttt st sttt sttt st sesaebeseebeseebesestenesteneas 167
6.6. The MONITOT CIASS...c.iiiiteririeirieesie sttt sttt sttt st sttt st st st se st enenees 167
6.6.1. CURRENT....cetietiriettreste sttt st sttt st st st se et et nesbene s 168
6.6.2. DESTINATION....c.iiiirieterieteieteresie ettt st sttt st st seebesesbe e steneas 168

B.6.3. INIT oot et e 168

6.6.4. UNKNOWN.....ocuiieieeeisiese e se s se st see st esae e sessestesseseeneeneesessesseseens 168
B.6.5. EXAMPIES. ..o bbb 169
6.7. The MutableBUTfEr CIaSS.......cooi ittt 169
L0205 T 1\ USRI 170
B.7.2. APPENDLottt ettt ettt bt st e e e neere e nnens 170
B.7.3. DELETE ...ttt sttt sttt st se et sa et e ebe e ete e ntenens 170
6.7.4. GETBUFFERSIZEci ittt st st st st et nesneneas 170
B.7.5. INSERT.....coetiteiitett ettt sttt sttt st et se ettt e e sae s saesesaebesaebeseeteseetenenteneas 170
B.7.6. LENGTH.....coiiiiiieciiree ettt st sttt st st sa et se et e ebe e etanentenens 171
B.7.7. OVERLAY.......coetitetireee ettt ettt b e be e ste st sesaebeseeteseetesentanenseneas 171
6.7.8. SETBUFFERSIZE........coi ittt sttt st st st st snenens 171
B.7.9. STRING......ctiiirieeriee sttt st sttt e te et seseebeseebesenbesesteneeteneas 171
B.7.00. SUBSTR....oiuiiiieiirietiriete sttt sttt st st st te e be s te e st seseebeseebeseebesestenesseneas 171
LS T N g TSI @ o= ox o O F= LS 172
6.8.1. NEW (Class MethOQ)......ccuecvieeieierieesesiee st eee st e ste e ae st eae e sae e aensesneens 172
(oI T @ o 1= T = (o g 1Y 1= 1 T Yo LSS 172
B.8.3. CLASS.... ettt ettt bbbttt be e be e tene s 173
B.8.4. COPY...tietse ettt st st ettt b et ne et st be et enbene s 173
6.8.5. DEFAULTNAME ..ottt sttt ettt st st st et et stenea 173
6.8.6. HASMETHOD......c.ciiiieeierieiereste ettt sttt st st st st e be e sbene 173
B.8. 7. INIT ettt st b e e b ettt b et ne ke e b b bene 174
6.8.8. OBIECTNAME ..ottt st sttt st st st st sbene 174
6.8.9. OBIECTINAME T .ci ittt eteriestesteeeesesee e te e see e sseseesteseessessesessessestessesseneeneesessessessens 174
6.8.10. REQUEST.....cciieeeeeeste st seeseee st eae st se e aenae e e s stessesseneeneesensessesnens 174
[0S 0 5 R {1 S 175
6.8.12. SETMETHOD.....coccteieisieseeseeeeeee s e ettt esae e sesseste e saeneeneesensesseseens 175
LS 0 TR I S 176
LS S I | LSRN 177
6.8.15. UNSETMETHOND.......ccciiitiireieiee st e e see ettt st sesae e sse st tesaeseeeesessesseseens 177
6.9. The RegularEXPression CIasS..... ..ottt 177
LR T I 1\ SR 180
B.9.2. IMATCH.....eii ettt b ettt e st e e et ne b s besbe s e e e e e esesbeseeneens 180
B.9.3. PARSE ...ttt b e ettt ae e beebenee e e e neebesaeneen 180
B.9.4. POS ...t ettt ettt R et et et be e te e eteneas 182
6.9.5. POSITION....ccuiiitetirietertetesistesis et stee e st e saetesaetesaetesestesessesesaesessesessnsesensesesseneasanens 183
L O I g ST (= 0 O = T PSSR 183
6.10.1. NEW (Class MethO@).........coeereriririeiee ettt 184
L0 1 T2 | TSSO 185
LT TR T | TSSO 185
6.10.4. MAKEARRAY. ..ot ttieeterieteses et ste st st see e seeteseete e stesessesessesessebesaesesessesessenessenens 185
6.10.5. REQUEST....coiiitiiecie ettt sttt st sttt st st se st et sesbe e ste e stenens 185
6.10.6. UNKNOWN......cocirietirieterisieisieiesiee sttt st s te st e ste e ssesesaesessesesessesessesessenessenens 185
6.11. THE SrE@mM ClASS......coeeeeeiirierie ettt ettt b et e e e e 186
6.11. 0. ARRAYIN ..ottt sttt sttt sttt st e st e et st se s ebeseebeseebesesbenenteneas 187
6.11.2. ARRAYOUT ..ottt sttt st st st sttt st s tese st seebeseebesestenesseneas 187
B.11.3. CHARIN ..ottt ettt st st sttt sttt b e et seebesesbenestenesbenens 187

6.11.4. CHAROUT ...t 187

6.12.

B.11.5. CHARS ...t et r e r e 188

B.11.6. CLOSE.....ciiiiieete ettt sttt sttt st se bt esa et e saebeseetenenteneas 188
B.11.7. COMMANDL......coeiititt ettt s te et e st e s teeae e beesateenae e beesnaeenneenren 188

6.11.7.1. COMMANG SEHNGS....c.coerreirieirieieriete ettt eb e 188
6.11.8. DESCRIPTION......ciiiiirietirieteisteestete st st et see e steessesesaesessesesaeseseesesessenessasens 194
B.10.9. FLUSH ..ottt st sttt st s e st st se et e seete e ntenens 195
6. 11,00, INIT.eueiiteiieeeesiee et sttt ettt sa et e et e saetese et e e ebesesaesesaesesaeteseeteseesesentanenseneas 195
6. 11,00, LINEIN . ..ctieiitetisieesietesieteses e stee s st seetesaeteseeteessesessesesaesessesesansesensesessenessanens 195
6.11.12. LINEOUT....ciieiiieerietisistesie ettt sttt e tesee b e ste e sse s saesesaesesaesesessesessenesseneas 195
B.11.03. LINES.....ctieirietiieee ettt sttt ettt be st st sesaebeseeteseebenentenenteneas 196
6.11.14. MAKEARRAY......coct ettt tee ettt te st st b e ste e sse e saesesaeseseetesestesessanessenens 196
B.11.15. OPEN.....ciiiiiieiiriee sttt sttt st st se st seste st sessebeseebeseebeseetenentenens 196
6.11.16. POSITION....ccuiiiietirietesietesese e sie ettt sttt ettt st s saebeseetesessesestenesseneas 198
6.11.27. QUALIFY....oiiietiieee ettt sttt sttt st s et seebeseebenestenesteneas 198
6.11.18. QUERY.....eiiiirietiieete ettt st sttt sttt seebe e pe e nteneas 199
B.11.09. SAY ..ottt et b et b et E et E et Rtk et neebe st te e nbeneas 201
B.11.20. SEEKuiiieirieteriete ettt st st sttt sttt st e b et entenea 201
B. 11,20, STATE ottt sttt st sttt b et st b e et se et e seebeneste e nbenea 202
6.11.22. SUPPLIER.......ct ittt sttt st st st st e stenens 203
QLI LIS 0 = T 203
6.12.1. NEW (Class Method).........cccerueereirrinesereeieeesesestesaeee s sre e saeneesessesseseens 205
6.12.2. Arithmetic MEtNOAS......c.ccieiee e e 205
6.12.3. ComparisoN MethOGS.........coeeeeriiecer e 206
6.12.4. LOQICal MENOUS......cecviieiieieie ettt s 208
6.12.5. Concatenation MethOdS.......cccovriiirirerereseeere e seen 209
LI 2 T AN =] = T g Y S 209
B.12.7. ABS....o ettt sttt e bttt a et e saete e ete e re e eteneas 210
B.12.8. B2Xi. ittt ettt bttt a et e naete e te e te e eteneas 210
O I IoZ e T = 1A N 0 2SO 211
LT o2 0 T =1 N I] RS 211
LT o2 It I =1 [5 L SR 212
B.12.02. C2D.ucuiiteiieeieiiete et sttt ettt ettt ettt ettt e et et st e et re e ete st eteseete e te e eteneas 212
L 20 1 T 57 ST ST PORPRN 213
6.12.14. CENTER/CENTRE ..ottt sttt e stene s 214
6.12.15. CHANGESTR......cot ittt sttt st et e ebeseete e ssenens 214
6.12.16. COMPAREccoieirietisieterte ettt st st se sttt sesaebeseeteseeteseetenesteneas 214
B.12.17. COPIES......ct ettt sttt sttt st sttt st se et e saeteseebesestenesteneas 215
6.12.18. COUNTSTR....cutieetirieterieterisiesisteesiesesteiesee e sesteseetesestesessesessesesseseseesesessesessansssenens 215
B.12.09. D2C..... it sttt sttt ettt sttt st ettt ettt se et e ete e ere e ete e eteneas 215
B.12.20. D2X.ueuiiteuiieeuesietiseeteseeteseste st te sttt sttt et ettt ettt aene s et e neebeneebe e ete e ereneas 216
6.12.21. DATATYPE ..ottt sttt st sttt sttt st s st seebesesbenestenesteneas 216
6.12.22. DECODEBASEGA........ccotiiiieieieerieie ettt sttt st st st seste e ssenens 218
6.12.23. DELSTR....oiiiieiriee ettt st sttt st st st s ebe st e stenen 218
6.12.24. DELWORNDL......ccoiiirieteristenise sttt st st sttt st s st seetesesbenestenessenens 219
6.12.25. ENCODEBASEBGA........cciiiiiirieeieieriete sttt st st et steneas 219
6.12.26. FORMAT ..ottt sttt sttt st st sttt sttt st se s s ebeseebeseebesestenenseneas 219
B.12.27. INSERT ...coiirietiriete sttt sttt sttt sttt st b e et seebeseebe st sbenesteneas 220
B.12.28. LASTPOS.....o ottt sttt st sttt st st st s ebenesbe e sbenea 221

Xi

Xii

6.13.

6.14.

6.15.

B.12.29. LEFT ...ttt et et et 221

6.12.30. LENGTH. .ottt sttt st e eb e b e snene 222
6.12.31. MAKEARRAY. ...ttt ettt sttt b e s b e e b ebe e b 222
6.12.32. MAKESTRING.... ..ottt sttt b e s b e e 222
B.12.33. IMAX ettt b e bbbt R e bbb e bt r e erene 223
B.12.34. IMIN...oeiieiiiteee ettt bbb bt b e b bbb n e r e 223
6.12.35. OVERLAY.....ctititeieiertren ettt sttt et 223
B.12.36. POS....oiiiiiiicit ittt bbbt bbbt b b b s 224
6.12.37. REVERSE......ocii ittt sttt s 224
B.12.38. RIGHT. ..ottt bbbttt s 225
B.12.39. SIGNL ..ttt b bbbttt 225
B.12.40. SPACKE ...ttt bbb 225
B.12.40. STRINGcoetiriririeieierires ettt st b bbbt b b bt 226
B.12.42. STRIP. .ottt ettt bbb 226
6.12.43. SUBSTR....ocitririeieieierires ettt bbbt s 226
6.12.44. SUBWORD.......coitiitiiiriririeiee sttt 227
6.12.45. TRANSLATE ..o ittt s 227
B.12.46. TRUNGCcoiiiririeieieieiri ettt 228
B.12.47. VERIFY. ..ottt 229
B.12.48. WORD.......coeiirireereieieires ettt 229
6.12.49. WORDINDEX.......citirerieieitieririseiee s 230
6.12.50. WORDLENGT HL......ctitrriireirerirsiree s 230
6.12.51. WORDPOS.....coce ettt 230
6.12.52. WORDS......cooiitireeteriete sttt st sttt sttt st st e et sbenea 231
B.12.53. X2B..oieeiirieiereete ettt bbb bbbkt b e e b et bene 231
B.12.54. X2C ..ttt bbb et b e ek st b e e b et 231
B.12.55. X2D ...ttt b bbbt b e sk e b e et nbene 232
THE SUPPIET CIASS....iiiiiiiiiiitirie et bbb 233
6.13.1. NEW (Class MethOd).......cooreiriririeirieireiereeiesesteesiee et 233
6.13.2. AVAILABLE ...ttt bbb 234
B.13.3. INDEX ...ttt ettt b e bbbt b et b bt e bt eb e e b e b e nbene 234
B. 13,4 ITEM..coieiieeee ettt et ettt e bt b et eb et b e b 234
B. 13,5, INEXT ..ottt ettt b et b et b et bt b et b e eb e ek e e b e b e b 234
6.13.6. EXAMPIES......ceiieiecteecteet et 234
The WIindowsCliphoard CIasS ..ot s s 235
B.14. 1. COPY ettt bbbttt bbbt b bbbttt bbb s 235
6.14.2. MAKEARRAY ..ottt sttt sttt sttt st s 235
B.14.3. PASTE ..ottt bbbt 236
B.14.4. EMPT Y ittt st bbbt b et 236
6.14.5. ISDATAAVAILABLE ..ottt 236
The WINdOWSEVENILOG CIaSS.......ccoi ettt sttt 236
B.15. L. INIT ettt bbbt 237
B.15.2. OPEN...c.iiiiiiceiririsieee ettt 237
B.15.3. CLOSE.....ciiitiiiririrteieieeres sttt sttt 238
B.15.4. READ. ..ottt 238
B.15.5. WRITE ...ttt 240
B.15.6. CLEAR ... 242
6.15.7. GETNUMBER.......coiiiiricee et 243

6.16. The WINAOWSMAaNAGET ClaSS.......cceoirrirriririersieesiee ettt 244

6.17.

B.16. 0. FINDL....ceitiiieeieriete ettt sttt b et b e b et b et e bt e b ek e b b e nrene 245
6.16.2. FOREGROUNDW/INDOWY.......cottrieitrieiirieteseeiesestesessee s seeie s seesesessesessenesseneas 245
6.16.3. WINDOWATPOSITION.....cittiirieerieierieteseete sttt seebeseebe s sresesneesneneas 245
6.16.4. CONSOLETITLE. ...ttt s s 245
6.16.5. CONSOLETITLE S ..ottt bbb 245
6.16.6. SENDTEXTTOWINDOW......ccortririreiuiirinirieieienesesisisiee st sesesssse s sesse s e sesisssseseses 245
6.16.7. PUSHBUTTONINWINDOW.......ociuiuiiririnieirienesesisieieesesesisisie e sassssese s 245
6.16.8. PROCESSMENUCOMMANDL......c.cotiiriririirieneresisieieie st isisie e sissesene s 246
The WINAOWODJECE CIASS.....cciiiiiirieieieeeieeie ettt s e e 246
6.17.1. ASSOCWINDOW.....coeotriirieitieririsieteiee sttt eb e s 247
B.17.2. HANDLE ...ttt 248
B.07.3. TITLE ettt ettt bbb 248
B.07 .4, T TLES ittt bbbttt 248
B.17.5. WECLASS......c ettt 248
B.17.6. ID.. ettt 248
6.17.7. COORDINATES........cctirrtiteititrirsteieee sttt 248
B.17.8. STATE ..ot 248
6.17.9. RESTORE......octiiiteieieires et 249
B.17.00. HIDE.....oiiieceirere sttt 249
B.17. 10, MINIMIZEoniieiiiiireeeee st 249
6.17.12. MAXIMIZE.......coo ettt 249
B.17.13. RESIZE. ...ttt 249
6.17.14. ENABLE ..ottt sttt et sttt 250
6.17.15. DISABLE ..ottt sttt e bbb et 250
6.17.16. MOVETQ....c.iiitiriitirieteneete sttt ettt st sttt sttt s b e st s be et et 250
6.17.17. TOFOREGROUNDL. ..ottt sttt st s bbb 250
6.17.18. FOCUSNEXTITEM....ccocttiitiirieerieierieie sttt ettt s ebe s ebe s 250
6.17.19. FOCUSPREVIOUSITEM......cooiitiiitrieierieie sttt seebe s sre e snenens 250
6.17.20. FOCUSITEM. ..ottt ettt sttt b e s eb e s b e b e snene 250
6.17.21. FINDCHILD. ...ttt sttt b e st s eb e b e snene 251
6.17.22. CHILDATPOSITION.ottt sttt eb e s eb e 251
B.17.23. INEXT ..ottt b ettt b e et b e b e bt r e nr e 251
6.17.24. PREVIOUS........oooiti ettt e 251
B.17.25. FIRST...c.eieteee ittt et bbbt 251
B.07.26. LAST. ..ttt sttt bbbt b bbbt b b s 252
B.17.27. OWNER ...ttt bbbt s 252
6.17.28. FIRSTCHILD......ootitiiiirieieieiee sttt s 252
6.17.29. ENUMERATECHILDREN......ccstttitiririieirieereninie et 252
6.17.30. SENDMESSAGE ...ttt 253
6.17.31. SENDCOMMANDL......cooittieititririsieteiee sttt 253
6.17.32. SENDMENUCOMMANDL.......octtitiutiirinirieirieneresisieiee st sssesese s 253
6.17.33. SENDMOUSECLICK.ctciiririsieieetresisie st 253
6.17.34. SENDSYSCOMMANDL.....c.cctrtririeteirirenirie e 254
6.17.35. PUSHBUTTOMN.cottiririieieitnisisietee st 256
6.17.36. SENDKEY.....c.oiiiteitiiiirinirieieie sttt 256
6.17.37. SENDCHAR......co ottt 256
6.17.38. SENDKEYDOWN.......ooiiireiiiiririnirceienesssse s nenesese s 257

Xiii

Xiv

6.18.

6.19.

6.20.

6.17.39. SENDKEYUR......iiiiiiiieree et st 257

B.17.40. SENDTEXTuii ittt ettt te et ste s ae et e s e e enae e beesnaeenneenrs 257
LI 5t I 1 =1 N | SR 257
6.17.42. SYSTEMMENUL......ccoiiiiii ittt sttt e et e e enns 257
6.17.43. ISMENU......coiiiiiiieiiieetesietee ettt st sttt st et seeteseebeseetanestenens 258
6.17.44. PROCESSMENUCOMMANNDL......cccceitietirieterieienesieesteesieseseeseseesesessesessenessesens 258
The WindowsProgramManager CLASS.......cccuie it 258
6.18.1. ADDDESKTOPICON......coiiiitiirieiiieiesieie st sesteseetesesteesseesaesessesesaesesessesessanessesens 259
6.18.2. ADDSHORTCUT.....ccoeiietiieeestee ettt sttt st st st seebeseste e ssenens 260
6.18.3. ADDGROURPL........cocirieterieteie ettt sttt st sttt se st seeteseebesestenestenens 261
6.18.4. ADDITEM.....oiiiieiiieeieiietesietesee ettt st s te e ste e ste e saesesaeteseetesensesessanessanens 261
6.18.5. DELETEDESKTOPICON......cctittrieirieiesieresestesestesesseessesessesessssesessesessesessensssenens 262
6.18.6. DELETEGROUP........cccoiiietieeecsiec ettt sttt st st st st stene s 264
6.18.7. DELETEITEM...ciiiiiciieieteeeeestee ettt sttt st st st et esteneas 264
B.18.8. INIT ettt st sttt e sttt e e e s et e ne et e seebe e nre e nteneas 264
6.18.9. SHOWGROURL.......ccoiitirieieieieisieesie ettt sttt s st et sesbe e te e sseneas 264
6.18.10. Symbolic Names for Virtual KeYS........c.ccvvveeeieiieere e 265
The WINdOWSREQISTIIY ClaSS.......cccciiiieieecictese ettt s e eas 268
6.19.1. CLASSES ROOT.....cotiitiirieisieesieie st sttt sttt seebeseesesessesessenessenens 269
6.19.2. CLASSES RO OT . icttriitiisieerteesieieseete st seste st tesesteseste e saesessebeseesesessesessenesseneas 269
B.19.3. CLOSE.....cot ittt et sttt st st sttt ntene 269
6.19.4. CONNEC T ...ttt st st sttt b et st seebe e be e sbeneas 270
B.19.5. CREATE ..ottt sttt ettt sttt st st st ne st nesbene 270
6.19.6. CURRENT _KEY......ciotiteierieeereseeieesiesieete e eeeseeseeseessesseessesseensessnenesssesseensessenns 270
6.19.7. CURRENT _KEY T toi et eeerie et eee st see s see e ssaestesseenaesneeneesnesneensensenns 270
6.19.8. CURRENT __USER.....ccui ittt st eae s enaesee e neesnenns 270
6.19.9. CURRENT _USER T ...t iiiit ettt st sse et sseeaesnesneeneennens 270
6.19.10. DELETE ...ttt ettt ettt et e st e e e et e e e eneeenns 271
6.19.11. DELETEVALUE.......i ottt st ettt st 271
LI I I el I 1] SR 271
6.19.13. GETVALUE ...ttt ettt ettt s sttt e e e e na e et e e e e snneenrs 271
L0 2 S 1N SRR 271
B.19.05. LIST oottt ettt ettt sttt e ettt et a et e te e re e te e nteneas 272
6.19.16. LISTVALUES. ..ottt st sttt st sae b st seste e stenens 272
B.19.07. LOAD......ctieeireete et stete s e te s te sttt e teseebe st et e et enestesesaesessetesaeteneebeneeteneeteneas 272
6.19.18. LOCAL_MACHINE ..ottt sttt st st st sessanessenens 273
6.19.19. LOCAL_MACHINES ...ttt sttt st st et et e ssenens 273
6.19.20. OPEN.....c.iiiiiietiieee sttt sttt st st e et e e ste e s aesesaebeseetesenteseetenenteneas 273
6.19.21. QUERY.....iiiiiietiriete ettt sttt st st ettt s e e eteseete e ebe e ete e nteneas 274
6.19.22. REPLACE ..ottt st sttt st sae b saete e ebe e te e stenens 274
6.19.23. RESTOREcct ittt ettt sttt sttt st s et seebeseebesestenessenens 274
B.19.24, SAVE...... ittt ettt sttt et e re et e ebeneas 275
6.19.25. SETVALUE ...ttt sttt sttt st sttt estenens 275
6.19.26. UNLOAD.......ccuetrietereeterintesis e este st b see b sesteseebe e steseste e saesessebeseesesessesessenessanens 275
B.19.27. USERS ... oottt st sttt sttt st st et st e ntene 275
6.19.28. USERS ...ttt st sttt sttt st et e be e nteneas 276
The WIindows OLEOD]JECE ClasS.......ccuieueririreresesieieeesesestes s sre e seeseeseesesnesrenes 276
6.20.1. DISPATCH. ...ttt sttt sttt st et e be e sbene 277

B.20.2. INIT ittt se et r e e e r e e 277

6.20.3. GETCONSTANT....coi ittt sttt sesa et seebesaebeseereneeseneas 277
6.20.4. GETKNOWNEVENTS ... oottt sttt 278
6.20.5. GETKNOWNMETHODS.......oooiie sttt sttt st 279
6.20.6. GETOBUIECT.....c.iiciicieiietiis ettt sttt st s sa et saebeseebeseste s stenens 281
6.20.7. GETOUTPARAMETERS.......cct ittt sttt 281
6.20.8. UNKNOWN.......coeiiieiiiietirieiesiseisteestese st saetesaetesaetesessesessessssesessesesseseseesessssensasenens 282
6.20.9. TYPE CONVEISIAMN.....ciuiitiiiieiieeieierierie sttt sttt ee e e se b sbesbeseese e e esesbesaeseens 283

O 11T G @] o] =T od £SO STR 285
7.1. The Environment Object (ENVIRONMENT.)........cccciiiieiiiiee st 285
7.2. The Local Environment ObjeCt ((LOCAL)......ccce ettt 287
7.2.1. The Error Object (ERROR)......cccci ettt s 288
7.2.2. The INput OBJECE (INPUT)....coiiiiieirieerieiesiete sttt st ssenens 288
7.2.3. The Output ObJeCt ((LOUTPUT)....ccviiririiriee sttt st st sesreessenens 289

7.3, IMETHODS ...ttt sttt sttt ettt ettt st st se e b et 289
A 1 L= V1@ o =Tt (AN TSRS 289
4 T 3 TSSOSO 289
S od T o £SO 291
S TR0 ISV | = DS 291
8.2. FUNCLIONS aNd SUDIOULINES......civiiiieeeee ettt e e se et see e e e e e sneseenees 291
ST == 1ol @ o = S 292
8.2.2. Errors during EXECULION.cciueirieirieerieteseete sttt s ebe bbb 293

8.3. REIUIMN VAIUES......oeeieeeeeeeet ettt ettt e e e sesbe st e seenaenennennenneseeean 294
LS S =W 1 T T U T o) 295
8.4.1. ABBREV (ADDIeVIation)........cceorueirieirieieriete ettt 296
8.4.2. ABS (ADSOIULE VAIUL).....c.coviiiiirieiieerieere ettt 297
8.4.3. ADDRESS ... oottt e e ae et e e araennreenres 297
8.4.4. ARG (AIQUIMEINL)...c.eiuirietirietiietetsieie sttt sttt b et e bt sr e b s ebese b e b e sne e snenea 297
8.4.5. B2X (Binary to Hexadecimal).........cocovieireireeseeseesee et 299
B.4.6. BEEP......o ettt be et et 300
8.4.7. BITAND (Bit DY Bit AND) ..cveveveiiieiisieiesietesiete e te s tesestee st saesesaesesaesesessesessenessenens 300
8.4.8. BITOR (Bit DY Bit OR)...coeiiiviieieisieisieerieie sttt st st st sesre et e ssenens 301
8.4.9. BITXOR (Bit by Bit EXCIUSIVE OR).....c.ciuiieiiirienienie et 301
8.4.10. C2D (Character to DECIMAL)........cccciririreeeieeerere e 301
8.4.11. C2X (Character to HexadecCimal)..........cccoeeerirene e 302
8.4.12. CENTER (OF CENTRE).....ciiititeerieeriei sttt ste st sestesessesessenessenens 303
8.4.13. CHANGESTR . ..ottt st sttt st st st s ebe e be e sbenea 303
8.4.14. CHARIN (Character INPUL).......cccceeiereieeese st eee st sesae st esae e sne e seesraens 303
8.4.15. CHAROUT (Character OULPUL)......c.ccereeieeeeeesteceesiesesae e eeesse e sesseesne e sseens 304
8.4.16. CHARS (Characters ReEMaiNiNg)......ccccuevereerereeieeresesseesieseesseseesesseesssessessenns 305
8.4.17. COMPARE ...ttt ettt st sttt sttt st seebe e ebe e ste e nteneas 306
8.4.18. CONDITION...ceetirietirietesertesee ettt st sttt be et se et seebe e sbenesbenens 306
8.4.19. COPIES ..ottt st st sttt st b et seebeseebe e sbenesbeneas 308
8.4.20. COUNTSTR ..oititiricteriete sttt sttt ettt s be bt se et seebe e stenesbeneas 308
8.4.21. D2C (Decimal t0 Character).......cccovvvrerereeieeeseseseesteee s se e e se e seeseens 308
8.4.22. D2X (Decimal to HexadeCimal)........cccoevereerererereserseeieese e ses e eeeesse s e 309
8.4.23. DATATYPE. ...ttt sttt st st s b e et 309

XV

XVi

84,24, DATE ..ottt sttt st st et e ettt ae st na et e e te e te e eteneas 311
8.4.25. DELSTR (Delete StING)....cevererreerieierieierieieseetesestesesiee s seebeseeresesresessee s 314
8.4.26. DELWORD (Delete WOId).......cceoirieerieiireeieseeienesienesieeseee st 314
S [€ TSR 315
8.4.28. DIRECTORY....cutiiiietestesie sttt sttt st sbe e stene e e esesbeseeseens 315
8.4.29. ENDLOCAL (LINUX ONIY). eiiiieiiiieiiteiesiese et st se e sse e e 315
8.4.30. ERRORTEXT .. .ot iiiiietirieteses et stee ettt saete st see e e stesessesessesessesesaeseseesesessanessenens 316
8.4.31. FILESPEC.......cot ettt sttt st sttt st s st saeteseetesestenestenens 316
8.4.32. FORM....octiiiteiiitete ettt sttt sttt st sa et et st et et be s sbenesaesesaebeseetesentesentanesteneas 317
8.4.33. FORMAT ..ottt sttt sttt sttt st st e e be e sae e steseseebeseebeseebesentanenteneas 317
8438, FUZZ....oeoeeeeee ettt sttt ettt n et sttt et e tene s 318
8.4.35. INSERT ...ttt sttt ettt s a et e seeteseebeseetenesteneas 318
8.4.36. LASTPOS (LaSt POSITION)......cctiteirieirieierieiesieieseetesesieesieeseesesesseseetesessesessenessenens 319
S = TSSO 319
8.4.38. LENGTH....ooiiiiieiiieeiesiete sttt st sttt sttt st e ebe et e stenens 320
8.4.39. LINEIN (LiN€ INPUL).c.cevirieteieieirieesieesie st sttt e ssssesassesessesessesessenessenens 320
8.4.40. LINEOUT (LINE OULPUL)..veeeteirieirieierieteseeteseste s te st st st sessesessenessenens 321
8.4.41. LINES (Lin€S REMAINING).....cccciuriiiririeierieieeresesestessessesesessesressessessessesessessessens 323
8.4.42. MAX (MAXIMUIM)....cuirietirieteisieesieesieeesieteseetesestesestesessesessenessesessesesessesessesessenessenens 323
8.4.43. MIN (IMINIMUM)..uiiitiriitirietiresieesiee sttt st sttt se et st seebesesbenesbeneas 324
84,44, OVERLAY......c ittt st sttt sttt sttt se et e ebe e be e ebenea 324
8.4.45. POS (POSItION)...ceeeetisiesiesiesieeeesessses e eseeeeseste s e seesaeseesessessessessessessensssessessesenns 324
8.4.46. QUEUED.......ccoiiireiie ettt sttt st st ettt 325
8.4.47. RANDOM......coiietiiecti ettt sttt st sttt st ese s aebesaeteseebeseete e steneas 325
8.4.48. REVERSEoi ettt se s e ettt enae e e s ste e steneeneesensesseseens 326
G L TR [€ S 326
8.4.50. RXFUNGCADD.......ccoteieirieitesieeeesese e esseseeseesessesseseessessesessessessessessessessesessessessens 326
8.4.51. RXFUNGCDRORP.......oci ittt sttt sttt saesee e esesseseeneens 327
8.4.52. RXFUNCQUERY........ecititiirieieieese st e e see ettt st sesee e sseste e saeseeneesessesseseens 327
8.4.53. RXQUEUEL.... .ottt ettt sttt ne e senaennennens 327
8.4.54. SETLOCAL (LINUX ONIY).cttuiitiirieiirieierieiereeie sttt seereseebesesre e sneneas 329
G 1T] SRR 329
8.4.56. SOURCELINE.........ooiiiie ettt sttt s sbe e seens 329
B.4.57. SPACKE ...ttt ettt bt ne e b nae e 330
8.4.58. STREAM.......ct ittt ettt sttt sttt se st st saesessetesaeteseebeseetenentenens 330
8.4.58.1. Stream COMMANGS......ccceiirererie ettt e e e eas 331
8.4.58.1.1. ComMMANd SIIHNGS.....cccireriereeieirere e s 331
8.4.58.1.2. QUERY Stream Commands.........cccceeveveevereesesreeieesre e see e 335

8.4.59. STRIP....ocuit ettt sttt st sttt et et s te s te s e e ebeseeteseebeneetenenteneas 337
8.4.60. SUBSTR (SUDSLING)....ccceiirieirieisieirieieseeesesesestesestenessesessesessssesessesessesessenessesens 338
8.4.61. SUBWORD........cciiieterietirietenisiee ettt see st see b e sbe e ste e stesessebeseetesessesestenesseneas 338
8.4.62. SYMBOL...ciiuiiieiiiieie ettt sttt st sttt st se et see b e ebe e te e ereneas 339
84,83, TIME ... iiiiiieieieeti ettt st st sttt sttt e st s e s st ne et e seebeseebe e nteneas 339
8.4.64. TRACKE ...ttt sttt sttt sttt sttt sttt e s tese st ebese et e seebesesbenenteneas 342
8.4.65. TRANSLATE ..ottt sttt sttt st se et st s sbe e be e steneas 342
8.4.66. TRUNC (TTUNCALEY.....cereeteerieirieirieiesieteseeteseste s tesesteessenesaesesseseseesesessesessenessenens 343
8.4.67. USERID. ..ottt st sttt st st st e be e sbenens 343
8.4.88. VALUE........oiiiiieiieete ettt ettt sttt sttt sttt st et stk et nbene 343

8.4.89. VARt et e nre 346

8470, VERIFY. .ottt sttt s bbbttt bbb n e 346

8.4 7L WORD......coteieitreeeete ettt b e st ss bbb e bbb e s e et ebenene s 347
8.4.72. WORDINDEX.......oittututrtriririeueienesisietesese st s sesesesesestesese st sesessssenesessssesesesesessesasanees 347
8.4.73. WORDLENGTH......cutiiiriririeite sttt st bbbt 348
8.4.74. WORDPOS (WOrd POSITION)......ceiueeereerireereriereneetenesreesree st seeseseeresesrenesnenens 348
B.4.75. WORDS ...ttt bbbttt bbbttt b b 348
8.4.76. X2B (Hexadecimal tO BiNAry)........ccoouoerereirinene et 349
8.4.77. X2C (Hexadecimal to CharacCter)........ccoeoeererere i 349
8.4.78. X2D (Hexadecimal to DeCIMaL)........ccoerereirireie e 349
8.4.79. XRANGE (HexadecCimal RANGE)......cccccrererrirerierie ettt sie e 350

9. ReXX ULIlIIES (REXXULI)....cv ittt 353
9.1. List of Rexx Utility FUNCHIONS.........ccciii ettt ens 353
9.2. RxMessageBOX (WINAOWS ONIY).......ciieeereiieiesiesesieeeee e eee e e et e e s sre e aesreens 355
9.3. RXWINEXEC (WINAOWS ONIY)...ccuiiiieiiieciese et s eee e ee e e eae e ssae e s eaesneesnesnessnesessenns 358
9.4. SysAddFileHandle (WINAOWS ONIY).....ccceiiieiieiierieieise st nas 359
9.5, SYSAUUREXXMACTD...c.ueveeeueetesiesiesteieteese st s e tesae e e e esesse s e stestesse e eneesesteseeseessanansennessessensen 360
9.6. SySBOOtDIive (WINAOWS ONIY).....civiiieieereeisesesteseeeetese et ese e ste st seesaesasses e snesreeas 360
9.7. SYSCIlEarREXXIMACIOSPACE. ... civeirerereereseerestestesteseeseesessessestessesseseeseesessessessessessssessessessenses 360
9.8. SYSCIOSEEVENTSEIML....c.eeeceeceistesiesiete ettt s s st e e e neesesbesteseesaenensennesneseesen 360
9.9, SYSCIOSEMULEXSEM...c.eeeceeceertesiestetee et e e sae sttt e e e e e eresbesteseeneenennennenneseeen 361
9.00. SYSCIUS.. .ttt b E b bbbt bbb ne st ne s 361
9.11. SYSCreateEVENTISEML......c.oiirieriieeeeee et 362
9.12. SYSCreateMULIEXSEIML.....c.eiirieriirriie ettt r e e sn e erenes 362
9.13. SysCreatePipe (AIX ONIY) ..o e 363
9.14. SySCUIrPOS (WINAOWS ONIY)....civiiiieiiiieerieie ettt sttt s 363
9.15. SysCurState (WINAOWS ONLY).....ccruririeririeiirenieneeiee ettt sttt 363
9.16. SysDrivelnfo (WINAOWS ONIY).....c.coeiriiirieirenieneeieesiee ettt 364
9.17. SysDriveMap (WINAOWS ONIY)....c.ciueuirieirieierinienesiee sttt 365
O.18. SYSDIOPFUNCS.....ectiteeeieieeterte ettt ettt r e b e nn e nneerenes 366
9.19. SysDropLibrary (WINAOWS ONIY).....c.coeirririieiniee e 366
9.20. SYSDIOPREXXMACLO.......ceuiiririiriiitireiee ettt s er s 366
9.21. SySDUMPVAIADIES.ot e e 367
9.22. SySFileCopy (WINAOWS ONIYL)....cviriiieerenieniesie ettt sbe s s sne e e 367
9.23. SYSFIIEDEIBTE. ..ottt e r e 368
9.24. SysFileMove (WINAOWS ONIY)......ooviieereieniese et s e 369
9.25. SYSFIIESEAICH......o it e e 369
9.26. SysFileSystemType (WINAOWS ONIY).....coiriiiiiiieirirere et s 371
S B VL= 1 1= I =T PSS 371
9.28. SysFork (Linux, AIX, SOIArS ONIY).....ccciiiieie e s 375
9.29. SysFromUnicode (WINAOWS ONIY)..c..eceeeiiieeie et se e s see et sreeaesne e naesreens 375
9.30. SysGetCollate (WINAOWS ONIY)....cveiiieiereiieieseeies s eese e eee e see et e e sreeaesre e naesreens 377
0.3, SYSGEIEITOMEXL...ctii ittt et be e s abe e nbeenbe e saeesbeebee e 378
0.32. SYSGEtFIEDAIETIME....c.ecuietirieriesieteteee et sttt sttt e e reebe s tesresaesaeneeaeeneerenn 378
0.33. SYSGIKEY....cveereriierisierei sttt 379
O.34. SYSGEIMESSAGE. ... ei et iteeiie ittt ettt sttt te sttt e st st esaeesae e s bt e sbeesbeesabeenbeenbeesaeesseenbee e 379
9.35. SysGetMessageX (UNIX ONIY) . ..ottt s eas 380

XVii

XViii

9.36.
9.37.
9.38.
9.39.
9.40.
9.41.
9.42.
9.43.
9.44.
9.45.
9.46.
9.47.
9.48.
9.49.
9.50.
9.51.
9.52.
9.58.
9.54.
9.55.
9.56.
9.57.
9.58.
9.59.
9.60.
9.61.
9.62.
9.63.
9.64.
9.65.
9.66.
9.67.
9.68.
9.69.
9.70.
9.71.
9.72.
9.73.
9.74.
9.75.
9.76.
9.77.
9.78.
9.79.
9.80.
9.81.
9.82.
9.83.

SYSING (WINAOWS ONIY). ..ttt s 381
SV SIS et b e bbb 383
SyslsFileCompressed (WINAOWS ONIY).......ccieiriereireineneesiee e 383
SYSISFIEDITECIONY.......eveteeetireete ettt b ettt se ettt se b e b e b e b 384
SyslIsFileEncrypted (WINAOWS ONLY)......cccoeireerieereeresesesieeseee s sesrese s 384
SYSISFIELINK. ...ttt 385
SyslsFileNotContentindexed (WIiNAOWS O0IY).......coeieiriniiiree e 385
SysISFileOffline (WINAOWS ONIY)....c.iiiiiieireeiesie et e 386
SyslIsFileSparse (WINAOWS ONIY)......co.eiereriirireniesie et seen 386
SyslsFileTemporary (WINAOWS ONLY.).....c.ooeririiirererieenene st 387
)T I = To | U T TSP 387
SYSLOAAREXXIMACTOSPACE.....c.eeuervertereiieeeerie st st steseeseesessesaeseesseee e st ssesbeseeseeseesessesseseens 388
SysMapCase (WINAOWS ONIY)......cciuiiieieii ettt sre e sneaneen 388
SYSIMKDIL ...ttt n e 388
SysNationalLanguageCompare (WIindOWS QNIY)......cccocereereieereveseese e 389
SYSOPENEVENISEINL.....eiiitii e sb e sbe e e nars 390
SYSOPENMULEXSEIM.....eiiiiiiieiieesiee sttt st esaeesae e be e saeesabeebeesbeesaeennres 390
SYSPOSIEVENISEIML. ...t 391
SysProcessType (WINAOWS ONIY).....cvcerereiiirierieneeeeeseseseeseesee e s sres e seeseesessessesseseens 391
SysPulseEventSem (WINAOWS ONIY)......coviirereriereeiseseseseeeeeeiese e e saeseeseesessessssnens 392
)Y @ 10 [T Y o o Tt PSS 392
SysSQUETNYProCeSSCOUEPAGE.........cveeeeeererestererereee et e e s et sae e e e esessesnesrens 393
SYSQUEIYREXXMACED......c.eeeeeieeeieiiseeeeeseeseesesseeaesseeseessesseessessesseessesseensesseessessesseessessenns 394
SYSREIEASEMULIEXSEIN.... .ottt ettt et st be e sbenens 394
SYSREOIAErREXXIMACKQ.eeitiietiiriecrie ettt st b e sbeneas 395
SYSREQUESTMULEXSEML.......oitiiiiie ittt snn 395
SYSRESEIEVENTSEIM......couiiiiiieeie e e snn 396
SYSRIMDIL ...ttt e b e e b et b et b et b e bt e bt e bbb b 396
SYSSAVEREXXMACIOSPACE.cvireeeeuieiirierit sttt st sre e e nenrennesnea 397
SYSSEAICNPALN......ciiiiiectiet e bbb 398
SYSSEIFIlEDAIETIMIE.ceieeteecte ettt ettt bbb e bbb enene s 398
Sy S S P TIONIEY. ..tttk b e bbb b 399
SysSetProcessCodePage (WINAOWS ONIY)......cocireirninneieerieeseeeseeie e 400
SysShutdownSystem (WINAOWS ONIY)......cccvvierirerieirieiriecreeesis e 401
)Y ES] (== o TR SRTSTURTRN 401
R SIS (=] 14 (@40 o) TSP URUPPRR 402
SYSSIEMDEIETE. ...t et b e et nae e 403
SYSSIEIMINSEIL ..ttt bbb et et et b e ae et e s b e e neebe e e e sresnnan 404
SYSSIEIMSOLL. ..ttt et bbbt et bt e e b e s it et e sb e e nenbeeaeeseesaean 405
SysSwitchSession (WINAOWS ONIY)......c.couririririne et e 406
SysSystemDirectory (WIiNAOWS ONIY).....c.occeeiiieeie ettt 406
S SR =T 0] 0 1 = NN F= U o= ST 406
SysTextScreenRead (WINAOWS OMLY).......ccceeiiieeieiieesie e s 407
SysTextScreenSize (WINAOWS ONIY)...c..ocieeeiiieeie e eeeste e nesresnees 408
SysToUnicode (WINAOWS ONIY)....c.oceerieiiiiesesieeese ettt sae e see e sressae e nneens 408
SYSULIIVEISION.....ccuiiiiieieiee ettt ae st e e e re st e besaesaeneesesresaesrens 410
VANV (] £ [T 411
SysVolumeLabel (WINAOWS ONIYL)..c.vcveeiiiiriiserereeeee s ss st s et sa e ese e snesnens 411

9.84. SYSWaAt (ALX ONIY)- ettt bbbt e 411
9.85. SYSWAITEVENTSEML....eitiiiitiiiteeriee ettt ettt 411
9.86. SysWaitNamedPipe (WINAOWS ONIY).......ccorriririeiirieeriee e 412
9.87. SysWinDecryptFile (WINAOWS ONIY)......coeiriiieirieesiee et 412
9.88. SysWInEncryptFile (WIiNdOWS ONIY)......ccoiriiriiiineeiee e 413
9.89. SysWinGetDefaultPrinter (WIiNdOWS ONLY).......cceoiieiirieinieereeereereseesee e 414
9.90. SysWinGetPrinters (WIiNAOWS ONIY)....ccoouiiiieiieeeiecrese et 414
9.91. SysWinSetDefaultPrinter (WINAOWS ONIY)......coooeeiririiiieeie e 414
9.92. SYSWINVEr WINAOWS ONIY)...cviiiieiieieere ettt sttt sae st e e e saesae e nnas 415
O = =] o SO UPSTRR 417
10.1. Simple Templates for Parsing into WOLAS..........cccccvvieieiicieseceee e 417
10.1.1. The Period as a Placenolder...........ccoi i 419

10.2. Templates Containing String Patterns........cccocveeeii e e 419
10.3. Templates Containing Positional (Numeric) Patterns.........cccoceevveeeceveveesieseeeeseene 420
10.3.1. Combining Patterns and Parsing into WQAIMS...........ccovevevvneeceveseereceee e 423

10.4. Parsing with Variable Patterns.........ccccccueeieiiiesereeeeeses e stsae et e e a s e e snens 424
10.5. Using UPPER, LOWER, and CASELESS..........cccoceoiiiniireseese e 425
10.6. Parsing INStrUCtIONS SUMMALY.......ccciueeeerestesesereeeesesteseseessesesessessessessessesesssesessessessens 425
10.7. Parsing INStructions EXAMPIES......ccccveieirecisieseseeeete st e e sesae e st ee e e sneseens 426
10.8. Advanced TOPICS iN ParSING.......cciourererereresesesereeseeestese e seeseesessessessessessessssessessessens 427
10.8.1. Parsing SeVeral SIINQS.....coccoeireirieireeneesseese s 427
10.8.2. Combining String and Positional Patterns.........c.ccocvvievereereneneseseeeeeese e 428
10.8.3. Conceptual Overview Of Parsing........c.coouveeeeirierisenieneneeseseseseesesseeessesseseenees 429

11. NUMDBErS and AtNMETICcuveieie ettt s se e e ene e e sneseennes 433
O O o] T o SRS 434
11.2. AritNMELIC OPEIALOLS......eveviereiiriecrieert ettt sttt 434
0 T o 0= U 434
11.2.2. INtEYET DIVISION ...ttt 435
S T =T o 0 =1 o = TR 435
11.2.4. Operator EXAMPIES. ...t 435
11.3. EXPONENtial NOTATION. ... ettt st seeas 436
11.4. NUMEIIC COMPAIISONS.eiueiuirtirteriereeeeuesiesuestestestesee e esesbesaeseessssesessessesbesbesseseeneenessessessans 437
11.5. Limits and Errors when Rexx Uses Numbers DireCtly.........ccccecrenenininencininicieine 438
12. Conditions and CONAItION TrAPS.....c.ccueerieririereriereeeete et e e e be b e e e e saesaeseeseas 441
12.1. Action Taken when a Condition IS Not Trapped.........cccccveieveneevece e 444
12.2. Action Taken when a Condition IS Trapped.........ccceeeeveveriesesecse e 444
12.3. ConditioN INFOIMELIONL.oeiiitiiirie ettt st sae e 446
12.3.1. DESCHIPLVE SIINQGS ..iiieeiieeereeieerieseeeeste s esee e e sae e see e sreessesseeeesaessaessessesssenseenes 446
12.3.2. Additional Object INfOrmMation..........ccccveeeriieeie e 447
12.3.3. The Special Variable RC.........ccoeieiiiie et s en 447
12.3.4. The Special Variable SIGL.......cccccovriiiiiireeee e 448
D2 T @0 [0 1170 g K@ o] 1Yo £ S 448

XiX

XX

RS R o] o ol U 1T o[/T U OSSP PSPPSRSO 451

13,1 EAITY REPIY. .ottt bbb bbb 451
13.2. MESSAGE ODJECLS... vttt ettt sttt s 453
13.3. DEfaUIt CONCUITENCY ... vttt ettt b et b e 453
13.3.1. Sending Messages Within @n ACHVILY..........ccirrirrerneseene e 455

13.4. Using Additional Concurrency MeChaniSmS.........ccceeriririnenieirere e 457
13.4.1. SETUNGUARDED Method and UNGUARDED Option........ccccceeerererererenenenens 457

13.4.2. GUARD ON and GUARD OFFE........cccoiiiinrrieeenesisisisie st 458

13.4.3. GUuArded MEtNOGS........ccoiiiiiieeeee et e 458

13.4.4. Additional EXAMPIES......cooiiiieeeeerere e s e 458

13.4.4.0. SEMAPRNOIES.....ciuiitirie ittt ettt sb e s b b e e sae b e 459

13.4.4.2. Monitors (Bounded BUFfer)........cccviiceieiicesece e 463

13.4.4.3. Readers and WIILBES. ...ttt 464

14. The SECUILY MBNAGETc ettt r et r e r e e s 467
14.1. Calls to the SECUItY MANAQEL......ccceieeeeereseererere et s e e s e e re st te e saeeesesreseeseens 467
I O O €= 0] o] =R 469

15. INpuUt aNd OULPUL SEFIEAIMS......ceiiieiieieiee sttt see e se s st e st e e e e sesteseesseaeseenesnesrensen 473
15.1. The Input and OULPUL MOAEL........ceruereeirire e snens 473
15.1. 0. INPUE STFEAIMIS. ..c.eeeieeieeierie sttt r et b b e sr e snenes 473

15.1.2. OULPUL SEIEAIMS. ... ettt bbb e sr e snesrenes 474

15.1.3. External Data QUEULE..........covierieeeeeeiesieseeseeee e seesee e sae e sessesteseeseensesessessessenss 475

15.1.3.2. UNNamed QUEUES.......ccuerueeeeeeeriesieseeeesestesteseeseeseeessessessesseseeneesessessessens 475

15.1.3.2. NamMed QUEUES........eeueeeeeeeeeeesiesieseeeesessesteseeseeseeseesessestesseseeneesessessesenns 475

15.1.3.3. Multiprogramming ConsideratiQns...........cccveerrernenenenesee e 477

15.1.4. Default Stream NAIMES ..o et st see e esse s seeneas 477

15.1.5. Line versus Character POSItIONING.......c.ccourvriririrrereerieese e 478

15.2, IMPIEMENTALION.ceitieetiiet ettt 479
15.3. Operating SYStem SPECITICS.......ceouruireriiirieireirieer s 479
15.4. Examples of INput @nd OULAUL.........cciiirieirieeeeeeeese et 479
15.5. Errors during INput @and OULRUL.........cccoeriie e seen 481
15.6. Summary of Rexx I/O Instructions and Methads...........coerieininnneseeeereee 481

16. DEDUGGING ATUS ...ttt bt e et ae b e b e b et e st eb e e b e sbese e e eneenesaesbeeas 483
16.1. Interactive Debugging of ProgramiS..........cccceeieeeiiiiiese st e 483
MG B 1= o T8 o o LT I o O 483
16.3. RXTRACE Variabl@........cc.ccuiiiriiricieierr ettt s 484

17. RESEIVEA KEYWOIUS.eceeiieiiieieste ettt ettt e et s et te e s te st e te s te et e teeneensesaeeneeseeeseentenseensenreanes 487
18. SPECIAl VANADIES......ccuiiteeeece ettt st st et e e be st e see s e e e eneenenneerenrn 489
19. USETUI SEIVICES......vcveiiieri ettt n et 491
19.1. WINAOWS COMIMANGS.cvivriieiresrireiererenesre s sessse s ssnesssssesessssesssses 491

19.2. LiNUX COMIMANASviitiieieieeeiesiesteseeseeseesesseseessessesseseesessessessessessesessesssssessessessessesessessessens 491
19.3. Subcommand HaNAIEr SEIVICES......cccoueirerirerereeeeeste et seeae et seeeesessesseseens 492
19.3.1. The RXSUBCOM COMMANQ......cceririrrririreeereseeseeseseeneeessessesessesssesessessessenses 492

19.3.1.1. RXSUBCOM REGISTER......ccsirtrietriitnet e 492

19.3.1.2. RXSUBCOM DROP.......cociriitiertitseeset et 493

19.3.1.3. RXSUBCOM QUERY.......ccestiririitrietriet et 494

19.3.1.4. RXSUBCOM LOAD.......cceotriirirtetsieesie ettt 494

19.3.2. The RXQUEUE FiltEL.....c.cciiiiiiirieiietriee e 495

19.4. Distributing Programs WithOUt SOULCE...........ccurieiririnririeererese e 497
20. WINdOws Scripting HOSE ENQINE.....cueiiiieieeese ettt sttt 499
20.1. Object Rexx as a Windows Scripting HOSt ENQINE...........ccveirrennenineeseesee e 499
20.1.1. Windows Scripting HOSt OVEIVIEW..........coeeeeruerierieieereeieeeese e 499
20.1.1.1. The Gestation Of WSH........cccoiiiiiee s 499

20.1.1.2. Hosts Provided by MiCroSQft.........cccceeereninenerereresese e 500

20.2. Scripting in the WINAOWS SEYLE ..o e 500
20.2.1. InvOCation DY the BIrOWSEL.......cccoiiiiiieeree ettt sbe s e 500
20.2.2. WSH File Types and FOIMALS.........ccoerereierenere et 502
20.2.2. 1. (WS ettt bbb 502

20.2.2.2. (WUSCiuueiniiiieteitte ettt b bttt b et b bt b bt 504

20.2.3. Invocation from a Command Prompt...........ccccevveeeveieeienesieeseseesessesee e 507
20.2.3.1. As a Conventional Object RexX File.........cccoovvivcevinieccce e 507

20.2.3.2. As a Windows Scripting HOSt Fll&.......cccocoeeve i 508

20.2.4. Invocation as @ COM ODJECL.......ccciiiieierieecece s 509
20.2.4.1. Registering the COM ODjJECL....cccuveeierieresere e 509

20.2.4.2. Generating @ TYPEliD.......cveeeiie e 509

20.2.4.3. INVOKING..1eteueeueeiirestisieseseeseeesesesaesseaese s e sseste e sae e esessessessessessesessessessensen 509

20.2.4.4, EVENES ..ottt e n e 510
20.2.4.4.1. COM EVENES.....coeoirieireeerece et 510

20.2.4.4.2. Internet EXplorer EVENTS........coovvvineenenee e 511

20.2.5. WSH SAMPIES.....ciiirieieriinereer ettt st st st s be e sbenea 511
20.3. Interpretation of and Deviation from the WSH Specification...........ccccoceeveerncennennn 512
20.3.1. Windows Scripting Host (WSH) Advanced OVErvieW.........c..coveerrenenenenienens 512
20.3.1.1. Hosts Provided by MiICroSOft.........ccoeiriinneiireeriee e 512

20.3.1.2. Additional COM ODJECLS.......coeereiererierenrenerieesiee e 513

20.3.1.3. Where to Find Additional Documentation..........c.ccccveereerenenneneneens 513

20.3.2. Object Rexx in the WSH ENVIrONMENL.........cooiiiiiiiirereereiereee e 513
20.3.2.1. Object Rexx Features Availahle...........ccccoviieinnincneceneeeenees 513

20.3.2.2. Changes in Object Rexx due t0 WSH.........ccccoeireiinneneeneeneeeenieens 514

20.3.2.3. PAlAQmMELELS.....eiieeeiiiteeie ettt st bbb s b e see e nbe b ens 514

bR T R o (0] 01T =TSRSS 515
20.3.4. The Object ReXX "SANADOX:".......ccooi i 516
20.3.4.1. Implications of Browser Applications That Run Outside the "Sandh&X'6

20.3.5. Features Duplicated in Object Rexx and W.SH..........ccccoooiiininennnninenee 516
20.3.5.1. Declaring Objects with Object Rexx or WSCLIPL.........ccccoveieierceneniennns 516

20.3.5.2. Subcom versus the Host Interface..........ccoovevvecveincneinseneceenees 517

20.3.5.3. Al VS COM....tiiiiiitiiiririeie ettt 517

A. USING the DO KEYWOIU......cceeeie ettt ettt s te e e st et e sne e e e sae s e entesreennenneenes 519
N S 0] o] =3 D I] o 11 o S 519
A.2. REPELILIVE DO LOOPS....ccveiveeeeeieresiesiesieseeeeseseseessessesaessssessessessessesssssssessessessessessessesessessenes 519
A.2.1. SIMple REPELILIVE LOOPS......ciciivireereeeieee s e sesteseeses s e stesae e e te e seeneeseesessesnens 519
A.2.2. Controlled REPELItIVE LOOPS......cieveeeeerisiesesieseeesesestesiesaesesessessessesseneesessesseseens 519

A.3. Repetitive LOOPS OVEr COIIECHIONS.......civeeeereerierieieeeese et e e sre e 521
A.4. Conditional Phrases (WHILE and UNTIL)......ccoivrrrririeniese e seeeeeseseeseeseee e e 522

XXi

XXii

T[T =i o] o H TSSOSO 525

B.1. Error Codes and RetUrN COUBS......oiiieieire ettt se e ene s saesnens 525
B.2. Error Detection and REPOITING ..ottt 525
B.3. ENVIrONMENt VariablES........ccviiiiieiereeee et st 525
B.4. StemMS VErsUS COIECHIOMNS. ... ccueiuiiieieieeeie sttt st ae e seea 525
B.5. Input and Output Using Functions and Methads...........ccoco v 526
G =t 01V (o] o1 a1 o | AU OSSPSR 526
B.7. Deleting ENvironment Variables. ..ot 526
SIS IO 10 1= TU [oo TSRO 526
B.O. TraCe iN IMACTOSPACE.eeeueeueeterte e reeeeeeiesie st teste e e e besbesbeseeseense e e st esesbesbeseese et enesbesaeseans 526
B.10. The RXMeSSageBOX FUNCHON........c.ciiiiiri ittt 526
C. Error NUMDErS and MESSAQES.cueueeiruirtirierie ettt sttt sbe st st e be et bene e ene b e e 527
O I =Y 1 o] g 1 ST PP ORURUPUTON 527
C.1.1. Error 3 - Failure during initialiZation............cccueeervieeneseeese e s 527
C.1.2. Error 4 - Program iNterrUPteU.......cccoeeererereeiecese s seeseeee s e re e e e sse s snens 528
C.1.3. Error 5 - System resources eXhausted........ccccvvvvvereieieniesie s e e s esese s 528
C.1.4. Error 6 - Unmatched "/*" OF QUOLE.......ccerereeeeeeeeseseesteee e se e e e e seens 528
C.1.5. Error 7 - WHEN or OTHERWISE eXPECLeQ.......ccceverreeeeeerrsienesieseeeeesiesenseens 529
C.1.6. Error 8 - Unexpected THEN Or ELSE.......cccooevvivi i 529
C.1.7. Error 9 - Unexpected WHEN or OTHERWISE.........cccceeriiresienierereeeeenese s 530
C.1.8. Error 10 - Unexpected or unmatched END..........ccccoerviinnieneieneeneseneseenieens 530
C.1.9. Error 11 - Control Stack fUll..........ccveoiiirienereieeeee e 531
C.1.10. Error 13 - Invalid character in Prograim.........coeereeerereiereeneeeseeesesresesenesienens 531
C.1.11. Error 14 - Incomplete DO/SELECT/IE. ... 532
C.1.12. Error 15 - Invalid hexadecimal or binary String.........cccccveeereieneiennienneneneens 532
C.1.13. Error 16 - Label NOt fOUNG.......ccoiiiiireereeecee e 533
C.1.14. Error 17 - Unexpected PROCEDURE..........cccocoiniiiniereereeseie e 533
C.1.15. Error 18 - THEN eXPECIEA......cceoiriierieiireeie ettt 534
C.1.16. Error 19 - String or Symbol eXPected..........ccoevrerreinieirieereeiereeie e 534
C.1.17. Error 20 - SYmMbDOl @XPECIEM.......ccoiviiiieiireeiereeieseeieesiee et 535
C.1.18. Error 21 - Invalid data on end Of ClauSe........cccoeviiiieieireeee e 537
C.1.19. Error 22 - Invalid character StrngGcc.ceeereeeere e 538
C.1.20. Error 23 - Invalid data StriNg........cccoeererereieeenese et 538
C.1.21. Error 24 - Invalid TRACE FEQUEST........coereeeeteeierie et 538
C.1.22. Error 25 - Invalid subkeyword found...........ccocoeiiiiineieinnsese e 539
C.1.23. Error 26 - Invalid Whole NUMBEL..........ooiiiriie e 541
C.1.24. Error 27 - Invalid DO SYNTAX.......cccceiereeiristeeieestesieesiesesaesteseesee e esasseesaessessenns 542
C.1.25. Error 28 - Invalid LEAVE Or ITERATE.........ccoitveieieeseiesee sttt 542
C.1.26. Error 29 - Environment name t00 1QNG.........cccevveeeeveveriiesieceese e esee s 543
C.1.27. Error 30 - Name Or String t00 lOMNQ.......ccccvrieieieeieereseeiesieeeee e see e se s 543
C.1.28. Error 31 - Name starts with nuUmber OF.. ..o 544
C.1.29. Error 33 - Invalid eXpresSSion FESUIL..........ccveceii e s 544
C.1.30. Error 34 - Logical value NOt 0 OF.L.......cccecveiieieeiesiesteieee e e e 545
C.1.31. Error 35 - INValid €XPreSSION......ccciiieiierereereeeseseseesteseses e e sre e seeseeneesessesseseens 545
C.1.32. Error 36 - Unmatched "(" or "[" iN @XPreSSiOn........ccveueeeeeeesesieseseeneeesesnseens 548
C.1.33. Error 37 - Unexpected ", "), OF "] e 548
C.1.34. Error 38 - Invalid template or PatternL........ccceveieierercerese e 549

C.1.35. Error 39 - Evaluation stack OVeITlOW.........cccvivevieiecie et 549

C.1.36. Error 40 - Incorrect Call t0 FOULINE.......ccceveeeeeeeere e 549
C.1.37. Error 41 - Bad arithmetiC CONVEISION.........ccceereriiirieieeeeee e 552
C.1.38. Error 42 - Arithmetic overflow/underflawi............cooereeeiniinininerereeeee e 553
C.1.39. Error 43 - Routing NOt fOUN..........cooiiiiinieieeie e 553
C.1.40. Error 44 - Function or message did not return data...........c.ccceveereienneneneens 554
C.1.41. Error 45 - No data specified on function RETURN...........cccoooeiiiencinininnins 554
C.1.42. Error 46 - Invalid variable referenCe.........ccocoviiiineieinenesesese e 554
C.1.43. Error 47 - Unexpected [ahel...... ..o 555
C.1.44. Error 48 - Failure in SYSteIM SEIVICE.......coerirerere et 555
C.1.45. Error 49 - INterpretation ©rrOL..... ... oot sie s e 555
C.1.46. Error 90 - External name NOt fOUNG.........ccooeirrrerneieneiereeseeeseee s 555
C.1.47. Error 91 - NO reSUIt ODJECL.....ccuiieeeece sttt s 556
C.1.48. Error 92 - OLE EITQl....ccci i 556
C.1.49. Error 93 - Incorrect call to MethQd...........ccveeriernencrereeree s 557
C.1.50. Error 97 - Object method Not fouNd..........ccceecevi e 561
C.1.51. Error 98 - EXECULION EITOK.....cccireerreeerrerereerereereseeresesresessesesseseseesesessesessesessesessesens 561
C.1.52. Error 99 - TranSIation €ITOL.........ceueueirrinieieeneresisieee st 565

C.2. RXSUBCOM ULIlity PrOgram......ccccceeueeeeeeiesesesieseeeeesesestessessesesessesseseeseessssssssssessessenses 567
C.2.1. Error 116 - The RXSUBCOM parameter REGISTER is incorrect.........ccou.... 567
C.2.2. Error 117 - The RXSUBCOM parameter DROP is iNCOIMECt......cccoevvevrcvrnrnns 568
C.2.3. Error 118 - The RXSUBCOM parameter LOAD iS iNCOIrect......ccccvevvevvrivrnrnnns 568
C.2.4. Error 125 - The RXSUBCOM parameter QUERY is iNCOrtect.......cccovevvrvrrrnnne 568

C.3. RXQUEUE ULlity PrOgram.....ccccccctieiieiereeie ettt s s 569
C.3.1. Error 119 - The REXX queuing system is not initialized..........c.cccoevernennenens 569
C.3.2. Error 120 - The size of the data iS iNCOIMECL.........covvvevererieni e 569
C.3.3. Error 121 - Storage for data queues is exhausted..........ccccvvereiennienniennieens 569
C.3.4. Error 122 - The name %1 is not a valid qUeUe NAMEe.........ccoccereererennenenienens 569
C.3.5. Error 123 - The queue access Mode iS NOt COMECL.......ccviirivereiernernenenienens 569
C.3.6. Error 124 - The queue %1 d0eS NOt EXISt.......covirrirereierieerieereee e 570
C.3.7. Error 131 - The syntax of the command iS INCOMECt.........cc.covervrenenniriernienne 570
C.3.8. Error 132 - System error occurred while processing the command................ 570

C.4. REXXC ULIILY PrOgIaIM.....cciiiieiiietsieie ettt sttt e s 570
C.4.1. Error 127 - The REXXC command parameters are inCoreck........covvvererrenns 570
C.4.2. Error 128 - Output file name must be different from input file name................ 570
C.4.3. Error 129 - SYNTAX: REXXC InProgramName [OutProgramName] [/S].......570
C.4.4. Error 130 - Without OutProgramName REXXC only performs a syntax check71

DL INOTICES. ..ttt ettt ettt s b e bt h e bbbt R R R b e b e b e b e b bR Rt et n s 573
D.1. Tral@MAIKS......ceiieeirieiireetieet sttt n e e 573
D.2. Source Code FOr ThiS DOCUMEINL..........ccurieeirieirreiieies et 574
E. Common Public License Version 1.0......cccccoiniiiiis s 575
E. L. DEfINILIONS....evcieeiiree e et 575
R T =Y a1 o) T |] £ NS 575
R = L= 8111 =T 0 0=) YRS 576
E.4. Commercial DIStHDULION. ... s 576
E.5. INO WaITANTY ..ottt ettt b e s aee s e e b sbe e s neebeesaeesareeree e 577
E.6. Disclaimer Of Liability.......ccccoveeiriereresereeesi sttt e s snesnens 577

XXiii

XXiV

List of Tables

4-1. Summary of Methods and the Classes Defining TheM..........cooeveeeeeierir e 97
6-1. Methods Available to the WindowsProgramManager Class..........cocerervrierieveseneneenesesenens 258
6-2. Symbolic Names for VIFtUal KEYS........ccvcvieierieeirere et st naee st nes 265
LR TS (=T 0 T] (o 4= L1 o 278
LR (=T 0 T) 0 4= LA 280
B-5. OLE/REXX TYPES . teutrietereete st reste sttt sttt st se b sttt b et b et bt s e bt st b e st e b etk e e b et b et ne et b e e s 283
9-1. Rexx Utility LIDrary FUNCHIONS........ccoiiieirieeeee ettt e 353
10-1. PaArSing SOUICE SHMQGS. .. cuerueuereruerertierteestesesieiesie e ssesesaesesss s seesseesbe e sbe e sbe st sbe st e ssesessesesees 425
11-1. WHOIE NUMDET LIMES....ceeuieirieiiesieieise ettt e ere st see s eaeneenesnessenees 438

List of Figures

1-1. Modular Data--a RepOrt ODJECL.......cviieie ettt st e e e resnnennas 2
N 7= 1|]] = o RS UR 3
1-3. Ball Object with Variable Names and ValUES........cccccveiiiieneieseeces e eenens 3
A g o= T o YW F= L (=0 ST =Y ot TSSO 4
LT NS T] o L= @ = T TSRS 6
R oo O =]SSR 6
1-7. InStances Of the ICON CIASS......co ittt 7
1-8. SUpErclass and SUDCIASSES.cccviirireeeieee st se st sttt se e e sesaesaenteseenaenennens 8
1-9. The SCreen-ObjECt SUPEICIASS.....ccuveiieireee ettt 8
1-10. MUIIPIE INNEIEANCE......cui ettt ettt 8
4-1. Classes and Inheritance of Methods (part L 0f.4)......ccocrirninninreee e 94
4-2. Classes and Inheritance of Methods (Part 2 0f4).........cccvrirrinninnere e 95
4-3. Classes and Inheritance of Methods (Part 3 0f4).........cccviiriinninereee e 96
4-4. Classes and Inheritance of Methods (Part 4 0f4)..........ccvrriinninnereee e 96
8-1. Function and Routine Resolution and EXECULION.cccoeiiiireiinnenneeseese e 293
10-1. Conceptual OVErVIEW OF PArSING......ccoiiruiirieirieirieerieiesis et 430
10-2. Conceptual View of FINdiNg NeXt Patt@IN..........cciiiiiiireees e 430
10-3. Conceptual View Of WOId ParSing........cccoeoereereirieinieiniseseseesieese s 431
13- EAIIY REPIY ittt n s 451
13-2. BEIOIE REPLY......octiiiirieteteeesi ettt sttt sttt st b bbb bt st e bbbt et 451
13-30 ATLEE REPLY ..ttt sttt st b bbbkt sttt b ettt 452
13-4. INAIreCt ODJECT RECUISIQ.....cui ittt sttt see e e et st e e e ebesbeseesee e eseenesneseeseas 456
13-5. Example of a Rexx Semaphore Class.........cooeiiiiiiniereee e e 459
RN o [T oL oo =1 o o TSP UR TR 470
14-2. Example of Server Implementing Security Man@ger.........cccoceverirereneieniene e 470
15-1. Sample Rexx Procedure USiNg @ QUEBLLE........ccecuieeeieeireceeseseeae st eeesae e eae e e ste s ene s ens 476
YA B o] aTol=T o a0 =T 1 2N 1o Lo o S 522
A-2. Concept of Repetitive LOOP OVEr COlIECHION.........cccueieeieieceeee e 523

XXV

XXVi

About This Book

This book describes the Open Object Rexx Interpreter, caitedpreter or language processor in the
following, and the Object-Oriented Rexx language.

This book is intended for people who plan to develop applications using Rexx. Its users range from the
novice, who might have experience in some programming language but no Rexx experience, to the
experienced application developer, who might have had some experience with Object Rexx.

This book is a reference rather than a tutorial. It assumes you are already familiar with object-oriented
programming concepts.

Descriptions include the use and syntax of the language and explain how the language processor
"interprets" the language as a program is running.

1. Related Information

See alsoOpen Object Rexx: Programming Guide

2. How to Read the Syntax Diagrams

Throughout this book, syntax is described using the structure defined below.

- Read the syntax diagrams from left to right, from top to bottom, following the path of the line.
The >>--- symbol indicates the beginning of a statement.
The---> symbol indicates that the statement syntax is continued on the next line.
The >--- symbol indicates that a statement is continued from the previous line.
The--->< symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with-thesymbol and end with
the---> symbol.

+ Required items appear on the horizontal line (the main path).

>>-STATEMENT--required_item--------=-—--=-——=—=-———————————————— ><

« Optional items appear below the main path.

>>-STATEMENT-——+--————————————-— +o————— - ———————————— ><
+-optional_item-+

- If you can choose from two or more items, they appear vertically, in a stack. If you must choose one of
the items, one item of the stack appears on the main path.

>>-STATEMENT--+-required_choicel-+---- -- -- -><
+-required_choice2-+

About This Book

- If choosing one of the items is optional, the entire stack appears below the main path.

>>-STATEMENT-—+---- - + - . ><
+-optional_choicel-+

+-optional_choice2-+

- If one of the items is the default, it appears above the main path and the remaining choices are shown
below.

+-default_choice—--+
>>-STATEMENT--+---- SR _— —>¢
+-optional_choice-+

+-optional_choice-+

« An arrow returning to the left above the main line indicates an item that can be repeated.

>>-STATEMENT----repeatable_item-+----- -- ><

A repeat arrow above a stack indicates that you can repeat the items in the stack.

« A set of vertical bars around an item indicates that the item is a fragment, a part of the syntax diagram
that appears in greater detail below the main diagram.

>>-STATEMENT--| fragment | - - ><

fragment:

| -—expansion_provides_greater_detail-- - -

- Keywords appear in uppercase (for examplepM1). They must be spelled exactly as shown but you
can type them in upper, lower, or mixed case. Variables appear in all lowercase letters (for example,
parmx). They represent user-supplied names or values.

- If punctuation marks, parentheses, arithmetic operators, or such symbols are shown, you must enter
them as part of the syntax.

The following example shows how the syntax is described:

v |
>>-MAX (----number-+--)--- - - - - ><

3. A Note About Program Examples in this Document

The program examples in this document are rendered in a mono-spaced font that is not completely
compatible for cut-and-paste functionality. Pasteing text into an editor could result in some characters

About This Book

outside of the standard ASCII character set. Specifically, single-qoute and double-quote characters are
sometimes converted incorrectly when pasted into an editor.

4. Getting Help

The Open Object Rexx Project has a number of methods to obtain help for ooRexx. These methods, in
no particular order of preference, are listed below.

4.1. The Rexx Language Association Mailing List

TheRexx Language Associatighttp:www.rexxla.org/) maintains a mailing list for its members. This
mailing list is only available to RexxLA members thus you will need to join RexxLA in order to get on
the list. The dues for RexxLA membership are small and are charged on a yearly basis. For details on
joining RexxLA please refer to thRexxLA Home Pagéttp://rexxla.org/) or th&kexxLA Membership
Application(http://rexxla.org/About_RexxLA/member.html) page.

4.2. The Open Object Rexx SourceForge Site

The Open Object Rexx Project (http://www.oorexx.org/) utilidesirceForgéhttp://sourceforge.net/) to
house the@oRexx Projecthttp://sourceforge.net/projects/oorexx) source repositories, mailing lists and
other project features. Here is a list of some of the most useful facilities.

The ooRexx Forums

The ooRexx project maintains a set of forums that anyone my contribute to or monitor. They are
located on th@oRexx Forumghttp://sourceforge.net/forum/?group_id=119701) page. There are
currently three forums available: Help, Developers and Open Discussion. In addition, you can
monitor the forums via email.

The Developer Mailing List

You can subscribe to the oorexx-devel mailing lisbaRexx Mailing List Subscriptions
(http://sourceforge.net/mail/?group_id=119701) page. This list is for discussing ooRexx project
development activities. It also supports a historical archive of past messages.

The Users Mailing List

You can subscribe to the oorexx-users mailing list@Rexx Mailing List Subscriptions
(http://sourceforge.net/mail/?group_id=119701) page. This list is for discussing using ooRexx. It
also supports a historical archive of past messages.

The Announcements Mailing List

You can subscribe to the oorexx-announce mailing listotlRexx Mailing List Subscriptions
(http://sourceforge.net/mail/?group_id=119701) page. This list is only used to announce significant
00Rexx project events.

About This Book

The Bug Mailing List

You can subscribe to the oorexx-bugs mailing lisbaRexx Mailing List Subscriptions
(http://sourceforge.net/mail/?group_id=119701) page. This list is only used for monitoring changes
to the ooRexx bug tracking system.

Support Requests

You can create a support requesbaRexx Support Request
(http://sourceforge.net/tracker/?group_id=119701&atid=684731) page. Please be sure to log in to
Sourceforge before creating the request so that it will record your e-mail address. This will allow
SourceForge (and the ooRexx developers) a way to contact you when updates are made to your
request. Otherwise you will need to manually check back on this page to track any updates to the
request.

Also, please try to provide as much information in the support request as possible so that the
developers can determine the problem as quickly as possible.

Bug Reports

You can create a bug report@Rexx Bug Report
(http://sourceforge.net/tracker/?group_id=119701&atid=684730) page. Please be sure to log in to
Sourceforge before creating the report so that it will record your e-mail address. This will allow
SourceForge (and the ooRexx developers) a way to contact you when updates are made to your
report. Otherwise you will need to manually check back on this page to track any updates to the
report.

Also, please try to provide as much information in the bug report as possible so that the developers
can determine the problem as quickly as possible.

Patch Reports

If you create an enhancement patch for ooRexx please post the pach usiodRéhex Patch Report
(http://sourceforge.net/tracker/?group_id=119701&atid=684732) page. Please be sure to log in to
Sourceforge before creating the report so that it will record your e-mail address. This will allow
SourceForge (and the ooRexx developers) a way to contact you when updates are made to your
report. Otherwise you will need to manually check back on this page to track any updates to the
report.

Also, please try to provide as much information in the patch report as possible so that the developers
can evaluate the enhancement as quickly as possible.

Please do not post bug patches here, instead you should open a bug report and attach the patch to it.

4.3. comp.lang.rexx Newsgroup

The comp.lang.rexx (news:comp.lang.rexx) newsgroup is a good place to obtain help from many
individuals within the Rexx community. You can obtain help on Open Object Rexx or on any number of

About This Book

other Rexx interpreters and tools.

About This Book

Vi

Chapter 1. Rexx General Concepts

The Rexx language is particularly suitable for:

- Application scripting

« Command procedures

« Application front ends

« User-defined macros (such as editor subcommands)
+ Prototyping

+ Personal computing

As an object-oriented language, Rexx provides, for example, data encapsulation, polymorphism, an
object class hierarchy, class-based inheritance of methods, and concurrency. Object Rexx is compatible
with earlier Rexx versions. It has the usual structured-programming instructions, for example IF,
SELECT, DO WHILE, and LEAVE, and a number of useful built-in functions.

The language imposes few restrictions on the program format. There can be more than one clause on a
line, or a single clause can occupy more than one line. Indentation is allowed. You can, therefore, code
programs in a format that emphasizes their structure, making them easier to read.

There is no limit to the length of the values of variables, as long as all variables fit into the storage
available. There are no restrictions on the types of data that variables can contain.

The limit on the length of symbols (variable names) is 250 characters. You can use compound symbols,
such as

NAME.Y.Z

wherey andz can be the names of variables or can be constant symbols, for constructing arrays and for
other purposes.

A language processor (interpreter) runs Rexx programs. That is, the program runs line by line and word
by word, without first being translated to another form (compiled). The advantage of this is that you can
fix the error and rerun the program faster than with a compiler.

1.1. What Is Object-Oriented Programming?

Object-oriented programming is a way to write computer programs by focusing not on the instructions
and operations a program uses to manipulate data, but on the data itself. First, the program simulates, or
models, objects in the physical world as closely as possible. Then the objects interact with each other to
produce the desired result.

Real-world objects, such as a company’s employees, money in a bank account, or a report, are stored as
data so the computer can act upon it. For example, when you print a report, print is the action and report
is the object acted upon. Often several actions apply; you could also send or erase the report.

Chapter 1. Rexx General Concepts

1.2. Modularizing Data

In conventional, structured programming, actions like print are often isolated from the data by placing
them in subroutines or modules. A module typically contains an operation for implementing one simple
action. You might have a PRINT module, a SEND module, an ERASE module. These actions are
independent of the data they operate on.

FROGRAM ..
FEIM I
data
data data
data data
data data data
data data
SEMD data data
data
ERASE

But with object-oriented programming, it is the data that is modularized. And each data module includes
its own operations for performing actions directly related to its data.

Figure 1-1. Modular Data--a Report Object

FHIMN |

Report

data
data
data
data
data

= mon
mr- — T

ERASE

Chapter 1. Rexx General Concepts

In the case of report, the report object would contain its own built-in PRINT, SEND, ERASE, and FILE
operations.

Object-oriented programming lets you model real-world objects--even very complex ones--precisely and
elegantly. As a result, object manipulation becomes easier and computer instructions become simpler and
can be modified later with minimal effort.

Object-oriented programmirgjdesany information that is not important for acting on an object, thereby
concealing the object’s complexities. Complex tasks can then be initiated simply, at a very high level.

1.3. Modeling Objects

In object-oriented programming, objects are modeled to real-world objects. A real-world object has
actions related to it and characteristics of its own.

Take a ball, for example. A ball can be acted on--rolled, tossed, thrown, bounced, caught. But it also has
its own physical characteristics--size, shape, composition, weight, color, speed, position. An accurate
data model of a real ball would define not only the physical characteristicgltretated actions and
characteristics in one package:

Figure 1-2. A Ball Object

BOUMNCE
Size

Shape
Zomp
Weight
Color
Speed
Pos

= o@D T -
e R B e

RElLls———T0ss

In object-oriented programming, objects are the basic building blocks--the fundamental units of data.

There are many kinds of objects; for example, character strings, collections, and input and output
streams. An object--such as a character string--always consists of two parts: the possible actions or
operations related to it, and its characteristics or variables. A variable has a vaaaideand an
associated data value that can change over time. These actions and characteristics are so closely
associated that they cannot be separated:

Chapter 1. Rexx General Concepts

Figure 1-3. Ball Object with Variable Names and Values

liBOUNCE
Siza=3

T Shape=round G
H Comp=rubber A
R Weight=2 T
0 Color=yellow G
W Spesd=32 H
Pos=4
Rall———T08%

To access an object’s data, you must always specify an action. For example, suppose the object is the
numbers. Its actions might include addition, subtraction, multiplication, and division. Each of these
actions is an interface to the object’s data. The data is said ¢entepsulated because the only way to
access it is through one of these surrounding actions. The encapsulated internal characteristics of an
object are itsvariables Variables are associated with an object and exist for the lifetime of that object:

Figure 1-4. Encapsulated 5 Object

SUBTRACTION
[]

rzo_ﬁ_':l':l:b
LZQ_UJ_C:_D

MULTIPLICATION

Rexx comes with a basic set of classes for creating objects)sgets and ClassgpsTherefore, you can
create objects that exactly match the needs of a particular application.

1.4. How Obijects Interact

The actions within an object are its only interface to other objects. Actions form a kind of "wall" that
encapsulates the object, and shields its internal information from outside objects. This shielding is called
information hiding.Information hiding protects an object’s data from corruption by outside objects, and

Chapter 1. Rexx General Concepts

also protects outside objects from relying on another object’s private data, which can change without
warning.

One object can act upon another (or cause it to act) only by calling that object’s actions, namely by
sendingmessagesObjects respond to these messages by performing an action, returning data, or both. A
message to an object must specify:

- Areceiving object
« The "message send" symbol, ~, which is calledtthiedle

- The action and, optionally in parentheses, any parameters required

So the message format looks like this:

object~action(parameters)

Assume that the object is the string. Sending it a message to use its REVERSE action:
"1iH""reverse

returns the string objeeti ! .

1.5. Methods

Sending a message to an object results in performing some action; that is, it results in running some
underlying code. The action-generating code is calletethod When you send a message to an object,

you specify its method name in the message. Method names are character strings like REVERSE. In the
preceding example, sending thererse message to theit object causes it to run the REVERSE

method. Most objects are capable of more than one action, and so have a number of available methods.

The classes Rexx provides include their own predefined methods. The Message class, for example, has
the COMPLETED, INIT, NOTIFY, RESULT, SEND, and START methods. When you create your own
classes, you can write new methods for them in Rexx code. Much of the object programming in Rexx is
writing the code for the methods you create.

1.6. Polymorphism

Rexx lets you send the same message to objects that are different:

"IiH""reverse /* Reverses the characters "!iH" to form "Hi!" x/
pen“reverse /* Reverses the direction of a plotter pen x/
ball~reverse /* Reverses the direction of a moving ball */

As long as each object has its own REVERSE method, REVERSE runs even if the programming
implementation is different for each object. This ability to hide different functions behind a common
interface is callegholymorphismAs a result of information hiding, each object in the previous example

Chapter 1. Rexx General Concepts

knows only its own version of REVERSE. And even though the objects are different, each reverses itself
as dictated by its own code.

Although the!iH object's REVERSE code is different from the plotter pen’s, the method name can be
the same because Rexx keeps track of the methods each object owns. The ability to reuse the same
method name so that one message can initiate more than one function is another feature of
polymorphism. You do not need to have several message names like REVERSE_STRING,
REVERSE_PEN, REVERSE_BALL. This keeps method-naming schemes simple and makes complex
programs easy to follow and modify.

The ability to hide the various implementations of a method while leaving the interface the same
illustrates polymorphism at its lowest level. On a higher level, polymorphism permits extensive code
reuse.

1.7. Classes and Instances

In Rexx, objects are organized inttassesClasses are like templates; they define the methods and
variables that a group of similar objects have in common and store them in one place.

If you write a program to manipulate some screen icons, for example, you might create an Icon class. In
that Icon class you can include all the icon objects with similar actions and characteristics:

Figure 1-5. A Simple Class

lcon class

Windows system icon instance
shraddar icon instance
information icon instance

All the icon objects might use common methods like DRAW or ERASE. They might contain common
variables like position, color, or size. What makes each icon object different from one another is the data
assigned to its variables. For the Windows system icon, it might be position="20,20", while for the
shredder it is "20,30" and for information it is "20,40":

Chapter 1. Rexx General Concepts

Figure 1-6. Icon Class

lcon class

Windows system icon instance
(position="20,20"

shraddaricon instance
(position="20,30"

information icon instanca
(position="20,40"

Objects that belong to a class are callestanceof that class. As instances of the Icon class, the
Windows system icon, shredder icon, and information i@oguirethe methods and variables of that
class. Instances behave as if they each had their own methods and variables of the same name. All
instances, however, have their own unique propertieseiteeassociated with the variables. Everything
else can be stored at the class level.

Figure 1-7. Instances of the Icon Class

lcon class
(position=)

Windows system icon instance
('20,20")

shradder icon instance
('20,30')

information icon instance
('20,40")

If you must update or change a particular method, you only have to change it at one place, at the class

level. This single update is then acquired by every new instance that uses the method.

A class that can create instances of an object is callexbgatt class The Icon class is an object class
you can use to create other objects with similar properties, such as an application icon or a drives icon.

An object class is like a factory for producing instances of the objects.

Chapter 1. Rexx General Concepts

1.8. Data Abstraction

The ability to create new, high-level data types and organize them into a meaningful class structure is
calleddata abstractionData abstraction is at the core of object-oriented programming. Once you model
objects with real-world properties from the basic data types, you can continue creating, assembling, and
combining them into increasingly complex objects. Then you can use these objects as if they were part of
the original programming language.

1.9. Subclasses, Superclasses, and Inheritance

When you write your first object-oriented program, you do not have to begin your real-world modeling
from scratch. Rexx provides predefined classes and methods. From there you can create additional
classes and methods of your own, according to your needs.

Rexx classes are hierarchical. Any subclass (a class below another class in the hianhssfigthe
methods and variables of one or maetgerclasse&lasses above a class in the hierarchy):

Figure 1-8. Superclass and Subclasses
s pe{class

Subclass Subclass Subclass

You can add a class to an existing superclass. For example, you might add the Icon class to the
Screen-Object superclass:

Figure 1-9. The Screen-Object Superclass

Screen-Objact class

lcon class Window class Bitmap class

In this way, the subclass inherits additional methods from the superclass. A class can have more than one
superclass, for example, subclass Bitmap might have the superclasses Screen-Object and Art-Object.
Acquiring methods and variables from more than one superclass is knawalsle inheritance

Figure 1-10. Multiple Inheritance
Screenl—Dbject Art-Object
| | |

lcon Window Bitmap

Chapter 1. Rexx General Concepts

1.10. Structure and General Syntax

On Windows and *nix, Rexx programs are not required to start with a standard comment. However, for
portability reasons, start each Rexx program with a standard comment that begins in the first column of
the first line. For more information on comments, refeCmmments

A Rexx program is built from a series ofauseshat are composed of:

« Zero or more blanks (which are ignored)

- A sequence of tokens (s@ekeng

« Zero or more blanks (again ignored)

« A semicolon (;) delimiter that the line end, certain keywords, or the colon (:) implies.

Conceptually, each clause is scanned from left to right before processing, and the tokens composing it
are identified. Instruction keywords are recognized at this stage, comments are removed, and several
blanks (except within literal strings) are converted to single blanks. Blanks adjacent to operator
characters and special characters are also removed.

1.10.1. Characters

A characteris a member of a defined set of elements that is used for the control or representation of data.
You can usually enter a character with a single keystroke. The coded representation of a character is its
representation in digital form. A character, the letter A, for example, differs froooided

representatioror encoding. Various coded character sets (such as ASCIl and EBCDIC) use different
encodings for the letter A (decimal values 65 and 193, respectively). This book uses characters to convey
meanings and not to imply a specific character code, except where otherwise stated. The exceptions are
certain built-in functions that convert between characters and their representations. The functions C2D,
C2X, D2C, X2C, and XRANGE depend on the character set used.

A code page specifies the encodings for each character in a set. Be aware that:

« Some code pages do not contain all characters that Rexx defines as valid (for example, the logical
NOT character).

« Some characters that Rexx defines as valid have different encodings in different code pages, for
example the exclamation mark (!).

1.10.2. Comments

A comment is a sequence of characters delimited by specific characters. It is ignored by the program but
acts as a separator. For example, a token containing one comment is treated as two tokens.

The interpreter recognizes the following types of comments:

- A line comment, where the comment is limited to one line

. The standard Rexx comment, where the comment can cover several lines

Chapter 1. Rexx General Concepts

A line commenis started by two subsequent minus signs (--) and ends at the end of a line. Example:

"Fred"
"Don't Panic!"

'You shouldn''t' -- Same as "You shouldn't"
nn

In this example, the language processor processes the statement&-H#a@no 'You shouldn''t', ignores
the words following the line comment, and continues to process the statément

A standard commens a sequence of characters (on one or more lines) delimited by /* and */. Within

these delimiters any characters are allowed. Standard comments can contain other standard comments, as
long as each begins and ends with the necessary delimiters. They areneslied commentStandard

comments can be anywhere and of any length.

/* This is an example of a valid Rexx comment */

Take special care when commenting out lines of code contaiing / as part of a literal string.
Consider the following program segment:

01 parse pull input

02 if substr(input,1,5) = "/*123"
03 then call process

04 dept = substr(input,32,5)

To comment out lines 2 and 3, the following change would be incorrect:

01 parse pull input

02 /* if substr(input,1,5) = "/*123"
03 then call process

04 */ dept = substr(input,32,5)

This is incorrect because the language processor would interpret that is part of the literal string
/*123 as the start of a nested standard comment. It would not process the rest of the program because it
would be looking for a matching standard comment exql. (

You can avoid this type of problem by using concatenation for literal strings contairiog«/; line 2
would be:
if substr(input,1,5) = "/" || "*123"

You could comment out lines 2 and 3 correctly as follows:

01 parse pull input

02 /* if substr(input,1,5) = "/" || "*123"
03 then call process

04 */ dept = substr(input,32,5)

Both types of comments can be mixed and nested. However, when you nest the two types, the type of
comment that comes first takes precedence over the one nested. Here is an example:

IIFredll
"Don't Panic!"
'You shouldn''t' /* Same as "You shouldn't"

10

Chapter 1. Rexx General Concepts

e -- The null string */
In this example, the language processor ignores everything'eftekshouldn''t' up to the end of the last
line. In this case, the standard comment has precedence over the line comment.

When nesting the two comment types, make sure that the start delimiter of the standard co®isent
not in the line commented out with the line comment signs.

Example:

"Fred"
"Don't Panic!"

'You shouldn''t' -- Same as /* "You shouldn't"
" The null string */

This example produces an error because the language processor ignores the start delimiter of the
standard comment, which is commented out using the line comment.

1.10.3. Tokens

A tokenis the unit of low-level syntax from which clauses are built. Programs written in Rexx are
composed of tokens. Tokens can be of any length, up to an implementation-restricted maximum. They are
separated by blanks or comments, or by the nature of the tokens themselves. The classes of tokens are:

« Literal strings

« Hexadecimal strings
- Binary strings

« Symbols

« Numbers

« Operator characters

- Special characters

1.10.3.1. Literal Strings

A literal string is a sequence includirgony characters except line feed (X"10") and delimited by a single
guotation mark'j or a double quotation mark). You use two consecutive double quotation markg (

to represent one double quotation markwithin a string delimited by double quotation marks.

Similarly, you use two consecutive single quotation mar§gq represent one single quotation maik (
within a string delimited by single quotation marks. A literal string is a constant and its contents are
never modified when it is processed. Literal strings must be complete on a single line. This means that
unmatched quotation marks can be detected on the line where they occur.

A literal string with no characters (that is, a string of leng}lis called anull string.

These are valid strings:

"Fred"
"Don't Panic!"

11

Chapter 1. Rexx General Concepts

12

'You shouldn''t' /* Same as "You shouldn't" */
" /* The null string */

Implementation maximum: A literal string can contain an unlimited number of characters. The length
of the evaluated result of an expression, however, is limited only by the available virtual storage of your
computer, with an additional limit of 512MB maximum per process.

Note that a string immediately followed by a right bracket is considered to be the name of a function. If
immediately followed by the symbalor x, it is considered to be a hexadecimal string. If followed
immediately by the symbd or b, it is considered to be a binary string.

1.10.3.2. Hexadecimal Strings

A hexadecimal string is a literal string, expressed using a hexadecimal notation of its encoding. It is any
sequence of zero or more hexadecimal digits,(a-f, A-F), grouped in pairs. A single leading 0 is

assumed, if necessary, at the beginning of the string to make an even number of hexadecimal digits. The
groups of digits are optionally separated by one or more blanks, and the whole sequence is delimited by
single or double quotation marks and immediately followed by the symbok. Neitherx norx can be

part of a longer symbol. The blanks, which can only be byte boundaries (and not at the beginning or end
of the string), are to improve readability. The language processor ignores them.

A hexadecimal string is a literal string formed by packing the hexadecimal digits given. Packing the
hexadecimal digits removes blanks and converts each pair of hexadecimal digits into its equivalent
character, for example, "41"X to A.

Hexadecimal strings let you include characters in a program even if you cannot directly enter the
characters themselves. These are valid hexadecimal strings:

"ABCD"x
"1d ec £8"X
"1 d48"x

Note: A hexadecimal string is not a representation of a number. It is an escape mechanism that lets
a user describe a character in terms of its encoding (and, therefore, is machine-dependent). In
ASCII, "20"X is the encoding for a blank. In every case, a string of the form "....."x is an alternative to
a straightforward string. In ASCII "41"x and "A" are identical, as are "20"x and a blank, and must be
treated identically.

Implementation maximum: The packed length of a hexadecimal string (the string with blanks
removed) is unlimited.

1.10.3.3. Binary Strings

A binary string is a literal string, expressed using a binary representation of its encoding. It is any
sequence of zero or more binary digitsof 1) in groups of 8 (bytes) or 4 (nibbles). The first group can

have less than four digits; in this case, up to three 0 digits are assumed to the left of the first digit, making
a total of four digits. The groups of digits are optionally separated by one or more blanks, and the whole
sequence is delimited by matching single or double quotation marks and immediately followed by the

Chapter 1. Rexx General Concepts

symbolb or B. Neithero norB can be part of a longer symbol. The blanks, which can only be byte or
nibble boundaries (and not at the beginning or end of the string), are to improve readability. The
language processor ignores them.

A binary string is a literal string formed by packing the binary digits given. If the number of binary digits
is not a multiple of 8, leading zeros are added on the left to make a multiple of 8 before packing. Binary
strings allow you to specify characters explicitly, bit by bit. These are valid binary strings:

"11110000"b /% == "f0"x */
"101 1101"b /* == "5d"x */
" /* == "00000001"b and "01"x */
"10000 10101010"b /* == "0001 0000 1010 1010"b */
g /% == no */

Implementation maximum: The packed length of a binary-literal string is unlimited.

1.10.3.4. Symbols

Symbols are groups of characters, selected from the:

- English alphabetic characters® anda-z). Note that some code pages do not include lowercase
English characters a-z.

« Numeric character+{9)

« Characters ! 7 and underscore . Note that the encoding of the exclamation mark depends on the
code page used.

Any lowercase alphabetic character in a symbol is translated to uppercase (that is, lowertase
uppercase-z) before use.

These are valid symbols:

Fred
Albert.Hall
WHERE?

If a symbol does not begin with a digit or a period, you can use it as a variable and can assign it a value.
If you have not assigned a value to it, its value is the characters of the symbol itself, translated to
uppercase (that is, lowercase to uppercase-z). Symbols that begin with a number or a period are
constant symbols and cannot directly be assigned a valueEf8&®nment Symbol}

One other form of symbol is allowed to support the representation of numbers in exponential format. The
symbol starts with a digitot9) or a period, and it can end with the sequence e, followed immediately

by an optional sign-{or +), followed immediately by one or more digits (which cannot be followed by

any other symbol characters). The sign in this context is part of the symbol and is not an operator.

These are valid numbers in exponential notation:

17.3E-12
.03e+9

13

Chapter 1. Rexx General Concepts

14

1.10.3.5. Numbers

Numbers are character strings consisting of one or more decimal digits, with an optional prefix of a plus
(+) or minus (-) sign, and optionally including a single periojithat represents a decimal point. A

number can also have a power of 10 suffixed in conventional exponential notativ(uppercase or
lowercase), followed optionally by a plus or minus sign, then followed by one or more decimal digits
defining the power of 10. Whenever a character string is used as a number, rounding can occur to a
precision specified by the NUMERIC DIGITS instruction (the default is nine digits) N&sebers and
Arithmetic for a full definition of numbers.

Numbers can have leading blanks (before and after the sign) and trailing blanks. Blanks cannot be
embedded among the digits of a number or in the exponential part. Note that a symbol or a literal string
can be a number. A number cannot be the name of a variable.

These are valid numbers:

12
"-17.9"
127.0650
73e+128

"+ 7.9E5 "

You can specify numbers with or without quotation marks around them. Note that the sequerce
(without quotation marks) in an expression is not simply a number. It is a minus operator (which can be
prefix minus if no term is to the left of it) followed by a positive number. The result of the operation is a
number.

A whole numbeis a number that has a no decimal part and that the language processor would not
usually express in exponential notation. That is, it has no more digits before the decimal point than the
current setting of NUMERIC DIGITS (the default is nine).

Implementation maximum: The exponent of a number expressed in exponential notation can have up
to nine digits.

1.10.3.6. Operator Characters

The characters - \ / % * | | & = - > <andthe sequences <= \> \< \= >< <> == \== //

|| k% —> o< o= == >> << >>= \<< << \>> —->> <<=indicate operations (sé€@peratork

(The || can also be used as the concatenation symbol.) A few of these are also used in parsing templates,
and the equal sign is also used to indicate assignment. Blanks adjacent to operator characters are
removed. Therefore, the following are identical in meaning:

345>=123
345 >=123
345 >= 123
345 > = 123

Some of these characters (and some special characters--see the next section) might not be available in all
character sets. In this case, appropriate translations can be used. In particular, the vertical bar (|) is often
shown as a split vertical bar (}).

Throughout the language, the NOT)(character is synonymous with the backslash You can use
the two characters interchangeably according to availability and personal preference.

Chapter 1. Rexx General Concepts

Note: The Rexx interpreter uses ASCII character 124 in the concatenation operator and as the
logical OR operator. Depending on the code page or keyboard for your particular country, ASCII 124
can be shown as a solid vertical bar (|) or a split vertical bar (). The character on the screen might not
match the character engraved on the key. If you receive error 13, Invalid character in program, ON
an instruction including a vertical bar character, make sure this character is ASCII 124.

The Rexx interpreter uses ASCII character 170 for the logical NOT operator. Depending on your
country, the- might not appear on your keyboard. If the character is not available, you can use the
backslash (\) in place of.

1.10.3.7. Special Characters

The following characters, together with the operator characters, have special significance when found
outside of literal strings:

s o C) L 1 -

These characters constitute the set of special characters. They all act as token delimiters, and blanks
adjacent to any of these are removed. There is an exception: a blank adjacent to the outside of a
parenthesis or bracket is deleted only if it is also adjacent to another special character (unless the
character is a parenthesis or bracket and the blank is outside it, too). For example, the language processor
does not remove the blank in (z). This is a concatenation that is not equivalent (o), a function call.

The language processor removes the blankain+ (z) because this is equivalent (@) +(z).

1.10.3.8. Example

The following example shows how a clause is composed of tokens:
"REPEAT" A + 3;

This example is composed of six tokens--a literal strirRggEAT"), a blank operator, a symbal,(which
can have an assigned value), an operatpra second symboB(which is a number and a symbol), and
the clause delimiter;. The blanks between theand the+ and between the and thes are removed.
However, one of the blanks between tiRePEAT" and thea remains as an operator. Thus, this clause is
treated as though written:

"REPEAT" A+3;

1.10.4. Implied Semicolons

The last element in a clause is the semicolon (;) delimiter. The language processor implies the semicolon
at a line end, after certain keywords, and after a colon if it follows a single symbol. This means that you
need to include semicolons only when there is more than one clause on a line or to end an instruction
whose last character is a comma.

15

Chapter 1. Rexx General Concepts

A line end usually marks the end of a clause and, thus, Rexx implies a semicolon at most end of lines.
However, there are the following exceptions:

. The line ends in the middle of a comment. The clause continues on to the next line.

« The last token was the continuation character (a comma) and the line does not end in the middle of a
comment. (Note that a comment is not a token.)

Rexx automatically implies semicolons after colons (when following a single symbol, a label) and after
certain keywords when they are in the correct context. The keywords that have this effect are ELSE,
OTHERWISE, and THEN. These special cases reduce typographical errors significantly.

Note: The two characters forming the comment delimiters, /* and =/, must not be split by a line end
(that is, 7 and = should not appear on different lines) because they could not then be recognized
correctly; an implied semicolon would be added. The two consecutive characters forming a literal
guotation mark within a string are also subject to this line-end ruling.

1.10.5. Continuations

One way to continue a clause on the next line is to use the comma or the minus sign (-), which is referred
to as thecontinuation characterThe continuation character is functionally replaced by a blank, and,

thus, no semicolon is implied. One or more comments can follow the continuation character before the
end of the line.

The following example shows how to use the continuation character to continue a clause:

say "You can use a comma", -- this line is continued
"to continue this clause."

or

say "You can use a minus"- -- this line is continued
"to continue this clause."

1.11. Terms, Expressions, and Operators

16

Expressions in Rexx are a general mechanism for combining one or more pieces of data in various ways
to produce a result, usually different from the original data. All expressions evaluate to objects.

Everything in Rexx is an object. Rexx provides some objects, which are described in later sections. You
can also define and create objects that are useful in particular applications--for example, a menu object
for user interaction. Sedodeling Objectfor more information.

Chapter 1. Rexx General Concepts

1.11.1. Terms and Expressions

Termsare literal strings, symbols, message terms, function calls, or subexpressions interspersed with
zero or more operators that denote operations to be carried out on terms.

Literal strings which are delimited by quotation marks, are constants.

Symbolgno quotation marks) are translated to uppercase. A symbol that does not begin with a digit or a
period can be the name of a variable; in this case the value of that variable is used. A symbol that begins
with a period can identify an object that the current environment provides; in this case, that object is
used. Otherwise a symbol is treated as a constant string. A symbol can alsmpeund

Message termare described iMessage Terms

Function calls(seeFunction3, which are of the following form:

>>-symbolorstring(-—--+-- e e - ><
+-expression-+

Thesymbolorstrings a symbol or literal string.

An expressiorconsists of one or more terms.sibexpressions a term in an expression surrounded
with a left and a right parenthesis.

Evaluation of an expression is left to right, modified by parentheses and operator precedence in the usual
algebraic manner (sdarentheses and Operator Precedetogressions are wholly evaluated, unless
an error occurs during evaluation.

As each term is used in an expression, it is evaluated as appropriate. The result is an object.
Consequently, the result of evaluating any expression is itself an object (such as a character string).

1.11.2. Operators

An operatoris a representation of an operation, such as an addition, to be carried out on one or two

terms. Each operator, except for the prefix operators, acts on two terms, which can be symbols, strings,
function calls, message terms, intermediate results, or subexpressions. Each prefix operator acts on the
term or subexpression that follows it. Blanks (and comments) adjacent to operator characters have no
effect on the operator; thus, operators constructed from more than one character can have embedded
blanks and comments. In addition, one or more blanks, if they occur in expressions but are not adjacent
to another operator, also act as an operator. The language processor functionally translates operators into
message terms. For dyadic operators, which operate on two terms, the language processor sends the
operator as a message to the term on the left, passing the term on the right as an argument. For example,
the sequence

say 1+2
is functionally equivalent to:

say 1~||+u (2)

17

Chapter 1. Rexx General Concepts

18

The blank concatenation operator sends the message " " (a single blank), and the abuttal concatenation
operator sends the "' message (a null string). When-thkaracter is used in an operator, it is changed
to a\. That is, the operators= and \= both send the message \=to the target object.

For an operator that works on a single term (for example, the prefix - and prefix + operators), Rexx sends
a message to the operand, with no arguments. This medrss the same effect as"-".

SeeOperator Methodfor operator methods of the Object class @&aidhmetic Methodsor operator
methods of the String class.

There are four types of operators:

« Concatenation
« Arithmetic
« Comparison

- Logical

1.11.2.1. String Concatenation

The concatenation operators combine two strings to form one string by appending the second string to
the right-hand end of the first string. The concatenation may occur with or without an intervening blank.
The concatenation operators are:

(blank)

Concatenate terms with one blank in between

Concatenate without an intervening blank

(abuttal)
Concatenate without an intervening blank
You can force concatenation without a blank by usingitheperator.

The abuttal operator is assumed between two terms that are not separated by another operator. This can
occur when two terms are syntactically distinct, such as a literal string and a symbol, or when they are
only separated by a comment.

Examples:

An example of syntactically distinct terms isFifed has the valua7 .4, thenFred"%" evaluates ta7 . 4.

If the variablePETER has the value, then (Fred) (Peter) evaluates t@7.41.
The two adjoining strings, one hexadecimal and one literal, 4b"x"LMN" evaluate taJKLMN.

In the case of

Fred/* The NOT operator precedes Peter. */—Peter

Chapter 1. Rexx General Concepts
there is no abuttal operator implied, and the expression is not valid. However,
(Fred)/* The NOT operator precedes Peter. */(—Peter)

results in an abuttal, and evaluatesto4o.

1.11.2.2. Arithmetic

You can combine character strings that are valid numberdNea®er3 using the following arithmetic
operators:

+
Add
Subtract
*
Multiply
/
Divide
%
Integer divide (divide and return the integer part of the result)
1
Remainder (divide and return the remainder--not modulo, because the result can be negative)
*%
Power (raise a number to a whole-number power)
Prefix -
Same as the subtractiom:- number
Prefix +

Same as the addition: + number

SeeNumbers and Arithmetitor details about precision, the format of valid numbers, and the operation
rules for arithmetic. Note that if an arithmetic result is shown in exponential notation, it is likely that
rounding has occurred.

1.11.2.3. Comparison

The comparison operators compare two terms and return the vélthee result of the comparison is
true, oro otherwise.

19

Chapter 1. Rexx General Concepts

20

The strict comparison operators all have one of the characters defining the operator doubted. The

\==, and-== operators test for an exact match between two strings. The two strings must be identical
(character by character) and of the same length to be considered strictly equal. Similarly, the strict
comparison operators such:as or << carry out a simple character-by-character comparison, with

no padding of either of the strings being compared. The comparison of the two strings is from left to
right. If one string is shorter than the other and is a leading substring of another, then it is smaller than
(less than) the other. The strict comparison operators also do not attempt to perform a numeric
comparison on the two operands.

For all other comparison operators, if both terms involved are numeric, a numeric comparison (see
Numeric Comparisonss effected. Otherwise, both terms are treated as character strings, leading and
trailing blanks are ignored, and the shorter string is padded with blanks on the right.

Character comparison and strict comparison operations are both case-sensitive, and the exact collating
order might depend on the character set used for the implementation. In an ASCII environment, such as
Windows and *nix, the ASCII character value of digits is lower than that of the alphabetic characters,
and that of lowercase alphabetic characters is higher than that of uppercase alphabetic characters.

The comparison operators and operations are:

True if the terms are equal (numerically or when padded)

\:, —_=

True if the terms are not equal (inverse of =)

>
Greater than
<
Less than
><
Greater than or less than (same as not equal)
<>
Greater than or less than (same as not equal)
>=
Greater than or equal to
\<, =<
Not less than
<=

Less than or equal to

Chapter 1. Rexx General Concepts

\>, >

Not greater than

True if the terms are not strictly equal (inverse of ==

>>

Strictly greater than

<<
Strictly less than

>>=

Strictly greater than or equal to

\<<, <<

Strictly not less than

<<=

Strictly less than or equal to

\>>, —->>

Strictly not greater than

Note: Throughout the language, the NOT (=) character is synonymous with the backslash(\). You
can use the two characters interchangeably, according to availability and personal preference. The
backslash can appear in the following operators: \ (prefix not),\=, \==, \<, \>, \<<, and \>>.

1.11.2.4. Logical (Boolean)

A character string has the value false if ibisand true if it ist. A logical operator can take at least two
values and return or 1 as appropriate:

&

AND -- returnst if both terms are true.

Inclusive OR -- returns if either term or both terms are true.

21

Chapter 1. Rexx General Concepts

&&

Exclusive OR -- returns if either term, but not both terms, is true.

Prefix \, -

Logical NOT-- negates; become®, ando becomes.

1.11.3. Parentheses and Operator Precedence

Expression evaluation is from left to right; parentheses and operator precedence modify this:

- When parentheses are encountered--other than those that identify the arguments on messages (see
Message Term)sand function calls--the entire subexpression between the parentheses is evaluated
immediately when the term is required.

- When the sequence

terml operatorl term2 operator2 term3

is encountered, ansberator2 has precedence oveperatori, the subexpressiordrm2 operator2
term3) is evaluated first.

Note, however, that individual terms are evaluated from left to right in the expression (that is, as soon
as they are encountered). The precedence rules affect only the oajerafions

For examplex (multiply) has a higher priority than (add), sa+2x5 evaluates ta3 (rather than thes

that would result if a strict left-to-right evaluation occurred). To force the addition to occur before the
multiplication, you could rewrite the expression@s2)*5. Adding the parentheses makes the first three
tokens a subexpression. Similarly, the expresss®2 evaluates t® (instead of-9) because the prefix
minus operator has a higher priority than the power operator.

The order of precedence of the operators is (highest at the top):

+ - \
(prefix operators)

(power)

%1/
(multiply and divide)

(add and subtract)

22

(blank) || (abuttal)

(concatenation with or without blank)

=>K

(comparison operators)

==>><<

\= —=

S< <>

\>—>

\< =<

-_-= ==

\>> —>>

<< <<

>=>>=

<=<<L=

(and)

| &&
(or, exclusive or)

Examples:

Chapter 1. Rexx General Concepts

Suppose the symbalis a variable whose value 35DAY is a variable whose value i®nday, and other

variables are uninitialized. Then:

23

Chapter 1. Rexx General Concepts

A+5 -> "8

A-4x%x2 -> "-g"

A/2 -> "1.5"

0.5%%*2 -> "0.25"

(A+1)>7 -> n"on /* that is, False */
"= -> "y /* that is, True */
LR -> n"on /* that is, False */
nom\==nn - nqn

/* that is, True */

(A+1)*3=12 -> g /* that is, True */
"o77T">"11" -> " /* that is, True */
"oTT" >> "11v -> "o" /* that is, False */
"abc" >> "ab" -> " /* that is, True */
"abc" << "abd" -> mn /* that is, True */
"ab " << "abd" -> " /* that is, True */
Today is Day -> "TODAY IS Monday"

"If it is" day -> "If it is Monday"
Substr(Day,2,3) -> "ond" /* Substr is a function */
"txxxt -> "IXXX"

Note: The Rexx order of precedence usually causes no difficulty because it is the same as in
conventional algebra and other computer languages. There are two differences from common
notations:

« The prefix minus operator always has a higher priority than the power operator.

« Power operators (like other operators) are evaluated from left to right.

For example:

—3%%2 == 9 /% not -9 x/
—(2+41)*%%2 == 9 /x not -9 */
2%xx2x*3 == 64 /* not 256 */

1.11.4. Message Terms

You can includanessageto objects in an expression wherever a term, such as a literal string, is valid. A
message can be sent to an object to perform an action, obtain a result, or both.

A message terraan have one of the following forms:

>>-receiver—-+- 7 --+-messagename-—+----— + - - ->
+- 77 -+ +-:symbol-+
>S——t—— e +- - - ><
+-(——+-- +--) -+

24

Chapter 1. Rexx General Concepts

|V I
+--—expression-+-+

>>-receiver [-—+--——————————me—- +==] == - ><
| -, + |

| v [
+---expression-+-+

Thereceiveris a term (se@erms and Expressiorigr a definition of term). It receives the message. The

~ or ~~ indicates sending a message. ressagenamis a literal string or a symbol that is taken as a
constant. Thexpression (separated by commas) between the parentheses or brackets are the arguments
for the message. Theceiverand the argumer@xpressionsan themselves include message terms. If the
message has no arguments, you can omit the parentheses.

The left parenthesis, if present, must immediately follow a tokeessagenama symbo) with no

blank in between them. Otherwise, only the first part of the construct is recognized as a message term. (A
blank operator would be assumed at that point.) Only a comment (which has no effect) can appear
between a token and the left parenthesis.

You can use any number ekpressionsseparated by commas. Tagpressionare evaluated from left to
right and form the argument during the execution of the routine. Any ARG, PARSE ARG, or USE ARG
instruction or ARG built-in function in the called routine accesses these objects while the called routine
is running. You can omiéxpressiongf appropriate, by including extra commas.

Thereceiveris evaluated, followed by one or moegpressiorarguments. The message name (in
uppercase) and the resulting argument objects are then sent to the receiver object. The receiver object
selects a method to be run based on the message nan@#sses and Inheritance of Methpdsnd

runs the selected method with the specified argument objects. The receiver eventually returns, allowing
processing to continue.

If the message term uses ~, the receiver must return a result object. This object is included in the original
expression as if the entire message term had been replaced by the name of a variable whose value is the
returned object.

For example, the message POS is valid for strings, and you could code:
c="escape"

a="Position of 'e' is:" c"pos("e",3)
/* would set A to "Position of 'e' is: 6" */

If the message term uses ~~, the receiver needs not return a result object. Any result object is discarded,
and the receiver object is included in the original expression in place of the message term.

For example, the messages INHERIT and SUBCLASS are valid for classeBhségass Clagsand,

assuming the existence of the Persistent class, you could code:

account = .object~subclass("Account")~“inherit(.persistent)
/* would set ACCOUNT to the object returned by SUBCLASS, */
/* after sending that object the message INHERIT */

If the message term uses brackets, the message [] is sent to the receiver objestpf€bsioa within
the brackets are available to the receiver object as arguments.) The effect is the same as for the
corresponding ~ form of the message term. Thuds] is the same as " [1" (b).

For example, the message [] is valid for arrays (Bkee Array Claspand you could code:

25

Chapter 1. Rexx General Concepts

a = .array~of (10,20)
say "Second item is" a[2] /* Same as: a~at(2) */
/* or a”"[1"(2) */

/* Produces: "Second item is 20" */

A message can have a variable number of arguments. You need to specify only those required. For
example,"ESCAPE"~POS("E") returnst.

A colon () and symbol can follow the message name. In this case, the symbol must be the name of a
variable (usually the special variable SUPER--see [®&gBER or an environment symbol (see
Environment Symbo}s The resulting value changes the usual method selection. For more information,
seeChanging the Search Order for Methods

1.11.5. Message Sequences

The ~ and ~~ forms of message terms differ only in their treatment of the result object. Usitugns
the result of the method. Using returns the object that received the message. Here is an example:

/* Two ways to use the INSERT method to add items to a list */
/* Using only ~ */

team = .list”of ("Bob","Mary")

team~insert ("Jane")

team~insert ("Joe")

team”insert ("Steve")

say "First on the team is:" team™firstitem /* Bob */
say "Last on the team is:" team™lastitem /* Steve */
/* Do the same thing using ~~ */

team=.list~of ("Bob","Mary")

/* Because ~~ returns the receiver of the message */
/* each INSERT message following returns the list */
/* object (after inserting the argument value). */
team™“insert("Jane") “~insert("Joe") “~insert("Steve")

say "First on the team is:" team"firstitem /* Bob %/
say "Last on the team is:" team™lastitem /* Steve */

Thus, you would use ~ when you want the returned result to incorporate the methods included in each
stage of the message.

1.12. Clauses and Instructions

26

Clauses can be subdivided into the following types:

« Null clauses
- Directives

. Labels

Chapter 1. Rexx General Concepts

« Instructions

« Assignments

- Message instructions
« Keyword instructions

« Commands

1.12.1. Null Clauses

A clause consisting only of blanks, comments, or bothnsihclause It is completely ignored.

Note: A null clause is not an instruction; for example, putting an extra semicolon after the THEN or
ELSE in an IF instruction is not equivalent to using a dummy instruction (as it would be in the C
language). The NOP instruction is provided for this purpose.

1.12.2. Directives

A clause that begins with two colons iglaective Directives are nonexecutable code and can start in
any column. They divide a program into separate executable units (methods and routines) and supply
information about the program or its executable units. Directives perform various functions, such as
associating methods with a particular class (::CLASS directive) or defining a method (::METHOD
directive). Sedirectivesfor more information about directives.

1.12.3. Labels

A clause that consists of a single symbol or string followed by a colordbel The colon in this
context implies a semicolon (clause separator), so no semicolon is required.

The label's name is taken from the string or symbol part of the label. If the label uses a symbol for the
name, the label's name is in uppercase. If a label uses a string, the hame can contain mixed-case
characters.

Labels identify the targets of CALL instructions, SIGNAL instructions, and internal function calls. Label
searches for CALL, SIGNAL, and internal function calls are case-sensitive. Label-search targets
specified as symbols cannot match labels with lowercase characters. Literal-string or computed-label
searches can locate labels with lowercase characters. More than one label can precede an instruction.
Labels are treated as null clauses and can be traced selectively to aid debugging.

Labels can be any number of successive clauses. Several labels can precede other clauses. Duplicate
labels are permitted, but control is only passed to the first of any duplicates in a program. The duplicate
labels occurring later can be traced but cannot be used as a target of a CALL, SIGNAL, or function
invocation.

27

Chapter 1. Rexx General Concepts

28

1.12.4. Instructions

An instructionconsists of one or more clauses describing some course of action for the language
processor to take. Instructions can be assignments, message instructions, keyword instructions, or
commands.

1.12.5. Assignments

A single clause of the forraymbol=expressiors an instruction known as assignmentAn assignment
gives a (new) value to a variable. S&ssignments and Symbols

1.12.6. Message Instructions

A message instructios a single clause in the form of a message term degsage Termr in the
form messagetermexpressionA message is sent to an object, which responds by performing some
action. SeéMessage Instructions

1.12.7. Keyword Instructions

A keyword instructions one or more clauses, the first of which starts with a keyword that identifies the
instruction. Keyword instructions control, for example, the external interfaces and the flow of control.
Some keyword instructions can include nested instructions. In the following example, the DO construct
(DO, the group of instructions that follow it, and its associated END keyword) is considered a single
keyword instruction.

DO
instruction
instruction
instruction

END

A subkeywords a keyword that is reserved within the context of a particular instruction, for example, the
symbols TO and WHILE in the DO instruction.

1.12.8. Commands

A commands a clause consisting of an expression only. The expression is evaluated and the result is
passed as a command string to an external environment.

Chapter 1. Rexx General Concepts

1.13. Assignments and Symbols

A variableis an object whose value can change during the running of a Rexx program. The process of
changing the value of a variable is callaskigninga new value to it. The value of a variable is a single
object. Note that an object can be composed of other objects, such as an array or directory object.

You can assign a new value to a variable with the ARG, PARSE, PULL, or USE instructions, the VALUE
built-in function, or the variable pool interface, but the most common way of changing the value of a
variable is the assignment instruction itself. Any clause in the form

symbotexpression

is taken to be an assignment. The resukxjbressiorbecomes the new value of the variable named by
the symbol to the left of the equal sign.

Example:

/* Next line gives FRED the value "Frederic" x/
Fred="Frederic"

The symbol naming the variable cannot begin with a digi) or a period.

You can use a symbol in an expression even if you have not assigned a value to it, because a symbol has
a defined value at all times. A variable to which you have not assigned a valomisalized Its value

is the characters of the symbol itself, translated to uppercase (that is, lowercaseppercase-z).

However, if it is a compound symbol (described un@empound Symbo)sits value is the derived

name of the symbol.

Example:

/* If Freda has not yet been assigned a value, */
/* then next line gives FRED the value "FREDA" */
Fred=Freda

The meaning of a symbol in Rexx varies according to its context. As a term in an expression, a symbol
belongs to one of the following groups: constant symbols, simple symbols, compound symbols,
environment symbols, and stems. Constant symbols cannot be assigned new values. You can use simple
symbols for variables where the name corresponds to a single value. You can use compound symbols and
stems for more complex collections of variables although the collection classes might be preferable in
many cases. Sekhe Collection Classes

1.13.1. Constant Symbols

A constant symbditarts with a digit§-9) or a period.

You cannot change the value of a constant symbol. It is simply the string consisting of the characters of
the symbol (that is, with any lowercase alphabetic characters translated to uppercase).

These are constant symbols:
77
827.53

.12345
12eb5 /* Same as 12E5 */

29

Chapter 1. Rexx General Concepts

3D
17E-3

Symbols where the first character is a period and the second character is alphabetic are environment
symbols.

1.13.2. Simple Symbols

A simple symbotloes not contain any periods and does not start with a digi. (

By default, its value is the characters of the symbol (that is, translated to uppercase). If the symbol has
been assigned a value, it names a variable and its value is the value of that variable.

These are simple symbols:

FRED

Whatagoodidea? /* Same as WHATAGOODIDEA? */
712

1.13.3. Stems

A stemis a symbol that contains a period as the last character. It cannot start with a digit or a period.

These are stems:

FRED.
A.

By default, the value of a stem is a Stem object. (Bee Stem Clas} The stem variable’s Stem object is
automatically created the first time you use the stem variable or a compound varialii®m(speund

Symbolg containing the stem variable name. The Stem object’s assigned name is the name of the stem
variable (with the characters translated to uppercase). If the stem variable has been assigned a value, or
the Stem object has been given a default value, a reference to the stem variable returns the assigned
default value.

Further, when a stem is the target of an assignment, a new Stem object is created and assigned to the stem
variable. The new value assigned to the stem variable is given to the new Stem object as a default value.
Following the assignment, a reference to any compound symbol with that stem variable returns the new
value until another value is assigned to the stem, the Stem object, or the individual compound variable.

Example:

hole. = "empty"

hole.19 = "full"

say hole.l1 hole.mouse hole.19
/* says "empty empty full" */

Thus, you can give a whole collection of variables the same value.

If the object assigned to a stem variable is already a Stem object, then a new Stem object is not created.
The assignment updates the stem variable to refer to the existing Stem object.

30

Chapter 1. Rexx General Concepts

Example:

hole. "empty"

hole.19 = "full"

say hole.1 hole.mouse hole.19
/* Says "empty empty full" */

hole2. = hole. /* copies reference to hole. stem to hole2. */
say hole2.1 hole2.mouse hole2.19
/* Also says "empty empty full" x*/

You can pass stem collections as function, subroutine, or method arguments.

Example:

/* CALL RANDOMIZE count, stem. calls routine */
Randomize: Use Arg count, stem.
do i =1 to count
stem.i = random(1,100)
end
return

Note: USE ARG must be used to access the stem variable as a collection. PARSE and PARSE ARG
force the stem to be a string value.

Stems can also be returned as function, subroutine, or method results.

Example:

/* RANDOMIZE(count) calls routine */
Randomize: Use Arg count
do i =1 to count
stem.i = random(1,100)
end
return stem.

Note: The value that has been assigned to the whole collection of variables can always be obtained
by using the stem. However, this is not the same as using a compound variable whose derived name
is the null string.

Example:

total. =0

null = ""

total.null = total.null + 5

say total. total.null /* says "0 5" x/

31

Chapter 1. Rexx General Concepts

32

You can use the DROP, EXPOSE, and PROCEDURE instructions to manipulate collections of variables,
referred to by their stemsrOP FRED. assigns a new Stem object to the specified stem. [EéeP))

EXPOSE FRED. andPROCEDURE EXPOSE FRED. expose all possible variables with that stem EZ&®OSE
andPROCEDURE.

The DO instruction can also iterate over all of the values assigned to a stem varialleO $&emore
details.

Notes:

1. When the ARG, PARSE, PULL, or USE instruction, the VALUE built-in function, or the variable
pool interface changes a variable, the effect is identical with an assignment. Wherever a value can be
assigned, using a stem sets an entire collection of variables.

2. Any clause that starts with a symbol and whose second token is (or starts with) an equ&) sgn (
an assignment, rather than an expression (or a keyword instruction). This is not a restriction, because
you can ensure that the clause is processed as a command, such as by putting a null string before the
first name, or by enclosing the first part of the expression in parentheses.

If you unintentionally use a Rexx keyword as the variable name in an assignment, this should not
cause confusion. For example, the following clause is an assignment, not an ADDRESS instruction:

Address="10 Downing Street";

3. You can use the VAR function (s&@AR) to test whether a symbol has been assigned a value. In
addition, you can set SIGNAL ON NOVALUE to trap the use of any uninitialized variables (except
when they are tails in compound variables--s&dNIT -or stems).

1.13.4. Compound Symbols

A compound symbdaontains at least one period and two other characters. It cannot start with a digit or a
period, and if there is only one period it cannot be the last character.

The name begins with a stem (that part of the symbol up to and including the first period) and is followed
by a tail, which are parts of the name (delimited by periods) that are constant symbols, simple symbols,
or null. Note that you cannot use constant symbols with embedded signs (for example, 12.3E+5) after a
stem; in this case the whole symbol would not be valid.

These are compound symbols:

FRED.3
Array.I.J
AMESSY. .0One.2.

Before the symbol is used, that is, at the time of reference, the language processor substitutes in the
compound symbol the character string values of any simple symbols in the, tgibfidone in the

examples), thus generating a new, derived name. The value of a compound symbol is, by default, its
derived name (used exactly as is) or, if it has been used as the target of an assignment, the value of the
variable named by the derived name.

Chapter 1. Rexx General Concepts

The substitution in the symbol permits arbitrary indexing (subscripting) of collections of variables that
have a common stem. Note that the values substituted can camtaiharacters (including periods and
blanks). Substitution is done only once.

More formally, the derived name of a compound variable that is referenced by the symbol

sO0.s1.s2. --- .sn
is given by
do.v1i.v2. -—— .vn

wheredo is the name of the Stem object associated with the stem vagalaedv1 to va are the values

of the constant or simple symbals throughsn. Any of the symbols1 to sn can be null. The valuest

to vn can also be null and can containycharacters. Lowercase characters are not translated to
uppercase, blanks are not removed, and periods have no special significance. There is no limit on the
length of the evaluated name.

Some examples of simple and compound symbols follow in the form of a small extract from a Rexx
program:

a=3 /* assigns "3" to the variable A */
z=4 /* "a4n to Z */
c="Fred" /* "Fred" to C */
a.z="Fred" /* "Fred" to A.4 */
a.fred=5 /* "5" to A.FRED */
a.c="Bill" /* "Bill" to A.Fred */
c.c=a.fred /*x "5" to C.Fred */
y.a.z="Annie" /* "Annie" to Y.3.4 */
say a z c a.a a.z a.c c.a a.fred y.a.4

/* displays the string: */

/* "3 4 Fred A.3 Fred Bill C.3 5 Annie" */

You can use compound symbols to set up arrays and lists of variables in which the subscript is not
necessarily numeric, thus offering a great scope for the creative programmer. A useful application is to
set up an array in which the subscripts are taken from the value of one or more variables, producing a
form of associative memory (content-addressable).

1.13.4.1. Evaluated Compound Variables

The value of a stem variable is always a Stem object {$®eStem Clasfor details). A Stem object is a
type of collection that supports the [] and [][= methods used by other collection classes. The [] provides
an alternate means of accessing compound variables that also allows embedded subexpressions.

Examples:

a=3 /* assigns "3" to the variable A */
z=4 /x4 to Z */
c="Fred" /* "Fred" to C */
a.[z]="Fred" /* "Fred" to A.4 */
a.[z+1]="Rick" /* "Rick" to A.5 */
a.[fred]=5 /* "s" to A.FRED */
a.[c]="Bill" /* "Bill" to A.Fred */

33

Chapter 1. Rexx General Concepts

c.[c]l=a.fred /x "5" to C.Fred */
y.[a,z]="Annie" /* "Annie" to Y.3.4 */
say a z c¢ a.lal a.[z] a.[z+1]

a.[c] c.[a]l a.[fred] y.[a,z]

/* displays the string: */

/* "3 4 Fred A.3 Fred Rick Bill C.3 5 Annie" */

1.13.5. Environment Symbols

An environment symbol starts with a period and has at least one other character. This character must not
be a digit. By default the value of an environment symbol is the string consisting of the characters of the
symbol (translated to uppercase). If the symbol identifies an object in the current environment, its value
is that object.

These are environment symbols:

.method /* Same as .METHOD */
.true

When you use an environment symbol, the language processor performs a series of searches to see if the
environment symbol has an assigned value. The search locations and their ordering are:

1. The directory of classes declared on ::CLASS directives (§46ASS) within the current program
file.

2. The directory of PUBLIC classes declared on ::CLASS directives of other files included with a
::REQUIRES directive.

3. The local environment directory. The local environment includes process-specific objects such as the
INPUT and .OUTPUT objects. You can directly access the local environment directory by using the
.LOCAL environment symbol. (Seehe Local Environment Object (.LOCAL)

4. The global environment directory. The global environment includes all permanent Rexx objects such
as the Rexx supplied classes ((ARRAY and so on) and constants such as .TRUE and .FALSE. You
can directly access the global environment by using the .ENVIRONMENT environment symbol (see
The Environment Objetor the VALUE built-in function (se&ALUE) with a null string for the
selectorargument.

5. Rexx defined symbols. Other simple environment symbols are reserved for use by Rexx built-in
objects. The currently defined built-in objects are .RS and .METHODS.

If an entry is not found for an environment symbol, then the default character string value is used.

Note: You can place entries in both the .LOCAL and the .ENVIRONMENT directories for programs to
use. To avoid conflicts with future Rexx defined entries, it is recommended that the entries that you
place in either directory include at least one period in the entry name.

Example:

34

Chapter 1. Rexx General Concepts

/* establish settings directory */
.local”setentry("MyProgram.settings", .directory new)

1.14. Message Instructions

You can send a message to an object to perform an action, obtain a result, or both. You use a message
instruction if the main purpose of the message is to perform an action. You use a message term (see
Message Termsf the main purpose of the message is to obtain a result.

A message instructiois a clause of the form:

>>-messageterm—-—+----——--—---—-— Fo—y - - - ><
+-=expression-+

If there is only anessageternthe message is sent in exactly the same way as for a message term (see
Message Tern)slf the message yields a result object, it is assigned to the sender’s special variable
RESULT. If you use the ~~ form of message term, the receiver object is used as the result. If there is no
result object, the variable RESULT is dropped (becomes uninitialized).

Example:

mytable~add("John",123)

This sends the message ADD to the object MYTABLE. The ADD method need not return a result. If
ADD returns a result, the result is assigned to the variable RESULT.

The equal sign (=) sets a value=Hxpression follows the message term, a message is sent to the
receiver object with am concatenated to the end of the message name. The result of evaluating the
expression is passed as the first argument of the message.

Example:
person~age = 39 /* Same as person”"AGE="(39) */
table[i] = 5 /* Same as table~"[]="(5,i) =*/

The expressions are evaluated in the order in which the arguments are passed to the method. That is, the
language processor evaluatesthepression first. Then it evaluates the argument expressions within
any [] pairs from left to right.

1.15. Commands to External Environments

Issuing commands to the surrounding environment is an integral part of Rexx.

35

Chapter 1. Rexx General Concepts

36

1.15.1. Environment

The base system for the language processor is assumed to include at least one environment for
processing commands. An environment is selected by default on entry to a Rexx program. You can
change the environment by using the ADDRESS instruction. You can find out the name of the current
environment by using the ADDRESS built-in function. The underlying operating system defines
environments external to the Rexx program. The environments selected depend on the caller. Normally
the default environment is the used shell, mostly "CMD" on Windows systems and "bash" on Linux
systems. If called from an editor that accepts subcommands from the language processor, the default
environment can be that editor.

A Rexx program can issue commands--cabebcommandso other application programs. For

example, a Rexx program written for a text editor can inspect a file being edited, issue subcommands to
make changes, test return codes to check that the subcommands have been processed as expected, and
display messages to the user when appropriate.

An application that uses Rexx as a macro language must register its environment with the Rexx language
processor. See th@pen Object Rexx: Programming Guifte a discussion of this mechanism.

1.15.2. Commands

To send a command to the currently addressed environment, use a clause of the form:
expression;

The expression (which must not be an expression that forms a valid message instructessage
Instruction$ is evaluated, resulting in a character string value (which can be the null string), which is
then prepared as appropriate and submitted to the underlying system. Any part of the expression not to
be evaluated must be enclosed in quotation marks.

The environment then processes the command and returns control to the language processor after setting
a return code. Aeturn codes a string, typically a number, that returns some information about the
command processed. A return code usually indicates if a command was successful but can also represent
other information. The language processor places this return code in the Rexx special variable RC. See
Special Variables

In addition to setting a return code, the underlying system can also indicate to the language processor if
an error or failure occurred. Agrror is a condition raised by a command to which a program that uses
that command can respond. For example, a locate command to an editing system mighttgpettd

string not found as an error. Aailure is a condition raised by a command to which a program that

uses that command cannot respond, for example, a command that is not executable or cannot be found.

Errors and failures in commands can affect Rexx processing if a condition trap for ERROR or FAILURE
is ON (seeConditions and Condition TrapsThey can also cause the command to be tracerhdE E
Or TRACE F iS Set.TRACE Normal iS the same asRACE F and is the default--seERACE.

The .RS environment symbol can also be used to detect command failures and errors. When the
command environment indicates that a command failure has occurred, the Rexx environment symbol .RS
has the value1. When a command error occurs, .RS has a value ifthe command did not have a

FAILURE or ERROR condition, .RS is.

Here is an example of submitting a command. Where the default environment is Windows, the sequence:

Chapter 1. Rexx General Concepts

fname = "CHESHIRE"
exten = "CAT"
"TYPE" fname"."exten

would result in passing the striryPE CHESHIRE.CAT to the command processor. On Windows 95, this is
COMMAND.COM. On Windows NT®, this is CMD.EXE. The simpler expression:

"TYPE CHESHIRE.CAT"

has the same effect.

On return, the return code placed in RC will have the value 0 if the file CHESHIRE.CAT were typed, or a
nonzero value if the file could not be found in the current directory.

Note: Remember that the expression is evaluated before it is passed to the environment. Enclose in
guotation marks any part of the expression that is not to be evaluated.

Windows Example:

delete "x*".lst /* not "multiplied by" */
var.003 = anyvalue

type "var.003" /* not a compound symbol */
W = any

dir"/w" /* not "divided by ANY" */

Linux Example:

rm "*".1st /* not "multiplied by" */
var.003 = anyvalue

cat "var.003" /* not a compound symbol */
w = any

1s "/u" /* not "divided by ANY" x*/

Enclosing an entire message instruction in parentheses causes the message result to be used as a
command. Any clause that is a message instruction is not treated as a command. Thus, for example, the
clause

myfile“linein

causes the returned line to be assigned to the variable RESULT, not to be used as a command to an
external environment.

1.16. Using Rexx on Windows and Unix

Rexx programs can call other Rexx programs as external functions or subroutines weigi the
instruction.

37

Chapter 1. Rexx General Concepts

38

If a program is called with theall instruction, the program runs in the same process as the calling
program. If you call another program by a Rexx command, the program is executed in a new process and
therefore does not share .environment, .local, or the Windows/Unix shell environment.

Examples:

call "other.REX" /* runs in the same process */

"rexx other.REX" /* runs in a new child process */
"start rexx other.REX" /* runs in a new detached process */

When Rexx programs call other Rexx programs as commands, the return code of the command is the exit
value of the called program provided that this value is a whole number in the range -32768 to 32767.
Otherwise, the exit value is ignored and the called program is given a return code of 0.

Chapter 2. Keyword Instructions

A keyword instructions one or more clauses, the first of which starts with a keyword that identifies the
instruction. Some keyword instructions affect the flow of control, while others provide services to the
programmer. Some keyword instructions, like DO, can include nested instructions.

In the syntax diagrams on the following pages, symbols (words) in capitals denote keywords or
subkeywords. Other words, sucheagressiondenote a collection of tokens as defined previously. Note,
however, that the keywords and subkeywords are not case-dependent. The syanblandiF all

have the same effect. Note also that you can usually omit most of the clause delimjter®wn

because the end of a line implies them.

A keyword instruction is recognizeahly if its keyword is the first token in a clause and if the second
token does not start with an equal (=) character (implying an assignment) or a colon (implying a label).
The keywords ELSE, END, OTHERWISE, THEN, and WHEN are treated in the same way. Note that
any clause that starts with a keyword defined by Rexx cannot be a command. Therefore,

arg(fred) rest

is an ARG keyword instruction, not a command that starts with a call to the ARG built-in function. A

syntax error results if the keywords are not in their correct positions in a DO, IF, or SELECT instruction.
The keyword THEN is also recognized in the body of an IF or WHEN clause. In other contexts,

keywords are not reserved and can be used as labels or as the names of variables (though this is generally
not recommended).

Subkeywordare reserved within the clauses of individual instructions. For example, the symbols
VALUE and WITH are subkeywords in the ADDRESS and PARSE instructions, respectively. For
details, see the description of each instruction.

Blanks adjacent to keywords separate the keyword from the subsequent token. One or more blanks
following VALUE are required to separate tegpressiorirom the subkeyword in the example following:

ADDRESS VALUE expression

However, no blank is required after the VALUE subkeyword in the following example, although it would
improve readability:

ADDRESS VALUE"ENVIR"| |number

2.1. ADDRESS

>>-ADDRESS--+ - - ———————————— e e e e ><
+-environment--+------------ +-+

| +-expression-+ |
R +--expressionl------ +
+-VALUE-+

ADDRESS temporarily or permanently changes the destination of commands. Commands are strings
sent to an external environment. You can send commands by specifying clauses consisting of only an
expression or by using the ADDRESS instruction. (8eenmands to External Environments

39

Chapter 2. Keyword Instructions

40

To send a single command to a specified environment, codexdronment a literal string or a single

symbol, which is taken to be a constant, followed byeapressionThe environment name is the name

ofan external procedure or process that can process commandsx¢fraesions evaluated to produce a
character string value, and this string is routed toeth@ironmento be processed as a command.

(Enclose in quotation marks any part of the expression you do not want to be evaluated.) After execution
of the commandenvironments set back to its original state, thus temporarily changing the destination

for a single command. The special variable RC and the environment symbol .RS are set and errors and
failures in commands processed in this way are trapped or traced.

Windows Example:

ADDRESS CMD "DIR C:\CONFIG.SYS"
Linux Example:

ADDRESS "bash" "1ls /usr/1lib"

If you specify onlyenvironmenta lasting change of destination occurs: all commandsGseemand}
that follow are routed to the specified command environment, until the next ADDRESS instruction is
processed. The previously selected environment is saved.

Examples:

Assume that the environment for a Windows text editor is registered by the xrame

address CMD

"DIR C:\AUTOEXEC.BAT"

if rc=0 then "COPY C:\AUTOEXEC.BAT C:*.TMP"
address EDIT

Subsequent commands are passed to the editor until the next ADDRESS instruction.

Similarly, you can use the VALUE form to make a lasting change to the environmentelderession1

which can be a variable name, is evaluated, and the resulting character string value forms the name of the
environment. You can omit the subkeyword VALUEepressiontoes not begin with a literal string or
symbol, that is, if it starts with a special character such as an operator character or parenthesis.

Example:

ADDRESS ("ENVIR"| |number) /* Same as ADDRESS VALUE "ENVIR"||number */

With no arguments, commands are routed back to the environment that was selected before the previous
change of the environment, and the current environment name is saved. After changing the environment,
repeated execution of ADDRESS alone, therefore, switches the command destination between two
environments. Using a null string for the environment name (") is the same as using the default
environment.

The two environment names are automatically saved across internal and external subroutine and function
calls. See the CALL instructiorGALL) for more details.

The address setting is the currently selected environment name. You can retrieve the current address
setting by using the ADDRESS built-in function. (S8BDRESS) The Open Object Rexx:
Programming Guidelescribes the registration of alternative subcommand environments.

Chapter 2. Keyword Instructions

2.2. ARG

>>-ARG-—+--—- === -- -- ><
+-template_list-+

ARG retrieves the argument strings provided to a program, internal routine, or method and assigns them
to variables. It is a short form of the instruction:

>>-PARSE UPPER ARG--+-----------—--- +-—; = - ><
+-template_list-+

Thetemplate_listan be a single template orlist of templates separated by commas. Each template
consists of one or more symbols separated by blanks, patterns, or both.

Unless a subroutine, internal function, or method is processed, the objects passed as parameters to the
program are converted to string values and parsed into variables according to the rules described in
Parsing

If a subroutine, internal function, or method is processed, the data used are the argument objects that the
caller passes to the routine.

The language processor converts the objects to strings and translates the strings to uppercase (that is,
lowercasex-z to uppercase-z) before processing them. Use the PARSE ARG instruction if you do not
want uppercase translation.

You can use the ARG and PARSE ARG instructions repeatedly on the same source objects (typically
with different templates). The source objects do not change. The only restrictions on the length or
content of the data parsed are those the caller imposes.

Example:

/* String passed is "Easy Rider" x*/
Arg adjective noun .

/* Now: ADJECTIVE contains "EASY" */
/% NOUN contains "RIDER" */

If you expect more than one object to be available to the program or routine, you can use a comma in
the parsingemplate_lisso each template is selected in turn.

Example:

/* Function is called by FRED("data X",1,5) */
Fred: Arg string, numl, num2

/* Now: STRING contains "DATA X" */
/* NUM1 contains "1" */
/* NUM2 contains "5" */
Notes:

1. The ARG built-in function can also retrieve or check the argumentsAREe (Argument)

2.The USE ARG instruction (sedSE) is an alternative way of retrieving arguments. USE ARG
performs a direct, one-to-one assignment of argument objects to Rexx variables. You should use this

41

Chapter 2. Keyword Instructions

when your program needs a direct reference to the argument object, without string conversion or
parsing. USE ARG also allows access to both string and non-string argument objects. ARG and
PARSE ARG produce string values from the arguments, and the language processor then parses
these.

2.3. CALL

42

do e +
v I
>>-CALL--+-+-name-—+-—--—+-----—- +—+ - ———t——;==>
| +-(var)-+ +-expression-+ |
+-0FF-—+-ANY-—-—-——-—-——————- o +
| +-ERROR------———------ + |
| +-FATLURE------------~- + |
| +-HALT---------——-—-—- + |
| +-NOTREADY-----------~- + |
| +-USER--usercondition-+
+-0N-—+-ANY--——————————————— Fombo o +-+
+-ERROR-——-——————————- + +-NAME--trapname-+
+-FATLURE------------~- +
+-HALT-----—-—-——-=-—- +
+-NOTREADY------------ +

+-USER--usercondition-+
CALL calls a routine (if you specifpamé or controls the trapping of certain conditions (if you specify
ON or OFF).

To control trapping, you specify OFF or ON and the condition you want to trap. OFF turns off the
specified condition trap. ON turns on the specified condition trap. All information on condition traps is
contained inConditions and Condition Traps

To call a routine, specifpame which must be a literal string or symbol that is taken as a constant. The
userconditioris a single symbol that is taken as a constant. {fffaggnameis a symbol or string taken as a
constant. The routine called can be:

An internal routine
A function or subroutine that is in the same program as the CALL instruction or function call that
calls it.

A built-in routine

A function or subroutine that is defined as part of the Rexx language.

An external routine

A function or subroutine that is neither built-in nor in the same program as the CALL instruction or
function call that calls it.

If nameis a string in which case you specify it in quotation marks, the search for internal routines is
bypassed, and only a built-in function or an external routine is called. Note that the names of built-in

Chapter 2. Keyword Instructions

functions and external routines are in uppercase. Therefore, write the name in the literal string in
uppercase characters.

For Windows, file names can be in uppercase, lowercase, or mixed case. The search for files is
case-insensitive to case. Therefore, when using CALL to run a Rexx subroutine contained on a disk file
(external routine), the case does not matter.

For Unix, file names can be in uppercase, lowercase, or mixed case. The search for files is case-sensitive
to case. Therefore, when using CALL to run a Rexx subroutine contained on a disk file (external

routine), specify the filename that contains lowercase or mixed-case characters in quotes, for example,
"myprogram". Otherwise the filename is translated to uppercase characters and the call fails.

You can also specifyvar), a single variable name enclosed in parentheses. The variable is evaluated
before any of the argument expressions, and the value is the target of the CALL instruction. The
language processor does not translate the variable value into uppercase, so the evaluated name must
exactly match any label name. (Sesbelsfor a description of label names.)

The called routine can optionally return a result. In this case, the CALL instruction is functionally
identical with the clause:

>>-result=name (-—-—+--—-——-—-—---) - - ><
+-expression-+

If the called routine does not return a result, you get an error if you call it as a function.

You can use any nhumber ekpressios, separated by commas. The expressions are evaluated from left
to right and form the arguments during execution of the routine. Any ARG, PARSE ARG, or USE ARG
instruction or ARG built-in function in the called routine accesses these objects while the called routine
is running. You can omit expressions, if appropriate, by including extra commas.

The CALL then branches to the routine calleaime using exactly the same mechanism as function
calls. Sed-unctions The search order is as follows:

Internal routines

These are sequences of instructions inside the same program, starting at the label thatrraatehes

in the CALL instruction. If you specify the routine name in quotation marks, then an internal

routine is not considered for that search order. The RETURN instruction completes the execution of
an internal routine.

Built-in routines

These are routines built into the language processor for providing various functions. They always
return an object that is the result of the routine. (B&& (Argument))

Note: You can call any built-in function as a subroutine. Any result is stored in RESULT. Simply
specify cALL, the function name (with no parenthesis) and any arguments:

call length "string" /* Same as length("string") */
say result /* Produces: 6 */

43

Chapter 2. Keyword Instructions

44

However, if you include a trailing comma, you must include the semicolon to prevent the
interpretation of the last comma as a continuation character.

External routines

Users can write or use routines that are external to the language processor and the calling program.
You can code an external routine in Rexx or in any language that supports the system-dependent
interfaces. If the CALL instruction calls an external routine written in Rexx as a subroutine, you can
retrieve any argument strings with the ARG, PARSE ARG, or USE ARG instructions or the ARG
built-in function.

For more information on the search order, Search Order

During execution of an internal routine, all variables previously known are generally accessible.
However, the PROCEDURE instruction can set up a local variables environment to protect the
subroutine and caller from each other. The EXPOSE option on the PROCEDURE instruction can expose
selected variables to a routine.

Calling an external program as a subroutine is similar to calling an internal routine. The external routine,
however, is an implicit PROCEDURE in that all the caller’s variables are always hidden. The status of
internal values, for example NUMERIC settings, start with their defaults (rather than inheriting those of
the caller). In addition, you can use EXIT to return from the routine.

When control reaches an internal routine but not a built-in function or external routine, the line number
of the CALL instruction is available in the variable SIGL (in the caller’s variable environment). This can
be used as a debug aid because it is possible to find out how control reached a routine. Note that if the
internal routine uses the PROCEDURE instruction, it needs to EXPOSE SIGL to get access to the line
number of the CALL.

After the subroutine processed the RETURN instruction, control returns to the clause following the
original CALL. If the RETURN instruction specified an expression, the variable RESULT is set to the
value of that expression. Otherwise, the variable RESULT is dropped (becomes uninitialized).

An internal routine can include calls to other internal routines, as well as recursive calls to itself.

Example:

/* Recursive subroutine execution... */

arg z

call factorial z

say z"! =" result

exit

factorial: procedure /* Calculate factorial by x/
arg n /* recursive invocation. */

if n=0 then return 1
call factorial n-1
return result * n

During internal subroutine (and function) execution, all important pieces of information are
automatically saved and then restored upon return from the routine. These are:

Chapter 2. Keyword Instructions

« The status of DO loops and other structuresExecuting a SIGNAL within a subroutine is safe
because DO loops and other structures that were active when the subroutine was called are not ended.
However, those currently active within the subroutine are ended.

« Trace action: After a subroutine is debugged, you can insert a TRACE Off at the beginning of it
without affecting the tracing of the caller. If you want to debug a subroutine, you can insert a TRACE
Results at the start and tracing is automatically restored to the conditions at entry (for example, Off)
upon return. Similarly? (interactive debug) is saved across routines.

« NUMERIC settings: The DIGITS, FUZZ, and FORM of arithmetic operations NWMERIC) are
saved and then restored on return. A subroutine can, therefore, set the precision, for example, that it
needs to use without affecting the caller.

« ADDRESS settings: The current and previous destinations for commandsASH2RESS are saved
and then restored on return.

« Condition traps: CALL ON and SIGNAL ON are saved and then restored on return. This means that
CALL ON, CALL OFF, SIGNAL ON, and SIGNAL OFF can be used in a subroutine without
affecting the conditions the caller set up.

- Condition information: This information describes the state and origin of the current trapped
condition. The CONDITION built-in function returns this information. S2E@NDITION.

+ .RSvalue:The value of the .RS environment symbol. (SR&)

- Elapsed-time clocks: A subroutine inherits the elapsed-time clock from its caller (B&E), but
because the time clock is saved across routine calls, a subroutine or internal function can
independently restart and use the clock without affecting its caller. For the same reason, a clock started
within an internal routine is not available to the caller.

+ OPTIONS settings: ETMODE and EXMODE are saved and then restored on return.

2.4. DO

>>-DO-—+-—————————————— +o—t————— - +— - - ->

+-| repetitor |-+ +-| conditional |-+

> +--END----- - - - ><

+---instruction-+-+

repetitor:

| -—+-controll=expri--+----------- e ittt Fo—mm +—+——|
| +-TO--exprt-+ +-BY--exprb-+ +-FOR--exprf-+ |
+-control2--0VER--collection- - - -——+
+-FOREVER- - - —mmm————— o - -+
+-exprr--- - - - - -——+

conditional:

| -—+-WHILE--exprw—+------ -- -- -- -- -

45

Chapter 2. Keyword Instructions
+-UNTIL--expru-+
DO groups instructions and optionally processes them repetitively. During repetitive execution, a control

variable €ontrollor control2) can be stepped through some range of values.

Notes:

1. Theexprr, expri, exprh exprt, andexprf options, if present, are any expressions that evaluate to a
number. Theexprr andexprf options are further restricted to resultin a positive whole number or
zero. If necessary, the numbers are rounded according to the setting of NUMERIC DIGITS.

2. Theexprwor expruoptions, if present, can be any expression that evaluatestto.

3.The TO, BY, and FOR phrases can be in any order, if used, and are evaluated in the order in which
they are written.

4. Theinstructioncan be any instruction, including assignments, commands, message instructions, and
keyword instructions (including any of the more complex constructs such as IF, SELECT, and the
DO instruction itself).

5. The subkeywords WHILE and UNTIL are reserved within a DO instruction in that they cannot be
used as symbols in any of the expressions. Similarly, TO, BY, and FOR cannot be esgdiin
exprt exprh orexprf. FOREVER is also reserved, but only if it immediately follows the keyword
DO and is not followed by an equal sign.

6. Theexprboption defaults ta, if relevant.

7. Thecollectioncan be any expression that evaluates to an object that supports a MAKEARRAY
method. Array and List items return an array with the items in the appropriate order, as do Streams.
Tables, Stems, Directories, etc. are not ordered so the items get placed in the array in no particular
order.

For more information, refer tsing the DO Keyword

2.5. DROP

>>-DROP---—+-name--—+-+--; ——---- -- -- ><
+-(name) -+

DROP "unassigns" variables, that is, restores them to their original uninitialized stadeéfs not
enclosed in parentheses, it identifies a variable you want to drop and must be a symbol that is a valid
variable name, separated from any othemeby one or more blanks or comments.

If parentheses enclose a singkeme then its value is used as a subsidiary list of variables to drop.

Blanks are not necessary inside or outside the parentheses, but you can add them if desired. This
subsidiary list must follow the same rules as the original list, that is, be valid character strings separated
by blanks, except that no parentheses are allowed. The list needs not contain any hames--that is, it can be
empty.

46

Chapter 2. Keyword Instructions

Variables are dropped from left to right. It is not an error to specify a name more than once or to drop a
variable that is not known. If an exposed variable is namedE3d@0SEandPROCEDURE, then the
original variable is dropped.

Example:

j=4

Drop a z.3 z.j

/* Drops the variables: A, Z.3, and Z.4 */
/* so that reference to them returns their names. */

Here, a variable name in parentheses is used as a subsidiary list.
Example:

mylist="c 4 e"

drop (mylist) f

/* Drops the variables C, D, E, and F */
/* Does not drop MYLIST x/

Specifying a stem (that is, a symbol that contains only one period as the last character) assigns the stem
variable to a new, empty stem object.

Example:

Drop =z.
/* Assigns stem variable z. to a new empty stem object */

2.6. EXIT

>>-EXIT--+--—————===== 4oy mmmm e -- -- -- ><
+-expression-+

EXIT leaves a program unconditionally. Optionally, EXIT returns a result object to the caller. The
program is stopped immediately, even if an internal routine is being run. If no internal routine is active,
RETURN (seeRETURN) and EXIT are identical in their effect on the program running.

If you specifyexpressionit is evaluated and the object resulting from the evaluation is passed back to the
caller when the program stops.

Example:

j=3
Exit j*4
/* Would exit with the string "12" */

If you do not specifyexpressionno data is passed back to the caller. If the program was called as an
external function, this is detected as an error--either immediately (if RETURN was used), or on return to
the caller (if EXIT was used).

You can also use EXIT within a method. The method is stopped immediately, and the result object, if
specified, is returned to the sender. If the method has previously issued a REPLY instruction (see
REPLY), the EXIT instruction must not include a result expression.

47

Chapter 2. Keyword Instructions

Notes:

1. If the program was called through a command interface, an attempt is made to convert the returned
value to a return code acceptable by the underlying operating system. The returned string must be a
whole number whose value fits in a 16-bit signed integer (within the range -(2**15) to (2**15-1). If
the conversion fails, no error is raised, and a return code of 0 is returned.

2.If you do not specify EXIT, EXIT is implied but no result string is returned.

2.7. EXPOSE

48

>>-EXPOSE----+-name--—+-+--; -~ -- -- -- ><
+-(name) -+

EXPOSE causes the object variables identifieddmeto be exposed to a method. References to

exposed variables, including assigning and dropping, access variables in the current object’s variable
pool. (An object variable pool is a collection of variables that is associated with an object rather than
with any individual method.) Therefore, the values of existing variables are accessible, and any changes
are persistent even after RETURN or EXIT from the method.

Any changes a method makes to an object variable pool are immediately visible to any other methods
that share the same object variable pool. All other variables that a method uses are local to the method
and are dropped on RETURN or EXIT. If an EXPOSE instruction is included, it must be the first
instruction of the method.

If parentheses enclose a singkeme then, after the variableameis exposed, the character string value

of nameis immediately used as a subsidiary list of variables. Blanks are not necessary inside or outside
the parentheses, but you can add them if desired. This subsidiary list must follow the same rules as the
original list, that is, valid variable names separated by blanks, except that no parentheses are allowed.

Variables are exposed in sequence from left to right. It is not an error to specify a name more than once,
or to specify a name that has not been used as a variable.

Example:

/* Example of exposing object variables */

myobj = .myclass™new

myobj~c

myobj~d /* Would display "Z is: 120" */

::class myclass /* The ::CLASS directive */
/* (see ::CLASS) */

::method ¢ /* The ::METHOD directive */
/* (see ::METHOD) */

expose z

z = 100 /* Would assign 100 to the object variable z */

return

::method d

Chapter 2. Keyword Instructions

expose z

z=2z+20 /* Would add 20 to the same object variable z */
say "Z is:" z

return

You can expose an entire collection of compound variables@segpound Symbo)dy specifying their
stem in the variable list or a subsidiary list. The variables are exposed for all operations.

Example:

expose j k c. d.

/* This exposes "J", "K", and all variables whose */
/* name starts with "C." or "D." */
c.1="7." /* This sets "C.1" in the object */
/* variable pool, even if it did not */
/* previously exist. */

2.8. FORWARD

>>-FORWARD-—+--——-——-——- e - + — -
+-CONTINUE-+ +-ARGUMENTS--expra-—----- +
| -, mmm- + I
| v | |
+-ARRAY-- (----expri-+--)—+

>——t—— - +-—+ - +=—+ ————t———- ><
+-MESSAGE--exprm-+ +-CLASS--exprs-+ +-TO--exprt-+

Note: You can specify the options in any order.

FORWARD forwards the message that caused the currently active method to begin running. The
FORWARD instruction can change parts of the forwarded message, such as the target object, the
message name, the arguments, and the superclass override.

If you specify the TO option, the language processor evaliageto produce a new target object for

the forwarded message. Thgprtis a literal string, constant symbol, or expression enclosed in
parentheses. If you do not specify the TO option, the initial value of the Rexx special variable SELF is
used.

If you specify the ARGUMENTS option, the language processor evaleaf@sto produce an array

object that supplies the set of arguments for the forwarded messagexfitaean be a literal string,
constant symbol, or expression enclosed in parentheses. The ARGUMENTS value must evaluate to a
Rexx array object.

If you specify the ARRAY option, eaclxpriis an expression (use commas to separate the expressions).
The language processor evaluates the expression list to produce a set of arguments for the forwarded
message. It is an error to use both the ARRAY and the ARGUMENTS options on the same FORWARD
instruction.

49

Chapter 2. Keyword Instructions

50

If you specify neither ARGUMENTS nor ARRAY, the language processor does not change the
arguments used to call the method.

If you specify the MESSAGE option, thexprmis a literal string, a constant symbol, or an expression
enclosed in parentheses. If you specify an expression enclosed in parentheses, the language processor
evaluates the expression to obtain its value. The uppercase character string value of the MESSAGE
option is the name of the message that the FORWARD instruction issues.

If you do not specify MESSAGE, FORWARD uses the message name used to call the currently active
method.

If you specify the CLASS option, thexprsis a literal string, a constant symbol, or an expression
enclosed in parentheses. This is the class object used as a superclass specifier on the forwarded message.

If you do not specify CLASS, the message is forwarded without a superclass override.

If you do not specify the CONTINUE option, the language processor immediately exits the current
method before forwarding the message. Results returned from the forwarded message are the return
value from the original message that called the active method (the caller of the method that issued the
FORWARD instruction). Any conditions the forwarded message raises are raised in the calling program
(without raising a condition in the method issuing the FORWARD instruction).

If you specify the CONTINUE option, the current method does not exit and continues with the next
instruction when the forwarded message completes. If the forwarded message returns a result, the
language processor assigns it to the special variable RESULT. If the message does not return a result, the
language processor drops (uninitializes) the variable RESULT.

The FORWARD instruction passes all or part of an existing message invocation to another method. For
example, the FORWARD instruction can forward a message to a different target object, using the same
message hame and arguments.

Example:

::method substr
forward to (self”string) /* Forward to the string value */

You can use FORWARD in an UNKNOWN method to reissue to another object the message that the
UNKNOWN method traps.

Example:

: :method unknown

use arg msg, args

/* Forward to the string value */

/* passing along the arguments */

forward to (self”string) message (msg) arguments (args)

You can use FORWARD in a method to forward a message to a superclass’s methods, passing the same
arguments. This is very common usage in object INIT methods.

Example:

::class savings subclass account

::method init

expose type penalty

forward class (super) continue /* Send to the superclass */

Chapter 2. Keyword Instructions

type = "Savings" /* Now complete initialization */
penalty = "1}, for balance under 500"

In the preceding example, the CONTINUE option causes the FORWARD message to continue with the
next instruction, rather than exiting the Savings class INIT method.

2.9. GUARD

>>=GUARD-=+-0N-—+==—=—=m—mmm e e~ by - -- -- ><
| +-WHEN--expression-+ |
+=0FF——+-————————————————— +—+

+-WHEN--expression-+

GUARD controls a method’s exclusive access to an object.

GUARD ON acquires for an active method exclusive use of its object variable pool. This prevents other
methods that also require exclusive use of the same variable pool from running on the same object. If
another method has already acquired exclusive access, the GUARD instruction causes the issuing
method to wait until the variable pool is available.

GUARD OFF releases exclusive use of the object variable pool. Other methods that require exclusive use
of the same variable pool can begin running.

If you specify WHEN, the method delays running until #agressiorevaluates ta (true). If the
expressiorevaluates to (false), GUARD waits until another method assigns or drops an object variable
(that is, a variable named on an EXPOSE instruction) used in the WeéXpkessionWhen an object
variable changes, GUARD reevaluates the WHE{gressionlf the expressiorevaluates to true, the
method resumes running. If tlepressiorevaluates to false, GUARD resumes waiting.

Example:

::method c
expose y
if y>0 then
return 1
else
return 0
::method d
expose z
guard on when z>0
self~c /* Reevaluated when Z changes */
say "Method D"

If you specify WHEN and the method has exclusive access to the object’s variable pool, then the
exclusive access is released while GUARD is waiting for an object variable to change. Exclusive access
is reacquired before the WHE®kpressions evaluated. Once the WHE®kpressiorevaluates ta

(true), exclusive access is either retained (for GUARD ON WHEN) or released (for GUARD OFF
WHEN), and the method resumes running.

51

Chapter 2. Keyword Instructions

Note: If the condition expression cannot be met, GUARD ON WHEN puts the program in a
continuous wait condition. This can occur in particular when several activities run concurrently. See
Guarded Methods for more information.

2.10. IF

52

>>-IF--expression--+---+--THEN--+---+--instruction-------------- >
+-; -+ +-; -+
D et et +- - - ><
+-ELSE--+---+--instruction-+
+-; -+

IF conditionally processes an instruction or group of instructions depending on the evaluation of the
expressionTheexpressiorns evaluated and must resultéror 1.

The instruction after the THEN is processed only if the result(isue). If you specify an ELSE, the
instruction after ELSE is processed only if the result of the evaluatiorfase).

Example:

if answer="YES" then say "OK!"
else say "Why not?"

Remember that if the ELSE clause is on the same line as the last clause of the THEN part, you need a
semicolon before ELSE.

Example:

if answer="YES" then say "OK!"; else say "Why not?"

ELSE binds to the nearest IF at the same level. You can use the NOP instruction to eliminate errors and
possible confusion when IF constructs are nested, as in the following example.

Example:

If answer = "YES" Then
If name = "FRED" Then
say "OK, Fred."
Else
nop
Else
say "Why not?"

Notes:
1. Theinstructioncan be any assignment, message instruction, command, or keyword instruction,

including any of the more complex constructs such as DO, SELECT, or the IF instruction itself. A
null clause is not an instruction, so putting an extra semicolon (or label) after THEN or ELSE is not

Chapter 2. Keyword Instructions

equivalent to putting a dummy instruction (as it would be in C). The NOP instruction is provided for
this purpose.

2. The symbol THEN cannot be used witherpressionbecause the keyword THEN is treated
differently in that it need not start a clause. This allows the expression on the IF clause to be ended
by THEN, without a semicolon (;) being required.

2.11. INTERPRET

>>-INTERPRET--expression--;----- -- -- -- ><

INTERPRET processes instructions that have been built dynamically by evaleapression

Theexpressions evaluated to produce a character string, and is then processed (interpreted) just as
though the resulting string were a line inserted into the program and bracketed by a DO; and an END;.

Any instructions (including INTERPRET instructions) are allowed, but note that constructions such as
DO...END and SELECT...END must be complete. For example, a string of instructions being interpreted
cannot contain a LEAVE or ITERATE instruction (valid only within a repetitive DO loop) unless it also
contains the whole repetitive DO...END construct.

A semicolon is implied at the end of the expression during execution, if one was not supplied.

Examples:

/* INTERPRET example */

data="FRED"

interpret data "= 4"

/* Builds the string "FRED = 4" and */
/* Processes: FRED = 4; */
/* Thus the variable FRED is set to "4" */

/* Another INTERPRET example */
data="do 3; say "Hello there!"; end"

interpret data /* Displays: */
/* Hello there! */
/* Hello there! */
/* Hello there! */
Notes:

1. Labels within the interpreted string are not permanent and are, therefore, an error.

2. Executing the INTERPRET instruction wittkACE R or TRACE I can be helpful in interpreting the
results you get.

Example:

/* Here is a small Rexx program. */
Trace Int

name="Kitty"

indirect="name"

interpret 'say "Hello"' indirect'"!"'

53

Chapter 2. Keyword Instructions

When this is run, you get the following trace:

C:\>RexxC kitty

3 *—* name='Kitty'
SL> "Kitty"

4 *-*x indirect='name'
>L> "name"

5 x-x interpret 'say "Hello"' indirect'"!"'
>L> "say "Hello""

>V> "name"
>0> "say "Hello" name"
>L> nrgne
>0> "say "Hello" name"!""
- say "Hello" name"!"
>L> "Hello"
>V> "Kitty"
>0> "Hello Kitty"
>L> myn
>0> "Hello Kitty!"
Hello Kitty!
C:\>

Lines 3 and 4 set the variables used in line 5. Execution of line 5 then proceeds in two stages. First
the string to be interpreted is built up, using a literal string, a variahigIgecT), and another literal
string. The resulting pure character string is then interpreted, just as though it were actually part of
the original program. Because it is a new clause, it is traced as such (the seedrate flag under

line 5) and is then processed. Again a literal string is concatenated to the value of a vawat)e (

and another literal, and the final reswé{1o Xitty!) is then displayed.

3. For many purposes, you can use the VALUE function #&eUE) instead of the INTERPRET
instruction. The following line could, therefore, have replaced line 5 in the previous example:

say "Hello" value(indirect)"!"

INTERPRET is usually required only in special cases, such as when two or more statements are to
be interpreted together, or when an expression is to be evaluated dynamically.

4. You cannot use a directive (sBérectiveg within an INTERPRET instruction.

2.12. ITERATE

54

>>-ITERATE-—+---———+-—;-— - - - — ><
+-name-+

ITERATE alters the flow within a repetitive DO loop (that is, any DO construct other than that with a
simple DO).

Execution of the group of instructions stops, and control is passed to the DO instruction just as though
the END clause had been encountered. The control variable, if any, is incremented and tested, as usual,
and the group of instructions is processed again, unless the DO instruction ends the loop.

Chapter 2. Keyword Instructions

Thenameis a symbol, taken as a constantnéfmeis not specified, ITERATE continues with the current
repetitive loop. Ifnameis specified, it must be the name of the control variable of a currently active loop,
which can be the innermost, and this is the loop that is stepped. Any active loops inside the one selected
for iteration are ended (as though by a LEAVE instruction).

Example:

do i=1 to 4
if i=2 then iterate
say 1
end
/* Displays the numbers: "1" "3" "4" x/

Notes:

1. If specified,namemust match the symbol naming the control variable in the DO clause in all
respects except the case. No substitution for compound variables is carried out when the comparison
is made.

2. Aloop is active if it is currently being processed. If a subroutine is called, or an INTERPRET
instruction is processed, during the execution of a loop, the loop becomes inactive until the
subroutine has returned or the INTERPRET instruction has completed. ITERATE cannot be used to
continue with an inactive loop.

3. If more than one active loop uses the same control variable, ITERATE selects the innermost loop.

2.13. LEAVE

>>-LEAVE-—+-—--—- e - - - - ><
+-name-+

LEAVE causes an immediate exit from one or more repetitive DO loops, that is, any DO construct other
than a simple DO.

Processing of the group of instructions is ended, and control is passed to the instruction following the
END clause, just as though the END clause had been encountered and the termination condition had
been met. However, on exit, the control variable, if any, contains the value it had when the LEAVE
instruction was processed.

Thenameis a symbol, taken as a constantnéfmeis not specified, LEAVE ends the innermost active
repetitive loop. Ifnameis specified, it must be the name of the control variable of a currently active loop,
which can be the innermost, and that loop, and any active loops inside it, are then ended. Control then
passes to the clause following the END that matches the DO clause of the selected loop.

Example:

do i=1 to b
say i
if i=3 then leave
end
/* Displays the numbers: "i" "2" "3" x/

55

Chapter 2. Keyword Instructions

Notes:

1. If specified,namemust match the symbol haming the control variable in the DO clause in all
respects except the case. No substitution for compound variables is carried out when the comparison
is made.

2.Aloop is active if it is currently being processed. If a subroutine is called, or an INTERPRET
instruction is processed, during execution of a loop, the loop becomes inactive until the subroutine
has returned or the INTERPRET instruction has completed. LEAVE cannot be used to end an
inactive loop.

3. If more than one active loop uses the same control variable, LEAVE selects the innermost loop.

2.14. NOP

>>-NOP;------ -- -- -- ><

NOP is a dummy instruction that has no effect. It can be useful as the target of a THEN or ELSE clause.

Example:

Select
when a=c then nop /* Do nothing */
when a>c then say "A > C"
otherwise say "A < C"

end

Note: Putting an extra semicolon instead of the NOP would merely insert a null clause, which would
be ignored. The second WHEN clause would be seen as the first instruction expected after the
THEN, and would, therefore, be treated as a syntax error. NOP is a true instruction, however, and is,
therefore, a valid target for the THEN clause.

2.15. NUMERIC

>>-NUMERIC--+-DIGITS-—+----=---—---- +-- ———te—; - ><
| +-expressionl-+ |
| +-SCIENTIFIC------------= +
+-FORM-—+-——- - - —+—+
| +-ENGINEERING-----------— +
| ot +--expression2-+ |
| +-VALUE-+ |
+-FUZZ-—+==—==—————=—— Hmmm o +

+-expression3-+

NUMERIC changes the way in which a program carries out arithmetic operations. The options of this
instruction are described in detail Numbers and Arithmetic

56

Chapter 2. Keyword Instructions

NUMERIC DIGITS

controls the precision to which arithmetic operations and built-in functions are evaluated. If you
omit expressionlthe precision defaults to 9 digits. Otherwise, the character string value result of
expressionInust evaluate to a positive whole number and must be larger than the current
NUMERIC FUZZ setting.

There is no limit to the value for DIGITS (except the amount of storage available), but high
precisions are likely to require a great amount of processing time. It is recommended that you use
the default value whenever possible.

You can retrieve the current NUMERIC DIGITS setting with the DIGITS built-in function. See
DIGITS.

NUMERIC FORM

controls the form of exponential notation for the result of arithmetic operations and built-in
functions. This can be either SCIENTIFIC (in which case only one, nonzero digit appears before the
decimal point) or ENGINEERING (in which case the power of 10 is always a multiple of 3). The
default is SCIENTIFIC. The subkeywords SCIENTIFIC or ENGINEERING set the FORM directly,
or it is taken from the character string result of evaluating the expresskpnessionpthat follows
VALUE. The result in this case must be eitlseIENTIFIC or ENGINEERING. YOu can omit the

subkeyword VALUE ifexpression2loes not begin with a symbol or a literal string, that is, if it

starts with a special character, such as an operator character or parenthesis.

You can retrieve the current NUMERIC FORM setting with the FORM built-in function. See
FORM.

NUMERIC FUZZ

controls how many digits, at full precision, are ignored during a numeric comparison operation.
(SeeNumeric Comparisonslf you omit expressiongthe default is 0 digits. Otherwise, the
character string value result ekpression3nust evaluate to 0 or a positive whole number rounded,
if necessary, according to the current NUMERIC DIGITS setting, and must be smaller than the
current NUMERIC DIGITS setting.

NUMERIC FUZZ temporarily reduces the value of NUMERIC DIGITS by the NUMERIC FUZZ
value during every numeric comparison. The numbers are subtracted under a precision of DIGITS
minus FUZZ digits during the comparison and are then compared with 0.

You can retrieve the current NUMERIC FUZZ setting with the FUZZ built-in function. SdgZ.

Note: The three numeric settings are automatically saved across internal subroutine and function
calls. See the CALL instruction (CALL) for more details.

57

Chapter 2. Keyword Instructions

2.16. PARSE

58

>>-PARSE-—+-—————- ot +o———— - ->
+-UPPER-+ +-CASELESS-+
+-LOWER-+
>==+=ARG-———=-———mm—mmm e e e et ><
+-LINEIN ---+ +-template_list-+
+-PULL-—--———————————————————- +
+-SOURCE-- -+
+-VALUE-—+---—-———-—--—- +--WITH-+
| +-expression-+ |
+-VAR--name -——+
+-VERSION----————————————————- +

Note: You can specify UPPER and CASELESS or LOWER and CASELESS in either order.

PARSE assigns data from various sources to one or more variables according to the rules of parsing. (See
Parsing)

If you specify UPPER or LOWER, any character strings to be parsed are first translated. Otherwise no
translation takes place during the parsing. If you specify UPPER, the strings are translated to uppercase.
If you specify LOWER, the strings are translated to lowercase.

If you specify CASELESS, character string matches during parsing are made independent of the case.
This means a letter in uppercase is equal to the same letter in lowercase.

Thetemplate_listan be a single template or list of templates separated by commas. Each template
consists of one or more symbols separated by blanks, patterns, or both.

Each template is applied to a single source string. Specifying several templates is not a syntax error, but
only the PARSE ARG variant can supply more than one non-null source strinfpe8giag Several
Stringsfor information on parsing several source strings.

If you do not specify a template, no variables are set but the data is prepared for parsing, if necessary.
Thus for PARSE PULL, a data string is removed from the current data queue, for PARSE LINEIN (and
PARSE PULL if the queue is empty), a line is taken from the default input stream, and for PARSE
VALUE, expressioris evaluated. For PARSE VAR, the specified variable is accessed. If it does not have
a value, the NOVALUE condition is raised, if it is enabled.

The following list describes the data for each variant of the PARSE instruction.

PARSE ARG

parses the strings passed to a program or internal routine as input arguments. (See the ARG
instruction inARG for details and examples.)

Note: Parsing uses the argument string values. The USE ARG instruction provides access to string
and non-string argument objects. You can also retrieve or check the argument objects to a Rexx
program or internal routine with the ARG built-in function (see ARG (Argument)).

Chapter 2. Keyword Instructions

PARSE LINEIN

parses the next line of the default input stream. (&pat and Output Streanier a discussion of
Rexx input and output.) PARSE LINEIN is a shorter form of the following instruction:

>>-PARSE VALUE LINEIN(QWITH--+-------------—- ooy ><
+-template_list-+

If no line is available, program execution usually pauses until a line is complete. Use PARSE
LINEIN only when direct access to the character input stream is necessary. Use the PULL or
PARSE PULL instructions for the usual line-by-line dialog with the user to maintain generality.

To check if any lines are available in the default input stream, use the built-in function LINES. See
LINES (Lines RemainingandLINEIN (Line Input).

PARSE PULL

parses the next string of the external data queue. If the external data queue is empty, PARSE PULL
reads a line of the default input stream (the user’s terminal), and the program pauses, if necessary,
until a line is complete. You can add data to the head or tail of the queue by using the PUSH and
QUEUE instructions, respectively. You can find the number of lines currently in the queue with the
QUEUED built-in function. (SeQUEUED.) The queue remains active as long as the language
processor is active. Other programs in the system can alter the queue and use it to communicate
with programs written in Rexx. See also the PULL instructioRWiLL.

Note: PULL and PARSE PULL read the current data queue. If the queue is empty, they read the
default input stream, STDIN (typically, the keyboard).

PARSE SOURCE

parses data describing the source of the program running. The language processor returns a string
that does not change while the program is running.

The source string contains operating system name, followed by eitheinD, FUNCTION, METHOD,

Or SUBROUTINE, depending on whether the program was called as a host command or from a
function call in an expression or as a method of an object or using the CALL instruction. These two
tokens are followed by the complete path specification of the program file.

The string parsed might, therefore, look like this:
Windows95 COMMAND C:\MYDIR\RexxTRY.CMD

or

WindowsNT COMMAND C:\MYDIR\RexxTRY.CMD

or

LINUX COMMAND /opt/orexx/bin/rexxtry.cmd

59

Chapter 2. Keyword Instructions

PARSE VALUE

parses the data, a character string, that is the result of evalejimgssionlIf you specify no
expressionthe null string is used. Note that WITH is a subkeyword in this context and cannot be
used as a symbol withiexpression

Thus, for example:

PARSE VALUE time() WITH hours ":" mins ":" secs

gets the current time and splits it into its constituent parts.

PARSE VAR name

parses the character string value of the variall®e Thenamemust be a symbol that is valid as a
variable name, which means it cannot start with a period or a digit. Note that the varsahés
not changed unless it appears in the template, so that, for example:

PARSE VAR string wordl string

removes the first word frorstring, puts it in the variablevordl, and assigns the remainder back to
string.

PARSE UPPER VAR string wordl string

also translates the data frastring to uppercase before it is parsed.

PARSE VERSION

parses information describing the language level and the date of the language processor. This
information consists of five blank-delimited words:

+ The stringREXX-ooRexx
« The language level description, for exampl@o.

- Three tokens that describe the language processor release date in the same format as the default
for the DATE built-in function (se®ATE), for example, "27 Sep 1997".

2.17. PROCEDURE

60

>>-PROCEDURE--+--- -- -- ——t+-=;- -- -- ><
| o + |
|
+

-EXPOSE----+-name—-——-+-+-+
+-(name) -+

PROCEDURE, within an internal routine (subroutine or function), protects the caller’s variables by
making them unknown to the instructions that follow it. After a RETURN instruction is processed, the
original variables environment is restored and any variables used in the routine (that were not exposed)
are dropped. (An exposed variable is one belonging the caller of a routine that the PROCEDURE
instruction has exposed. When the routine refers to, or alters, the variable, the original (caller’s) copy of

Chapter 2. Keyword Instructions

the variable is used.) An internal routine need not include a PROCEDURE instruction. In this case the
variables it is manipulating are those the caller owns. If the PROCEDURE instruction is used, it must be
the first instruction processed after the CALL or function invocation; that is, it must be the first
instruction following the label.

If you use the EXPOSE option, any variable specified bynitwmeis exposed. Any reference to it

(including setting and dropping) is made to the variables environment the caller owns. Hence, the values
of existing variables are accessible, and any changes are persistent even on RETURN from the routine. If
thenameis not enclosed in parentheses, it identifies a variable you want to expose and must be a symbol
that is a valid variable name, separated from any atlaenewith one or more blanks.

If parentheses enclose a singkeme then, after the variableameis exposed, the character string value

of nameis immediately used as a subsidiary list of variables. Blanks are not necessary inside or outside
the parentheses, but you can add them if desired. This subsidiary list must follow the same rules as the
original list, that is, valid variable names separated by blanks, except that no parentheses are allowed.

Variables are exposed from left to right. It is not an error to specify a name more than once, or to specify
a name that the caller has not used as a variable.

Any variables in the main program that are not exposed are still protected. Therefore, some of the caller’s
variables can be made accessible and can be changed, or new variables can be created. All these changes
are visible to the caller upon RETURN from the routine.

Example:

/* This is the main Rexx program */

j=1; z.1="a"
call toft
say j k m /* Displays "1 7 M" */
exit
/* This is a subroutine */
toft: procedure expose j k z.j
say j k z.j /* Displays "1 K a" */
k=7; m=3 /* Note: M is not exposed x/
return

Note that ifz. J in the EXPOSE list is placed beforethe caller’s value of is not visible, s@. 1 is not
exposed.

The variables in a subsidiary list are also exposed from left to right.

Example:

/* This is the main Rexx program */
j=1;k=6;m=9

a="j km"

call test

exit

/* This is a subroutine */

test: procedure expose (a) /* Exposes A, J, K, and M */
say a j km /* Displays "j km 1 6 9" */
return

61

Chapter 2. Keyword Instructions

You can use subsidiary lists to more easily expose a number of variables at a time or, with the VALUE
built-in function, to manipulate dynamically named variables.

Example:

/* This is the main Rexx program */
c=11; d=12; e=13

Showlist="c 4" /* but not E */

call Playvars

say cd e f /* Displays "11 New 13 9" x/

exit

/* This is a subroutine */

Playvars: procedure expose (showlist) f
say word(showlist,2) /* Displays "d" */
say value(word(showlist,2),"New") /* Displays "12" and sets new value */
say value(word(showlist,2)) /* Displays "New" */
e=8 /* E is not exposed */
£=9 /* F was explicitly exposed */
return

Specifying a stem asameexposes this stem and all possible compound variables whose hames begin
with that stem. (See .)

Example:

/* This is the main Rexx program */
a.=11; i=13; j=15

i=1i+1

C.5 = "FRED"

call lucky7

say a. a.1 i jc. c.b

say "You should see 11 7 14 15 C. FRED"
exit

lucky7:Procedure Expose i j a. c.

/* This exposes I, J, and all variables whose x/
/* names start with A. or C. x/
A.1="7" /* This sets A.1 in the caller's */
/* environment, even if it did not */
/* previously exist. x/
return

Note: Variables can be exposed through several generations of routines if they are included in all
intermediate PROCEDURE instructions.

See the CALL instruction and function descriptionsJALL andFunctionsfor details and examples of
how routines are called.

62

Chapter 2. Keyword Instructions

2.18. PULL

>>-PULL--+-—==———==——mm— el R -- -- -- ><
+-template_list-+

PULL reads a string from the head of the external data queuelii@eeand Output Streanfer a
discussion of Rexx input and output.) It is a short form of the following instruction:

>>-PARSE UPPER PULL--+----——————————— +-=; - - - ><
+-template_list-+

The current head of the queue is read as one string. Withimumplate _lisspecified, no further action is

taken and the string is thus effectively discarded. TEmeplate_listtan be a single template or list of
templates separated by commas, but PULL parses only one source string. Each template consists of one
or more symbols separated by blanks, patterns, or both.

If you specify several comma-separated templates, variables in templates other than the first one are
assigned the null string. The string is translated to uppercase (that is, lowere&seppercase-z) and
then parsed into variables according to the rules describBdrising Use the PARSE PULL instruction

if you do not desire uppercase translation.

Note: If the current data queue is empty, PULL reads from the standard input (typically, the
keyboard). If there is a PULL from the standard input, the program waits for keyboard input with no
prompt. The length of data read by the PULL instruction is restricted to the length of strings
contained by variables.

Example:

Say "Do you want to erase the file? Answer Yes or No:"
Pull answer .
if answer="NO" then say "The file will not be erased."

Here the dummy placeholder, a periad, (s used in the template to isolate the first word the user enters.

If the external data queue is empty, a line is read from the default input stream and the program pauses, if
necessary, until a line is complete. (This is as though PARSE UPPER LINEIN had been processed. See
PARSE LINEIN)

The QUEUED built-in function (se®UEUED) returns the number of lines currently in the external data
queue.

2.19. PUSH

>>-PUSH-—4--—————————- T e ><

>

+-expression-+

PUSH stacks the string resulting from the evaluatiopxgfressiorLIFO (Last In, First Out) into the
external data queue. (Skegut and Output Streanfsr a discussion of Rexx input and output.)

If you do not specifyexpressiona null string is stacked.

63

Chapter 2. Keyword Instructions

Example:
a="Fred"
push /* Puts a null line onto the queue */
push a 2 /* Puts "Fred 2" onto the queue */

The QUEUED built-in function (described QUEUED) returns the number of lines currently in the
external data queue.

2.20. QUEUE

>>-QUEUE-—+-——-——-——-—- e —————————— - ><
+-expression-+

QUEUE appends the string resulting fraxpressiono the tail of the external data queue. That is, it is
added FIFO (First In, First Out). (Séeput and Output Streanfer a discussion of Rexx input and
output.)

If you do not specifyexpressiona null string is queued.

Example:

a="Toft"

queue a 2 /* Enqueues "Toft 2" */

queue /* Enqueues a null line behind the last */

The QUEUED built-in function (described QUEUED) returns the number of lines currently in the
external data queue.

2.21. RAISE

64

>>-RAISE--+-condition------------ e oy ><
+-ERROR--errorcode----- + +-| options |-+
+-FAILURE--failurecode-+
+-SYNTAX--number------- +
+-USER--usercondition--+
+-PROPAGATE------------ +
options:
| ——+-- - B e o >
+-ADDITIONAL--expra------ + +-DESCRIPTION--exprd-+
| ey mmmme +
| v | |

+-| EXIT |--—-——--—- +
>——t—= ———————————— +- - - - -
+-RETURN-—+---———- +—+

+-exprr-+

Chapter 2. Keyword Instructions

EXIT:

| -~EXIT-—+------- +ommm e - e - -

Note: You can specify the options ADDITIONAL, ARRAY, DESCRIPTION, RETURN, and EXIT in
any order. However, if you specify EXIT without expre or RETURN without exprr, it must appear last.

RAISE returns or exits from the currently running routine or method and raises a condition in the caller
(for a routine) or sender (for a method). Seenditions and Condition Trager details of the actions
taken when conditions are raised. The RAISE instruction can raise all conditions that can be trapped.

If you specifycondition it is a single symbol that is taken as a constant.

If the ERROR or FAILURE condition is raised, you must supply the associated return cede@ede

or failurecode respectively. These can be literal strings, constant symbols, or expressions enclosed in
parentheses. If you specify an expression enclosed in parentheses, a subexpression, the language
processor evaluates the expression to obtain its character string value.

If the SYNTAX condition is raised, you must supply the associated Rexx error numbengser This
errornumbercan be either a Rexx major error code or a Rexx detailed error code in thenfonmn The
numbercan be a literal string, a constant symbol, or an expression enclosed in parentheses. If you

specify an expression enclosed in parentheses, the language processor evaluates the expression to obtain
its character string value.

If a USER condition is raised, you must supply the associated user condition narsereandition This
can be a literal string or a symbol that is taken as a constant.

If you specify the ADDITIONAL option, the language processor evaluatgsato produce an object
that supplies additional object information associated with the conditioneXjracan be a literal

string, constant symbol, or expression enclosed in parentheses. The ADDITIONAL entry of the
condition object and thea" option of the CONDITION built-in function return this additional object
information. For SYNTAX conditions, the ADDITIONAL value must evaluate to a Rexx array object.

If you specify the ARRAY option, eacexpriis an expression (use commas to separate the expressions).
The language processor evaluates the expression list to produce an array object that supplies additional
object information associated with the condition. The ADDITIONAL entry of the condition object and
thea" option of the CONDITION built-in function return this additional object information as an array

of values. It is an error to use both the ARRAY option and the ADDITIONAL option on the same RAISE
instruction.

The content obxpraor expriis used as the contents of the secondary error message produced for a
condition

If you specify neither ADDITIONAL nor ARRAY, there is no additional object information associated
with the condition.

If you specify the DESCRIPTION option, trexprdcan be a literal string, a constant symbol, or an
expression enclosed in parentheses. If you specify an expression enclosed in parentheses, the language
processor evaluates the expression to obtain its character string value. This is the description associated
with the condition. The'dD" option of the CONDITION built-in function and the DESCRIPTION entry

of the condition object return this string.

65

Chapter 2. Keyword Instructions

If you do not specify DESCRIPTION, the language processor uses a null string as the descriptive string.

If you specify the RETURN or EXIT option, the language processor evaluates the expregsioar

expre respectively, to produce a result object that is passed back to the caller or sender as if it were a
RETURN or EXIT result. Thexpreor exprris a literal string, constant symbol, or expression enclosed

in parentheses. If you specify an expression enclosed in parentheses, the language processor evaluates
the expression to obtain its character string value. If you do not speqifr or expre no result is passed

back to the caller or sender. In either case, the effect is the same as that of the RETURN or EXIT
instruction (seé&RETURN). Following the return or exit, the appropriate action is taken in the caller or
sender (seéction Taken when a Condition Is Not Trappetf specified, the result value can be obtained
from the RESULT entry of the condition object.

Examples:

raise syntax 40 /* Raises syntax error 40 x/

raise syntax 40.12 array (1, number) /* Raises syntax error 40, subcode 12 x/
/* Passing two substitution values x/

raise syntax (errnum) /* Uses the value of the variable ERRNUM */
/* as the syntax error number x/

raise user badvalue /* Raises user condition BADVALUE */

If you specify PROPAGATE, and there is a currently trapped condition, this condition is raised again in
the caller (for a routine) or sender (for a method). Any ADDITIONAL, DESCRIPTION, ARRAY,
RETURN, or EXIT information specified on the RAISE instruction replaces the corresponding values
for the currently trapped condition. A SYNTAX error occurs if no condition is currently trapped.

Example:

signal on syntax

a = n XyZ n

c = at2 /* Raises the SYNTAX condition */
exit

syntax:

raise propagate /* Propagates SYNTAX information to caller */

2.22. REPLY

66

>>-REPLY-—+-——————-———— R Tt -- -- ><
+-expression-+

REPLY sends an early reply from a method to its caller. The method issuing REPLY returns control, and
possibly a result, to its caller to the point from which the message was sent; meanwhile, the method
issuing REPLY continues running.

If you specifyexpressionit is evaluated and the object resulting from the evaluation is passed back. If
you omitexpressionno object is passed back.

Chapter 2. Keyword Instructions

Unlike RETURN or EXIT, the method issuing REPLY continues to run after the REPLY until it issues an
EXIT or RETURN instruction. The EXIT or RETURN must not specify a result expression.

Example:

reply 42 /* Returns control and a result */
call tidyup /* Can run in parallel with sender */
return

Notes:

1. You can use REPLY only in a method.
2. A method can execute only one REPLY instruction.

3. When the method issuing the REPLY instruction is the only method on the current activity with
exclusive access to the object’s variable pool, the method retains exclusive access on the new
activity. When the other methods on the activity also have access, the method issuing REPLY
releases its access and reacquires the access on the new activity. This might force the method to wait
until the original activity has released its access.

SeeConcurrencyfor a complete description of concurrency.

2.23. RETURN

>>-RETURN--+ oy - - ><
+-expression-+

RETURN returns control, and possibly a result, from a Rexx program, method, or internal routine to the
point of its invocation.

If no internal routine (subroutine or function) is active, RETURN and EXIT are identical in their effect
on the program that is run. (S&XIT.)

If a subroutine is runexpressior{if any) is evaluated, control is passed back to the caller, and the Rexx
special variable RESULT is set to the valuesspressionlf you omit expressionthe special variable
RESULT is dropped (becomes uninitialized). The various settings saved at the time of the CALL (for
example, tracing and addresses) are also restoredCSele.)

If a function is processed, the action taken is identical, excepettaessiomust be specified on the
RETURN instruction. The result @xpressioris then used in the original expression at the point where
the function was called. See the description of functiorisunctionsfor more details.

If a method is processed, the language processor evakiiesssior{if any) and returns control to the
point from which the method’s activating message was sent. If called as a term of an expression,
expressions required. If called as a message instructmxpressions optional and is assigned to the
Rexx special variable RESULT if you specify it. If the method has previously issued a REPLY
instruction, the RETURN instruction must not include a resufiression

If a PROCEDURE instruction was processed within the routine (subroutine or internal function), all
variables of the current generation are dropped (and those of the previous generation are exposed) after
expressiors evaluated and before the result is used or assigned to RESULT.

67

Chapter 2. Keyword Instructions

2.24. SAY

>>-SAY-—+--—- ———t—; -- - - ><
+-expression-+

SAY writes a line to the default output stream, which displays it to the user. However, the output
destination can depend on the implementation.|8pet and Output Streanfer a discussion of Rexx
input and output. The string value of tegpressiomesult is written to the default character output
stream. The resulting string can be of any length. If you @xjressionthe null string is written.

The SAY instruction is a shorter form of the following instruction:

>>-CALL LINEQUT,--+------------ +-—; - - ><
+-expression-+

except that:

« SAY does not affect the special variable RESULT.

- If you use SAY and omiexpressiona null string is used.

« CALL LINEOUT can raise NOTREADY; SAY cannot.
SeeLINEOUT (Line Output)for details of the LINEOUT function.

Example:

data=100
Say data "divided by 4 =>" data/4
/* Displays: "100 divided by 4 => 25" */

Notes:

1. Data from the SAY instruction is sent to the default output stream (STDOUT). However, the
standard rules for redirecting output apply to the SAY output.

2.The SAY instruction does not format data; the operating system and the hardware handle line
wrapping. However, formatting is accomplished, the output data remains a single logical line.

2.25. SELECT

68

>>-SELECT; - - - - ->
+-- - - - - -—+
v [
>----WHEN--expression--+---+--THEN--+---+--instruction--;-+----->
+-; -+ +-; -+
So—t—- -- -- --+--END--;-———---- ><
+-0THERWISE-—-+-——+--+ - - +—+
+-;-+ | + |
| v I
+-—--instruction—--;-+-+

Chapter 2. Keyword Instructions

SELECT conditionally calls one of several alternative instructions.

Eachexpressiorafter a WHEN is evaluated in turn and must resuld ior 1. If the result ist, the
instruction following the associated THEN (which can be a complex instruction such as IF, DO, or
SELECT) is processed and control is then passed to the END. If the regudtdstrol is passed to the
next WHEN clause.

If none of the WHEN expressions evaluated taontrol is passed to the instructions, if any, after
OTHERWISE. In this situation, the absence of an OTHERWISE produces an error, however, you can
omit the instruction list that follows OTHERWISE.

Example:

balance=100
check=50
balance = balance - check
Select
when balance > O then
say "Congratulations! You still have" balance "dollars left."
when balance = 0 then do
say "Warning, Balance is now zero! STOP all spending."
say "You cut it close this month! Hope you do not have any"
say "checks left outstanding."
end
Otherwise
say "You have just overdrawn your account."
say "Your balance now shows" balance "dollars."
say "Oops! Hope the bank does not close your account."
end /* Select *
/

Notes:

1. Theinstructioncan be any assignment, command, message instruction, or keyword instruction,
including any of the more complex constructs, such as DO, IF, or the SELECT instruction itself.

2. A null clause is not an instruction, so putting an extra semicolon (or label) after a THEN clause is
not equivalent to putting a dummy instruction. The NOP instruction is provided for this purpose.

3. The symbol THEN cannot be used withérpressionbecause the keyword THEN is treated
differently in that it need not start a clause. This allows the expression on the WHEN clause to be
ended by the THEN without a semicolon (;).

2.26. SIGNAL

>>-SIGNAL-- - - - ->
>--+-labelname - - ——t-— - ——><
Fotm— +--expression-------------------——————-- +
| +-VALUE-+ I
+-0FF-—+-ANY--—-————————————- Ao +
| +-ERROR----———------—- + I

69

Chapter 2. Keyword Instructions

70

| +-FAILURE-----—————--- + |
| +-HALT---—-————————=—- + I
I +-LOSTDIGITS---------- + I
| +-NOMETHOD----—————--- + |
| +-NOSTRING----—---—--- + I
| +-NOTREADY----—————--- + |
| +-NOVALUE---—-—————-—- + I
| +-SYNTAX------———————- + |
| +-USER--usercondition-+
+-0N--+-ANY--—-———————= e e E e D e B et et +-+
+-ERROR-—--———————————- + +-NAME--trapname—+
+-FAILURE-----———----- +
+-HALT-——-———————————- +
+-LOSTDIGITS---—-—---- +
+-NOMETHOD---————----- +
+-NOSTRING---————----- +
+-NOTREADY----———----- +
+-NOVALUE----—————-—-—- +
+-SYNTAX-----————----- +

+-USER--usercondition-+

SIGNAL causes an unusual change in the flow of control (if you spédaiifginameor VALUE
expressiol or controls the trapping of certain conditions (if you specify ON or OFF).

To control trapping, you specify OFF or ON and the condition you want to trap. OFF turns off the
specified condition trap. ON turns on the specified condition trap. All information on condition traps is
contained inConditions and Condition Traps

To change the flow of control, a label name is derived ftabelnameor taken from the character string

result of evaluating thexpressiorafter VALUE. Thelabelnameyou specify must be a literal string or

symbol that is taken as a constant. If you specify a symbdbtmelnamethe search looks for a label

with uppercase characters. If you specify a literal string, the search uses the literal string directly. You
can locate label names with lowercase letters only if you specify the label as a literal string with the same
case. Similarly, for SIGNAL VALUE, the lettercase labelnamemust match exactly. You can omit the
subkeyword VALUE ifexpressiordoes not begin with a symbol or literal string, that is, if it starts with a
special character, such as an operator character or parenthesis. All active pending DO, IF, SELECT, and
INTERPRET instructions in the current routine are then ended and cannot be resumed. Control is then
passed to the first label in the program that matches the given name, as though the search had started at
the beginning of the program.

Thelabelnameanduserconditiorare single symbols, which are taken as constantstrépaameis a
string or symbol taken as a constant.

Example:

Signal fred; /* Transfer control to label FRED below */

Fred: say "Hi!"

If there are duplicates, control is always passed to the first occurrence of the label in the program.

Chapter 2. Keyword Instructions
When control reaches the specified label, the line number of the SIGNAL instruction is assigned to the

special variable SIGL. This can aid debugging because you can use SIGL to determine the source of a
transfer of control to a label.

2.27. TRACE

>>-TRACE-—+-+ ———t——= - - —+==; = - ><
| +-number-+ |
| +-Normal-------- + |
+-+ s Bt e +—+
| +=————— + | +-All--—————————- +
| v | | +-Commands------ +
+-———= ?-——+-+ +-Error----—----- +
+-Failure------- +

+-Intermediates-+

+-Labels———----- +
+-0ff---—--—--—- +
+-Results———---- +
Or, alternatively:
>>=TRACE-—+=—======——————mm e e - ><
+-string---—---------—--- +
+-symbol---======-==--—- +
+ot-—————— +--expression-+

+-VALUE-+

TRACE controls the tracing action (that is, how much is displayed to the user) during the processing of a
Rexx program. Tracing describes some or all of the clauses in a program, producing descriptions of
clauses as they are processed. TRACE is mainly used for debugging. Its syntax is more concise than that
of other Rexx instructions because TRACE is usually entered manually during interactive debugging.
(This is a form of tracing in which the user can interact with the language processor while the program is
running.)

Note: TRACE cannot be used in the Rexx macrospace. See Trace in Macrospace.

If specified, thenumbermust be a whole number.

Thestring or expressiorevaluates to:

« A numeric option

- One of the valid prefix or alphabetic character (word) options describAtbimabetic Character
(Word) Options

« Null

Thesymbolis taken as a constant and is therefore:

71

Chapter 2. Keyword Instructions

72

« A numeric option

« One of the valid prefix or alphabetic character (word) options describ&tbimabetic Character
(Word) Options

The option that follows TRACE or the character string that is the result of evaluatimgssion
determines the tracing action. You can omit the subkeyword VALUK ifressiordoes not begin with a
symbol or a literal string, that is, if it starts with a special character, such as an operator or parenthesis.

2.27.1. Alphabetic Character (Word) Options

Although you can enter the word in full, only the first capitalized letter is needed; all following
characters are ignored. That is why these are referred to as alphabetic character options.

TRACE actions correspond to the alphabetic character options as follows:

All
Traces (that is, displays) all clauses before execution.

Commands
Traces all commands before execution. If the command results in an error or failure (see
Command} tracing also displays the return code from the command.

Error
Traces any command resulting in an error or failure after executiondsesnandy together with
the return code from the command.

Failure

Traces any command resulting in a failure after execution@eeemandy together with the return
code from the command. This is the same asith&al option.

Intermediates
Traces all clauses before execution. Also traces intermediate results during the evaluation of
expressions and substituted names.

Labels

Traces only labels passed during execution. This is especially useful with debug mode, when the
language processor pauses after each label. It also helps the user to note all internal subroutine calls
and transfers of control because of the SIGNAL instruction.

Normal

Traces any failing command after execution, together with the return code from the command. This
is the default setting.

For the default Windows command processor, an attempt to enter an unknown command raises a
FAILURE condition. The CMD return code for an unknown command is 1. An attempt to enter a
command in an unknown command environment also raises a FAILURE condition; in such a case,
the variable RC is set to 30.

Chapter 2. Keyword Instructions

Off

Traces nothing and resets the special prefix option (described later) to OFF.

Results

Traces all clauses before execution. Displays the final results (in contraStritétinediates
option) of the expression evaluation. Also displays values assigned during PULL, ARG, PARSE,
and USE instructions. This setting is recommended for general debugging.

2.27.2. Prefix Option

The prefix? is valid alone or with one of the alphabetic character options. You can specify the prefix
more than once, if desired. Each occurrence of a prefix on an instruction reverses the action of the
previous prefix. The prefix must immediately precede the option (no intervening blanks).

The prefix? controls interactive debugging. During normal execution, a TRACE option with a prefix of
causes interactive debugging to be switched on. [Bdmigging Aidgor full details of this facility.)

When interactive debugging is on, interpretation pauses after most clauses that are traced. For example,
the instructiorrRACE 7E makes the language processor pause for input after executing any command that
returns an error, that is, a nonzero return code or explicit setting of the error condition by the command
handler.

Any TRACE instructions in the program being traced are ignored to ensure that you are not taken out of
interactive debugging unexpectedly.

You can switch off interactive debugging in several ways:

« EnteringTrACE 0 turns off all tracing.

- EnteringTRACE with no options restores the defaults--it turns off interactive debugging but continues
tracing with TRACE Normal (which traces any failing command after execution).

- EnteringTRACE < turns off interactive debugging and continues tracing with the current option.

- Entering a TRACE instruction with aprefix before the option turns off interactive debugging and
continues tracing with the new option.

Using the? prefix, therefore, switches you in or out of interactive debugging. Because the language
processor ignores any further TRACE statements in your program after you are in interactive debug
mode, us€ALL TRACE "?" to turn off interactive debugging.

2.27.3. Numeric Options

If interactive debugging is active and the option specified is a positive whole number (or an expression
that evaluates to a positive whole number), that number indicates the number of debug pauses to be
skipped. (Se®ebugging Aiddor further information.) However, if the option is a negative whole

number (or an expression that evaluates to a negative whole number), all tracing, including debug pauses,
is temporarily inhibited for the specified number of clauses. For exarmgideE -100 means that the

next 100 clauses that would usually be traced are not displayed. After that, tracing resumes as before.

73

Chapter 2. Keyword Instructions

74

2.27.3.1. Tracing Tips

« When a loop is traced, the DO clause itself is traced on every iteration of the loop.

- You can retrieve the trace actions currently in effect by using the TRACE built-in function (see
TRACE).

« The trace output of commands traced before execution always contains the final value of the
command, that is, the string passed to the environment, and the clause generating it.

- Trace actions are automatically saved across subroutine, function, and method callsl Sefer
more details.

2.27.3.2. Example

One of the most common traces you will use is:

TRACE 7R
/* Interactive debugging is switched on if it was off, */
/* and tracing results of expressions begins. */

2.27.3.3. The Format of Trace Output

Every clause traced appears with automatic formatting (indentation) according to its logical depth of
nesting, for example. Results, if requested, are indented by two extra spaces and are enclosed in double
guotation marks so that leading and trailing blanks are apparent. Any control codes in the data encoding
(ASCII values less than "20"x) are replaced by a question mark (?) to avoid screen interference. Results
other than strings appear in the string representation obtained by sending shemamessage. The

resulting string is enclosed in parentheses. The line number in the program precedes the first clause
traced on any line. All lines displayed during tracing have a three-character prefix to identify the type of
data being traced. These can be:

Identifies the source of a single clause, that is, the data actually in the program.

+++

Identifies a trace message. This can be the nonzero return code from a command, the prompt
message when interactive debugging is entered, an indication of a syntax error when in interactive
debugging.

>>>

Identifies the result of an expression (f®ACE R) or the value assigned to a variable during
parsing, the value returned from a subroutine call, or a value evaluated by execution of a DO loop.

Identifies the value assigned to a placeholder during parsing{ee@eriod as a Placeholjler

The following prefixes are used onlyTRACE Intermediates is in effect:

Chapter 2. Keyword Instructions

>C>

The data traced is the name of a compound variable, after the name has been replaced by the value
of the variable but before the variable is used. If no value was assigned to the variable, the trace
shows the variable in uppercase characters.

>SF>

The data traced is the result of a function call.

>L>

The data traced is a literal (string, uninitialized variable, or constant symbol).

>M>

The data traced is the result of a message.

>0>

The data traced is the result of an operation on two terms.

>P>

The data traced is the result of a prefix operation.

>U>
The data traced is the contents of a variable.

If no option is specified on a TRACE instruction, or if the result of evaluating the expression is null, the
default tracing actions are restored. The defaults are TRACE N and interactive debuggifig (

Following a syntax error that SIGNAL ON SYNTAX does not trap, the clause in error is always traced.

2.28. USE

>>-USE--ARG---—+--—--— tmbmmmmm e - - ><
+-name-+

USE ARG retrieves the argument objects provided in a program, routine, function, or method and
assigns them to variables.

Eachnamemust be a valid variable name. Thames are assigned from left to right. For eawdmeyou
specify, the language processor assigns it a corresponding argument from the program, routine, function,
or method call. If there is no corresponding argumaatneis dropped.

A USE ARG instruction can be processed repeatedly and it always accesses the same current argument
data.

Example:

75

Chapter 2. Keyword Instructions

76

/* USE Example */
/* FRED("Ogof X",1,5) calls function */
Fred: use arg string, numl, num2

/* Now: STRING contains "Ogof X" */
/* NUM1 contains "1" */
/* NUM2 contains "5" */

/* Another example, shows how to pass non-string arguments with USE ARG */
/* Pass a stem and an array to a routine to modify one element of each */

stem.1 = "Value"

array = .array of ("Item")

say "Before subroutine:" stem.l array[1] /* Shows "Value Item" */
Call Change_First stem. , array

say "After subroutine:" stem.l array[1] /* Shows "NewValue NewItem" */
Exit

Change_First: Procedure
Use Arg substem., subarray

substem.1 = "NewValue"
subarray[1] = "NewItem"
Return

You can retrieve or check the arguments by using the ARG built-in functionAB&: (Argument). The

ARG and PARSE ARG instructions are alternative ways of retrieving arguments. ARG and PARSE ARG
access the string values of arguments. USE ARG performs a direct, one-to-one assignment of arguments
to Rexx variables. This is preferable when you need an exact copy of the argument, without translation or
parsing. USE ARG also allows access to both string and non-string argument objects; ARG and PARSE
ARG parse the string values of the arguments.

Chapter 3. Directives

A Rexx program contains one or more executable code uiitsctive instructionseparate these
executable units. A directive begins with a double colon (::) and is a nonexecutable instruction. For
example, it cannot appear in a string for the INTERPRET instruction to be interpreted. The first directive
instruction in a program marks the end of the main executable section of the program.

For a program containing directives, all directives are processed first to set up the program’s classes,
methods, and routines. Then any program code in the main code unit (preceding the first directive) is
processed. This code can use any classes, methods, and routines that the directives established.

3.1. ::CLASS

>>-::CLASS--classname--+- - - e - -—=>
+-METACLASS--metaclass-+

.—SUBCLASS--0bject---.

P et sttt ot m B et e +-—;-><
+-MIXINCLASS--mclass-+ +-PUBLIC-+ +-INHERIT--iclasses-+
+-SUBCLASS--sclass—---+

Notes:

1. You can specify the options EXTERNAL, METACLASS, MIXINCLASS, SUBCLASS, and
PUBLIC in any order.

2. If you specify INHERIT, it must be the last option.

The ::CLASS directive creates a Rexx class nagladsnameTheclassnamés a literal string or symbol
that is taken as a constant. The created class is available to programs through the Rexx environment
symbol classnameTheclassnamacquires all methods defined by subsequent ::METHOD directives
until the end of the program or another ::CLASS directive is found. Only null clauses (comments or
blank lines) can appear between a ::CLASS directive and any following directive instruction or the end
of the program. Only one ::CLASS directive can appearxcfassnamén a program.

If you specify the EXTERNAL option, the class is created using information derived from an external
source namedxtnameTheextnamas a literal string.

If you specify the METACLASS option, the instance methods ofrtietaclasslass become class

methods of thelassnamelass. (Se®bjects and ClassesThemetaclasandclassnamare literal

strings or symbols that are taken as constants. In the search order for methods, the metaclass methods
precede inherited class methods and follow any class methods defined by ::METHOD directives with the
CLASS option.

If you specify the PUBLIC option, the class is visible beyond its containing Rexx program to any other
program that references this program with a ::REQUIRES directive.:(REQUIRES) If you do not
specify the PUBLIC option, the class is visible only within its containing Rexx program. All public
classes defined within a program are used before PUBLIC classes created with the same name.

If you specify the SUBCLASS option, the class becomes a subclass of thesclassfor inheritance of
instance and class methods. T™uasss a literal string or symbol that is taken as a constant.

77

Chapter 3. Directives

If you specify the MIXINCLASS option, the class becomes a subclass of therolelassfor inheritance

of instance and class methods. You can add the new class instance and class methods to existing classes
by using the INHERIT option on a ::CLASS directive or by sending an INHERIT message to an existing
class. If you specify neither the SUBCLASS nor the MIXINCLASS option, the class becomes a

non-mixin subclass of the Object class.

If you specify the INHERIT option, the class inherits instance methods and class methods from the
classesclassesn their order of appearance (leftmost first). This is equivalent to sending a series of
INHERIT messages to the class object, with each INHERIT message (except the first) specifying the
preceding class iitlassesas theclassposargument. (SeENHERIT .) As with the INHERIT message,
each of the classes iolassesamust be a mixin class. Thelasseds a blank-separated list of literal

strings or symbols that are taken as constants. If you omit the INHERIT option, the class inherits only
from sclass

Example:

::class rectangle

: :method area /* defined for the RECTANGLE class */
expose width height

return width¥height

::class triangle

: :method area /* defined for the TRIANGLE class */
expose width height

return width*height/2

The ::CLASS directives in a program are processed in the order in which they appear. If a ::CLASS
directive has a dependency on ::CLASS directives that appear later in the program, processing of the
directive is deferred until all of the class’s dependencies have been processed.

Example:

::class savings subclass account /* requires the ACCOUNT class */
::method type
return "a Savings Account"

::class account
::method type
return "an Account"

The Savings class in the preceding example is not created until the Account class that appears later in the
program has been created.

Note: If you specify the same ::CLASS classname more than once in different programs, the last one
is used. Using more than one ::CLASS classname in the same program produces an error.

3.2. :METHOD

>>-::METHOD--methodname--+------- e ittt ittt +-- - ->

78

Chapter 3. Directives

+-CLASS-+ +-ATTRIBUTE-+

Somtmmmmm e B e e e e et e ><
+-PRIVATE-+ +-GUARDED---+ +-PROTECTED-+
+-UNGUARDED-+

Note: You can specify all options in any order.

The ::METHOD directive creates a method object and defines the method attributes.

A ::METHOD directive starts a method, which is ended by another directive or the end of the program.
The ::METHOD is not included in the method source.

Themethodnames a literal string or a symbol that is taken as a constant. The method is defined as
methodnamen the class specified in the most recent ::CLASS directive. Only one ::METHOD directive
can appear for anjmethodnamén a class.

A ::CLASS directive is not required before a ::METHOD directive. If no ::CLASS directive precedes
::METHOD, the method is not associated with a class but is accessible to the main (executable) part of a
program through the .METHODS built-in object. Only one ::METHOD directive can appear for any
method name not associated with a class..BEETHODSfor more details.

If you specify the CLASS option, the method is a class method (8gects and Classe$he method is
associated with the class specified on the most recent ::CLASS directive. The ::CLASS directive is
required in this case.

If you specify the PRIVATE option, the method is a private method. (Only a message the same object
sends can activate the method.) If you omit the PRIVATE option, the method is a public method that any
sender can activate.

If you specify the UNGUARDED option, the method can be called while other methods are active on
the same object. If you do not specify UNGUARDED, the method requires exclusive use of the object
variable pool; it can run only if no other method that requires exclusive use of the object variable pool is
active on the same object.

If you specify the ATTRIBUTE option, in addition to having a method createshethhodnamen the
class specified in the most recent ::CLASS directive, another method is also automatically created in that
same class awethodname=

For example, the directive

::method name attribute

creates two methods, NAME and NAME=. The NAME and NAME= methods are equivalent to the
following code sequences:

: :method "NAME="
expose name
use arg name

: :method name

expose name
return name

79

Chapter 3. Directives

If you specify the PROTECTED option, the method is a protected method.T{8e8ecurity Manager
for more information.) If you omit the PROTECTED option, the method is not protected.

If you specify ATTRIBUTE, another directive (or the end of the program) must follow the ::METHOD
directive.

Example:

r = .rectangle new(20,10)
say "Area is" r~area /* Produces "Area is 200" */

::class rectangle

::method area
expose width height
return widthxheight

::method init
expose width height
use arg width, height

::method perimeter
expose width height
return (width+height)*2

Note: Itis an error to specify ::METHOD more than once within the same class and use the same
methodname.

3.3. :REQUIRES

80

>>-::REQUIRES--"programname"--;- -= -= -= ><

The ::REQUIRES directive specifies that the program requires access to the classes and objects of the
Rexx progranprogramnameAll public classes and routines defined in the named program are made
available to the executing program. Tii@gramnameas a literal string or a symbol that is taken as a
constant. The string or symbptogramnamean be any string or symbol that is valid as the target of a
CALL instruction. The programprogramnames called as an external routine with no arguments. The
main program code, which precedes the first directive instruction, is run.

Any ::REQUIRES directive must precede all ::CLASS, ::METHOD, and ::ROUTINE directives. The
order of ::REQUIRES directives determines the search order for classes and routines defined in the
named programs.

The following example illustrates that two programs, ProgramA and ProgramB, can both access classes
and routines that another program, ProgramC, contains. (The code at the beginning of ProgramC runs.)

Chapter 3. Directives

" Programb i " Programb 5.
“REQUIRES ProgramG’ “REQUIRES 'Programs’
" Program(C k.

The language processor uses local routine definitions within a program in preference to routines of the
same name accessed through ::REQUIRES directives. Local class definitions within a program override
classes of the same name in other programs accessed through ::REQUIRES directives.

Another directive, or the end of the program, must follow a ::REQUIRES directive. Only null clauses can
appear between them.

3.4. :ROUTINE

>>-::ROUTINE--routinename-—+-------- it ittt ><
+-PUBLIC-+

The ::ROUTINE directive creates named routines within a programrditenenames a literal string or
a symbol that is taken as a constant. Only one ::ROUTINE directive can appear faudimgnamen a
program.

A ::ROUTINE directive starts a routine, which is ended by another directive or the end of the program.

If you specify the PUBLIC option, the routine is visible beyond its containing Rexx program to any other
program that references this program with a ::REQUIRES directive. If you do not specify the PUBLIC
option, the routine is visible only within its containing Rexx program.

Routines you define with the ::ROUTINE directive behave like external routines. In the search order for
routines, they follow internal routines and built-in functions but precede all other external routines.

Example:
::class ¢
::method a

call r "A" /x displays "In method A" */

::method b
call r "B" /* displays "In method B" */

81

Chapter 3. Directives

::routine r
use arg name
say "In method" name

Notes:

1.1tis an error to specify ::ROUTINE with the same routine name more than once in the same
program. It is not an error to have a local ::ROUTINE with the same name as another ::ROUTINE in
another program that the ::REQUIRES directive accesses. The language processor uses the local
:"ROUTINE definition in this case.

2. Calling an external Rexx program as a function is similar to calling an internal routine. For an
external routine, however, the caller’s variables are hidden and the internal values (NUMERIC
settings, for example) start with their defaults.

Note: If you specify the same ::ROUTINE routinename more than once in different programs, the last
one is used. Using more than one ::ROUTINE routinename in the same program produces an error.

82

Chapter 4. Objects and Classes

This chapter provides an overview of the Rexx class structure.

A Rexx object consists of object methods and object variables. Sending a message to an object causes
the object to perform some action; a method whose hame matches the message name defines the action
that is performed. Only an object’s methods can access the object variables belonging to an object.
EXPOSE instructions within an object’s methods specify object variables. Any variables not exposed are
dropped on return from a method.

You can create an object by sending a message to a class object. An object created from a class is an
instanceof that class. Classes define the methods and method names for their instances. The methods a
class defines for its instances are calleditis#ance methodef that class. These are the object methods

for the instances. Classes can also deflass methodswvhich are a class’s own object methods.

Note: When referring to object methods (for objects other than classes) or instance methods (for
classes), this book uses the term methods when the meaning is clear from the context. When
referring to object methods and class methods of classes, this book uses the qualified terms to avoid
possible confusion.

4.1. Types of Classes

There are three kinds of classes:

« Object classes
« Mixin classes
- Abstract classes

The following sections explain these.

4.1.1. Object Classes

An object classs like a factory for producing objects. An object class creates objects (instances) and
provides methods that these objects can use. An object acquires the instance methods of the class to
which it belongs at the time of its creation. If a class gains additional methods, objects created before the
definition of these methods do not acquire these methods.

Because the object methods also define the object variables, object classes are factories for creating Rexx
objects. The Array class (s&&e Array Claskis an example of an object class.

4.1.2. Mixin Classes

Classes can inherit from more than the single superclass from which they were created. This is called
multiple inheritanceClasses designed to add a set of instance and class methods to other classes are
calledmixin classesor simply mixins.

83

Chapter 4. Objects and Classes

84

You can add mixin methods to an existing class by sending an INHERIT message or using the INHERIT
option on the ::CLASS directive. (S&drectives) In either case, the class to be inherited must be a

mixin. During both class creation and multiple inheritance, subclasses inherit both class and instance
methods from their superclasses.

Mixins are always associated wittbase classwhich is the mixin’s first non-mixin superclass. Any
subclass of the mixin's base class can (directly or indirectly) inherit a mixin; other classes cannot.

To create a new mixin class, you send a MIXINCLASS message to an existing class or use the ::CLASS
directive with the MIXINCLASS option. A mixin class is also an object class and can create instances of
the class.

4.1.3. Abstract Classes

Abstract classeprovide definitions for instance methods and class methods but are not intended to
create instances. Abstract classes often define the message interfaces that subclasses should implement.

You create an abstract class like object or mixin classes. No extra messages or keywords on the ::CLASS
directive are necessary. Rexx does not prevent users from creating instances of abstract classes.

4.1.3.1. Metaclasses

A metaclasss a class you can use to create another class. The only metaclass that Rexx provides is
.class, the Class class. The Class class is the metaclass of all the classes Rexx provides. This means that
instances of .class are themselves classes. The Class class is like a factory for producing the factories that
produce objects.

To change the behavior of an object that is an instance, you generally use subclassing. For example, you
can create Statarray, a subclass of the Array classl{seérray Clasy The Statarray class can include
a method for computing a total of all the numeric elements of an array.

/* Creating an array subclass for statistics */
::class statarray subclass array public

::method init /* Initialize running total and forward to superclass */
expose total

total = 0

/* INIT describes the INIT method. */

forward class (super)

: :method put /* Modify to increment running total */

expose total

use arg value

total = total + value /* Should verify that value is numeric!!! */
forward class (super)

::method "[]=" /* Modify to increment running total */
forward message "PUT"

::method remove /* Modify to decrement running total */

Chapter 4. Objects and Classes

expose total

use arg index

forward message "AT" continue
total = total - result
forward class (super)

::method average /* Return the average of the array elements */
expose total
return total / self”items

::method total /* Return the running total of the array elements */
expose total
return total

You can use this method on the individual arragtancesso it is aninstance methad

However, if you want to change the behavior of the factory producing the arrays, you need a new class
method. One way to do this is to use the ::METHOD directive with the CLASS option. Another way to
add aclassmethod is to create a new metaclass that changes the behavior of the Statarray class. A new
metaclass is a subclass of .class.

You can use a metaclass by specifying it in a SUBCLASS or MIXINCLASS message or on a ::CLASS
directive with the METACLASS option.

If you are adding a highly specialized class method useful only for a particular class, use the ::METHOD
directive with the CLASS option. However, if you are adding a class method that would be useful for
many classes, such as an instance counter that counts how many instances a class creates, you use a
metaclass.

The following examples add a class method that keeps a running total of instances created. The first
version uses the ::METHOD directive with the CLASS option. The second version uses a metaclass.

Version 1

/* Adding a class method using ::METHOD */

a = .point~new(1,1) /* Create some point instances */
say "Created point instance" a
b = .point~new(2,2)
say "Created point instance" b
c = .point~new(3,3)
say "Created point instance" c
/* Ask the point class how many */
/* instances it has created x/
say "The point class has created" .point~instances "instances."

::class point public /* Create Point class */

::method init class
expose instanceCount
instanceCount = 0 /* Initialize instanceCount */
forward class (super) /* Forward INIT to superclass */

85

Chapter 4. Objects and Classes

::method new class

expose instanceCount /* Creating a new instance */
instanceCount = instanceCount + 1 /% Bump the count */
forward class (super) /* Forward NEW to superclass */

::method instances class
expose instanceCount /* Return the instance count */
return instanceCount

::method init
expose xVal yVal /* Set object variables */
use arg xVal, yVal /* as passed on NEW */

::method string

expose xVal yVal /* Use object variables */
return "("xVal","yVal")" /* to return string value */
Version 2

/* Adding a class method using a metaclass */

a = .point~new(1,1) /* Create some point instances */

say "Created point instance" a

b = .point~new(2,2)

say "Created point instance" b

c = .point~new(3,3)

say "Created point instance" c
/* Ask the point class how many */
/* instances it has created x/

say "The point class has created" .point~instances "instances."

::class InstanceCounter subclass class /* Create a new metaclass that */

/* will count its instances */
::method init
expose instanceCount
instanceCount = 0 /* Initialize instanceCount */
forward class (super) /* Forward INIT to superclass */
::method new
expose instanceCount /* Creating a new instance x/
instanceCount = instanceCount + 1 /* Bump the count */
forward class (super) /* Forward NEW to superclass x/
::method instances
expose instanceCount /* Return the instance count x/

return instanceCount

::class point public metaclass InstanceCounter /* Create Point class */
/* using InstanceCounter metaclass */
::method init

86

Chapter 4. Objects and Classes

expose xVal yVal /* Set object variables */
use arg xVal, yVal /* as passed on NEW x/

::method string
expose xVal yVal /* Use object variables x/
return "("xVal","yVal")" /* to return string value */

4.1.3.2. Creating Classes and Methods
You can define a class using either directives or messages.

To define a class using directives, you place a ::CLASS directive at the end of your source program:

::class "Account"

This creates an Account class that is a subclass of the Object clas§h&édbject Clasfor a
description of the Object class.) The string "Account" is a string identifier for the new class.

Now you can use ::METHOD directives to add methods to your new class. The ::METHOD directives
must immediately follow the ::CLASS directive that creates the class.

::method type
return "an account"

::method "name="
expose name
use arg name

: :method name
expose name
return name

This adds the methods TYPE, NAME, and NAME= to the Account class.

You can create a subclass of the Account class and define a method for it:

::class "Savings" subclass account
::method type
return "a savings account"

Now you can create an instance of the Savings class with the NEW methddEséeand send TYPE,
NAME, and NAME= messages to that instance:

asav = .savings new
say asav type
asav name = "John Smith"

The Account class methods NAME and NAME= create a pair of access methods to the account object
variable NAME. The following directive sequence creates the NAME and NAME= methods:

::method "name="

exXpose name
use arg name

87

Chapter 4. Objects and Classes

88

: :method name
expose name
return name

You can replace this with a single ::METHOD directive with the ATTRIBUTE option. For example, the
directive

::method name attribute

adds two methods, NAME and NAME-= to a class. These methods perform the same function as the
NAME and NAME= methods in the original example. The NAME method returns the current value of
the object variable NAME; the NAME= method assigns a new value to the object variable NAME.

4.1.3.3. Using Classes

When you create a new class, it is always a subclass of an existing class. You can create new classes with
the ::CLASS directive or by sending the SUBCLASS or MIXINCLASS message to an existing class. If

you specify neither the SUBCLASS nor the MIXINCLASS option on the ::CLASS directive, the

superclass for the new class is the Object class, and it is not a mixin class.

Example of creating a new class using a message:

persistence = .object"mixinclass("Persistence")
myarray=.array subclass("myarray")~~inherit(persistence)

Example of creating a new class using the directive:

::class persistence mixinclass object
::class myarray subclass array inherit persistence

4.1.3.4. Scope

A scopes the methods and object variables defined in a single class. Only methods defined in a

particular scope can access object variables within that scope. This means that object variables in a
subclass can have the same names as object variables in a superclass, because the object variables are at
different scopes.

4.1.3.5. Defining Instance Methods with SETMETHOD or ENHANCED

In Rexx, methods are usually associated with instances using classes, but it is also possible to add
methods directly to an instance using the SETMETHOD @E&METHOD or ENHANCED (see
ENHANCED) method.

All subclasses of the Object class inherit SETMETHOD. You can use SETMETHOD to create one-off
objects, objects that must be absolutely unique so that a class that is capable of creating other instances is
not necessary. The Class class also provides an ENHANCED method that lets you create new instances
of a class with additional methods. The methods and the object variables defined on an object with
SETMETHOD or ENHANCED form a separate scope, like the scopes the class hierarchy defines.

Chapter 4. Objects and Classes

4.1.3.6. Method Names

A method name can be any string. When an object receives a message, the language processor searches
for a method whose name matches the message name in uppercase.

Note: The language processor also translates the specified name of all methods added to objects
into uppercase characters.

You must surround a method name with quotation marks when it contains characters that are not allowed
in a symbol (for example, the operator characters). The following example creates a new class (the Cost
class), defines a new method (%), creates an instance of the Cost class (mycost), and sesssage
tomycost:

cost=.object”subclass("A cost")
cost”define("%", 'expose p; say "Enter a price."; pull p; say p*x1.07;')
mycost=cost new

mycost™"%" /* Produces: Enter a price. */
/* If the user specifies a price of 100, */
/* produces: 107.00 x/

4.1.3.7. Default Search Order for Method Selection

The search order for a method name matching the message is for:

1. A method the object itself defines with SETMETHOD or ENHANCED. (S&TMETHOD.)

2. A method the object’s class defines. (Note that an object acquires the instance methods of the class
to which it belongs at the time of its creation. If a class gains additional methods, objects created
before the definition of these methods do not acquire these methods.)

3. A method that a superclass of the object’s class defines. This is also limited to methods that were
available when the object was created. The order of the INHERITIR8ERIT) messages sent to
an object’s class determines the search order of the superclass method definitions.

This search order places methods of a class before methods of its superclasses so that a class can
supplement or override inherited methods.

If the language processor does not find a match for the message name, the language processor checks the
object for a method name UNKNOWN. If it exists, the language processor calls the UNKNOWN method
and returns as the message result any result the UNKNOWN method returns. The UNKNOWN method
arguments are the original message name and a Rexx array containing the original message arguments.

If the object does not have an UNKNOWN method, the language processor raises a NOMETHOD
condition.

89

Chapter 4. Objects and Classes

90

4.1.3.8. Defining an UNKNOWN Method

When an object that receives a message does not have a matching message name, the language processor
checks if the object has a method named UNKNOWN. If the object has an UNKNOWN method, the
language processor calls UNKNOWN, passing two arguments. The first argument is the nhame of the
method that was not located. The second argument is an array containing the arguments passed with the
original message.

If you define an UNKNOWN method, you can use the following syntax:

>>-UNKNOWN (messagename ,messageargs) ———— - ><

4.1.3.9. Changing the Search Order for Methods

You can change the usual search order for methods by:

1. Ensuring that the receiver object is the sender object. (You usually do this by specifying the special
variable SELF--se8ELF)

2. Specifying a colon and a class symbol after the message name. The class symbol can be a variable
name or an environment symbol. It identifies the class object to be used as the starting point for the
method search.

The class object must be a superclass of the class defining the active method, or, if you used
SETMETHOD to define the active method, the object’s own class. The class symbol is usually the
special variable SUPER (s&JPER but it can be any environment symbol or variable name whose
value is a valid class.

Suppose you create an Account class that is a subclass of the Object class, define a TYPE method for the
Account class, and create the Savings class that is a subclass of Account. You could define a TYPE
method for the Savings class as follows:

savings~define("TYPE", 'return "a savings account"')
You could change the search order by using the following line:
savings~define("TYPE", 'return self type:super "(savings)"")

This changes the search order so that the language processor searches for the TYPE method first in the
Account superclass (rather than in the Savings subclass). When you create an instance of the Savings
class &sav) and send a TYPE messageatav:

say asav type

an account (savings) is displayed. The TYPE method of the Savings class calls the TYPE method of
the Account class, and adds the strizgvings) to the results.

Chapter 4. Objects and Classes

4.1.3.10. Public and Private Methods

A method can be public or private. Any object can send a message thatpubie@method. Aprivate

method runs only when an object sends a message to itself (that is, using the variable SELF as the
message receiver). Private methods include methods at different scopes within the same object.
(Superclasses can make private methods available to their subclasses while hiding those methods from
other objects.) A private method is like an internal subroutine. It provides common functions to the
object methods but is hidden from other programs.

4.1.3.11. The Class Hierarchy

Rexx provides the following classes belonging to the object class:

« Alarm class
« Class class
« Array class
. Listclass

« Queue class
. Table class

. Setclass

- Directory class
« Relation class

. Bagclass

- Message class

- Method class

» Monitor class

« Stem class

« Stream class

« String class

« Supplier class

(The classes are in a class hierarchy with subclasses indented below their superclasses.)

Note that there might also be other classes in the system.

4.1.3.12. Initialization

Any object requiring initialization at creation time must define an INIT method. If this method is defined,
the class object runs the INIT method after the object is created. If an object has more than one INIT
method (for example, it is defined in several classes), each INIT method must forward the INIT message
up the hierarchy to complete the object’s initialization.

91

Chapter 4. Objects and Classes

Example:

asav = .savings~new(1000.00, 6.25)
say asav type
asav'name = "John Smith"

::class Account

::method INIT
expose balance
use arg balance

::method TYPE
return "an account"

::method name attribute
::class Savings subclass Account

::method INIT

expose interest_rate

use arg balance, interest_rate
self~init:super(balance)

::method type
return "a savings account"

The NEW method of the Savings class object creates a new Savings object and calls the INIT method of
the new object. The INIT method arguments are the arguments specified on the NEW method. In the
Savings INIT method, the line:

self~init:super(balance)

calls the INIT method of the Account class, using just the balance argument specified on the NEW
message.

4.1.3.13. Object Destruction and Uninitialization

Object destruction is implicit. When an object is no longer in use, Rexx automatically reclaims its
storage. If the object has allocated other system resources, you must release them at this time. (Rexx
cannot release these resources, because it is unaware that the object has allocated them.)

Similarly, other uninitialization processing may be needed, for example, by a message object holding an
unreported error. An object requiring uninitialization should define an UNINIT method. If this method is
defined, Rexx runs it before reclaiming the object’s storage. If an object has more than one UNINIT
method (defined in several classes), each UNINIT method is responsible for sending the UNINIT
method up the object hierarchy.

92

Chapter 4. Objects and Classes

4.1.3.14. Required String Values

Rexx requires a string value in a number of contexts within instructions and built-in function calls.

« DO statements containirexprr or exprf

+ Substituted values in compound variable names

« Commands to external environments

« Commands and environment names on ADDRESS instructions

« Strings for ARG, PARSE, and PULL instructions to be parsed

- Parenthesized targets on CALL instructions

- Subsidiary variable lists on DROP, EXPOSE, and PROCEDURE instructions
« Instruction strings on INTERPRET instructions

+ DIGITS, FORM, and FUZZ values on NUMERIC instructions

« Options strings on OPTIONS instructions

- Data queue strings on PUSH and QUEUE instructions

« Label names on SIGNAL VALUE instructions

« Trace settings on TRACE VALUE instructions

- Arguments to built-in functions

- Variable references in parsing templates

« Data for PUSH and QUEUE instructions to be processed

« Data for the SAY instruction to be displayed

- Rexx dyadic operators when the receiving object (the object to the left of the operator) is a string

If you supply an object other than a string in these contexts, by default the language processor converts it
to some string representation and uses this. However, the programmer can cause the language processor
to raise the NOSTRING condition when the supplied object does not have an equivalent string value.

To obtain a string value, the language processor sends a REQUEST("STRING") message to the object.
Strings and other objects that have string values return the appropriate string value for Rexx to use. (This
happens automatically for strings and for subclasses of the String class because they inherit a suitable
MAKESTRING method from the String class.) For this mechanism to work correctly, you must provide

a MAKESTRING method for any other objects with string values.

For other objects without string values (that is, without a MAKESTRING method), the action taken
depends on the setting of the NOSTRING condition trap. If the NOSTRING condition is being trapped
(seeConditions and Condition Trapghe language processor raises the NOSTRING condition. If the
NOSTRING condition is not being trapped, the language processor sends a STRING message to the
object to obtain its readable string representation (see the STRING method of the ObjeSTRANS)

and uses this string.

When comparing a string object with the .nil object, if the NOSTRING condition is being trapped, then
if string = .nil

will raise the NOSTRING condition, whereas

93

Chapter 4. Objects and Classes
if .nil = string

will not as the .nil objects "=" method does not expect a string as an argument.

Example:

d = .directory new

say substr(d,5,7)

signal on nostring

say substr(d,5,7)

say substr(d~string,3,6)

/* Produces "rectory" from "a Directory" */

/* Raises the NOSTRING condition */
/* Displays "Direct" */

For arguments to Rexx object methods, different rules apply. When a method expects a string as an
argument, the argument object is sent the REQUEST("STRING") message. If REQUEST returns the
NIL object, then the method raises an error.

4.1.3.15. Concurrency

Rexx supports concurrency, multiple methods running simultaneously on a single object. See
Concurrencyfor a full description of concurrency.

94

4.1.3.16. Classes and Methods Provided by Rexx

The following figure shows all the classes and their methods.

Figure 4-1. Classes and Inheritance of Methods (part 1 of 4)

- - -+

| Object

Fm———— + —— + - ———tmm—————— + - fm—————————————— +

NEW* | | | | |

= Fo—————— + + Fo————— + + o +

== | Alarm | | Classx* | | Array | | List | | Queue |

\= o + + +————— + 4 + o +

<> CANCEL BASECLASS NEW OF * | [

>< INIT DEFAULTNAME OF* d | =

\== DEFINE 1 (1= | AT

CLASS DELETE [1= AT | HASINDEX

COPY ENHANCED AT FIRST | ITEMS

DEFAULTNAME 1D DIMENSION FIRSTITEM | MAKEARRAY

HASMETHOD INHERIT FIRST HASINDEX | PEEK

INIT INIT HASINDEX INSERT | PULL

OBJECTNAME METACLASS ITEMS ITEMS | PUSH

OBJECTNAME= METHOD LAST LAST | PUT

REQUEST METHODS MAKEARRAY LASTITEM | QUEUE

RUN MIXINCLASS NEXT MAKEARRAY | REMOVE

SETMETHOD NEW PREVIOUS NEXT | SUPPLIER

START QUERYMIXINCLASS PUT PREVIOUS |

STRING SUBCLASS REMOVE PUT o +

UNSETMETHOD SUBCLASSES SECTION REMOVE | CircularQueue |
SUPERCLASSES SIZE SECTION oo +

UNINHERIT

SUPPLIER

SUPPLIER

Chapter 4. Objects and Classes

O0F*
INIT
RESIZE
SIZE
STRING
METHODS

* A1l of the methods under the Class class are both class and instance
methods.NEW and OF are class methods.

Figure 4-2. Classes and Inheritance of Methods (Part 2 of 4)

| Object (continued)

.

|

|

| AT

| DIFFERENCE
| HASINDEX
| INTERSECTION
| ITEMS

| MAKEARRAY
| PUT

| REMOVE

| SUBSET

| SUPPLIER
| UNION

| XOR

|

AT
HASINDEX
ITEMS
MAKEARRAY
PUT
REMOVE
SUPPLIER

—+- + - e
| | |
Fomm + e + Fom— +
| Directory | | Relation | | Message |
o ————— + mmmmm————— + tm——————— +
(1 | [COMPLETED
[1= | 0= INIT
DIFFERENCE | ALLAT NOTIFY
HASINDEX | ALLINDEX RESULT
INTERSECTION | AT SEND
ITEMS | DIFFERENCE START
MAKEARRAY | HASINDEX
PUT | HASITEM
REMOVE | INDEX
SETENTRY | INTERSECTION
SETMETHOD | ITEMS
SUBSET | MAKEARRAY
SUPPLIER | PUT
UNION | REMOVE
UNKNOWN | REMOVEITM
XOR | SUBSET

| SUPPLIER
| UNION
| XOR
|
S +

| Bag |
o +
OF*

[

[1=
HASINDEX
MAKEARRAY
PUT
SUPPLIER

NEWx*

NEWFILE

SETGUARDED
SETPRIVATE
SETPROTECTED
SETSECURITYMANAGER
SETUNGUARDED
SOURCE

95

Chapter 4. Objects and Classes

* A1l of the methods under the Class class are both class and instance

methods.NEW and OF are class methods.

Figure 4-3. Classes and Inheritance of Methods (Part 3 of 4)

o e e Fo————
| | I
o ————— I + - +
| Monitor | | MutableBuffer | | Stem |
tmm——————— L D + fm———— +
CURRENT APPEND NEW*
DESTINATION DELETE]
INIT GETBUFFERSIZE (1=
UNKNOWN INIT MAKEARRAY
INSERT REQUEST
LENGTH UNKNOWN
OVERLAY
SETBUFFERSIZE
STRING
SUBSTR

* All of the methods under the Class class are both class and instance

methods.NEW and OF are class methods.

— +

ARRAYIN
ARRAYOUT
CHARIN
CHAROUT
CHARS
CLOSE
COMMAND
DESCRIPTION
FLUSH
INIT
LINEIN
LINEOUT
LINES
MAKEARRAY
OPEN
POSITION
QUALIFY
QUERY
SAY

SEEK
STATE
SUPPLIER

Figure 4-4. Classes and Inheritance of Methods (Part 4 of 4)

+——

| Object (continued)

96

FORMAT

—+

—+

—+

-+

" (abuttal) INSERT AVAILABLE
(arithmetic:) LASTPOS INDEX
+ - %/ % // *» LEFT ITEM
' ' (blank) LENGTH NEXT
ABBREV (logical:)

ABS & && |

BITAND \

BITOR MAKESTRING
BITXOR MAX

B2X MIN

CENTER OVERLAY
CHANGESTR POS

COMPARE REVERSE
(comparison:) RIGHT

= \= <> >< SIGN

> >= \> SPACE

< <=\« STRING

== \== STRIP

>> \>> >>= SUBSTR

<< \<< <<= SUBWORD
(concatenation:) TRANSLATE

I'l TRUNC

COPIES VERIFY

COUNSTR WORD

C2D WORDINDEX

C2X WORDLENGTH
DATATYPE WORDPOS

DELSTR WORDS

DELWORD X2B

D2C X2C

D2X X2D
DECODEBASE64

ENCODEBASE64

Chapter 4. Objects and Classes

* A1l of the methods under the Class class are both class and instance

methods.NEW and OF are class methods.

4.1.3.17. Summary of Methods by Class

The following table lists all the methods and the classes that define them. All methods are instance

methods except where noted.

Table 4-1. Summary of Methods and the Classes Defining Them

Method Name

Class(es)

I

Array, Bag CircularQueugeDirectory, List,
Queue Relation Set Stem Table

97

Chapter 4.

98

Objects and Classes

Method Name

Class(es)

= Array, Bag CircularQueugDirectory; List,
Queue Relation Set Stem Table

ABBREV String

ABS String

ALLAT Relation

ALLINDEX Relation

APPEND MutableBuffer

ARRAYIN Stream

ARRAYOUT Stream

AT(R) Array, CircularQueugDirectory, List, Queue
Relation Set Table

AVAILABLE Supplier

BASECLASS Class

BITAND String

BITOR String

BITXOR String

B2X String

CANCEL Alarm

CENTER String

CHANGESTR String

CHARIN Stream

CHAROUT Stream

CHARS Stream

CLASS Object

CLOSE Stream

COMMAND Stream

COMPARE String

COMPLETED Message

COPIES String

COPY Object

COUNTSTR String

CURRENT Monitor

C2D String

C2X String

DATATYPE String

DECODEBASEG64 String

DEFAULTNAME Class Object

DEFINE Class (class and instance method)

DELETE Class (class and instance methddytableBuffer

Chapter 4. Objects and Classes

Method Name Class(es)

DELSTR String

DELWORD String

DESCRIPTION Stream

DESTINATION Monitor

DIFFERENCE Directory, Relation Table

DIMENSION Array

D2C String

D2X String

ENCODEBASEG64 String

ENHANCED Class (class and instance method)

ENTRY Directory

FIRST Array, List

FIRSTITEM List

FLUSH Stream

FORMAT String

GETBUFFERSIZE MutableBuffer

HASENTRY Directory

HASINDEX Array, Bag CircularQueugDirectory; List,
Queue Relation Set Table

HASITEM Relation

HASMETHOD Object

ID Class (class and instance method)

INDEX Relation Supplier

INHERIT Class (class and instance method)

INIT Alarm, CircularQueugClass MessageMonitor,
Object Stream

INSERT List, String MutableBuffer

INTERSECTION Directory, Relation Table

ITEM Supplier

ITEMS Array, CircularQueugDirectory, List, Queue
Relation Set Table

LAST Array, List

LASTITEM List

LASTPOS String

LEFT String

LENGTH String MutableBuffer

LINEIN Stream

LINEOUT Stream

LINES Stream

99

Chapter 4. Objects and Classes

100

Method Name

Class(es)

MAKEARRAY Array, Bag CircularQueugDirectory; List,
Queue Relation Set Stem Stream Table

MAKESTRING String

MAX String

METACLASS Class

METHOD Class (class and instance method)

METHODS Class (class and instance method)

MIN String

MIXINCLASS Class

NEW Array (Class Method)Class (class and instance
method) Method Object Stem (Class Method)
String (Class MethodSupplier (Class Method)

NEWFILE Method

NEXT Array, List, Supplier

NOTIFY Message

OBJECTNAME Object

OBJECTNAME= Object

OF Array (Class Method)Bag (Class Method)
CircularQueueglist (Class Method)Set (Class
Method)

OPEN Stream

Operator Methods (Arithmetic): +, -, *, /, %, //, *1
prefix +, prefix -

F.String

Operator Methods (Comparison): =, \=:><>, | Object String
==, and \==

Operator Methods (Comparison): &, >=, \<, String

<=, \>, > <<, > <, <<=, and \>>

Operator Methods (Concatenation): " (abuttal)| tring

and " " (blank)

Operator Methods (Logical): &, |, &&, and prefix

String

Operator Methods (Other): == (unary)

Object

OVERLAY

String, MutableBuffer

PEEK Queue CircularQueue
POS String

POSITION Stream

PREVIOUS Array, List

PULL QueueCircularQueue
PUSH Queue CircularQueue

Chapter 4. Objects and Classes

Method Name

Class(es)

PUT Array, Bag CircularQueugDirectory; List,
Queue Relation Set Table

QUALIFY Stream

QUERY Stream

QUERYMIXINCLASS Class

QUEUE QueueCircularQueue

REMOVE Array, CircularQueugDirectory, List, Queue
Relation Set Table

REMOVEITEM Relation

REQUEST Object Stem

RESIZE CircularQueue

RESULT Message

REVERSE String

RIGHT String

RUN Object

SAY Stream

SECTION Array, List

SEEK Stream

SEND Message

SETBUFFERSIZE MutableBuffer

SETENTRY Directory

SETGUARDED Method

SETMETHOD Directory, Object

SETPRIVATE Method

SETPROTECTED Method

SETSECURITYMANAGER Method

SETUNGUARDED Method

SIGN String

SIZE Array, CircularQueue

SOURCE Method

SPACE String

START MessageObject

STATE Stream

STRING Object CircularQueugMutableBuffer String

STRIP String

SUBCLASS Class (class and instance method)

SUBCLASSES Class (class and instance method)

SUBSET Directory, Relation Table

SUBSTR String, MutableBuffer

101

Chapter 4. Objects and Classes

102

Method Name Class(es)

SUBWORD String

SUPERCLASSES Class (class and instance method)

SUPPLIER Array, Bag CircularQueugDirectory; List,
Queue Relation Set Stream Table

TRANSLATE String

TRUNC String

UNINHERIT Class (class and instance method)

UNION Directory, Relation Table

UNKNOWN Directory, Monitor, Stem

UNSETMETHOD Object

VERIFY String

WORD String

WORDINDEX String

WORDLENGTH String

WORDPOS String

WORDS String

XOR Directory, Relation Table

X2B String

X2C String

X2D String

The chapters that follow describe the classes and other objects that Rexx provides and their available
methods. Rexx provides the objects listed in these sections and they are generally available to all
methods through environment symbols (§&®ironment Symbo)s

Notes:

1. In the method descriptions in the chapters that follow, methods that return a result begin with the
word "returns”.

2. For [] and []= methods, the syntax diagrams include the index or indexes within the brackets. These
diagrams are intended to show how you can use these methods. For example, to retrieve the first
element of a one-dimensional array named Array1, you would typically use the syntax:

Arrayi[1]
rather than:
Array1~"[1"(1)

even though the latter is valid and equivalent. For more informationylessage Termand
Message Instructions

3. When the argument of a method must be a specific kind of object (such as array, class, method, or
string) the variable you specify must be of the same class as the required object or be able to produce
an object of the required kind in response to a conversion message. In particular, subclasses are

Chapter 4. Objects and Classes

acceptable in place of superclasses (unless overridden in a way that changes superclass behavior),
because they inherit a suitable conversion method from their Rexx superclass.

The REQUEST method of the Object class (BEQUEST) can perform this validation.

103

Chapter 4. Objects and Classes

104

Chapter 5. The Collection Classes

A collection is an object that contains a numbeitefns which can be any objects. Every item stored in
a Rexx collection has an associated index that you can use to retrieve the item from the collection with
the AT or [] methods.

Each collection defines its own acceptable index types. Rexx provides the following collection classes:

Collections that do not have set operations:

Array
A sequenced collection of objects ordered by whole-number indexeg.Heegrray Clasgor
details.

List

A sequenced collection that lets you add new items at any position in the sequence. A list generates
and returns an index value for each item placed in the list. The returned index remains valid until the
item is removed from the list. S@éhe List Clasdor details.

Queue

A sequenced collection with the items ordered as a queue. You can remove items from the head of
the queue and add items at either its tail or its head. Queues index the items with whole-number
indexes, in the order in which the items would be removed. The current head of the queue has index
1, the item after the head item has index 2, up to the number of items in the quedéeS@ecue
Classfor details.

CircularQueue

The CircularQueue class allows for storing objects in a circular queue of a predefined size. Once the
end of the queue has been reached, new item objects are inserted from the beginning, replacing
earlier entries. The collected objects can be processed in FIFO (first in, first out) or in a stack-like
LIFO (last in, first out) order. Se€he CircularQueue Clader details

Collections that have set operations:

Table

A collection with indexes that can be any object. For example, string objects, array objects, alarm
objects, or any user-created object can be a table index. The table class determines the index match
by using the == comparison method. A table contains no duplicate indexe$h8deble Clasfor

details.

Directory

A collection with character string indexes. Index comparisons are performed using the string ==
comparison method. S@éde Directory Clas$or details.

Relation

A collection with indexes that can be any object (as with the table class). A relation can contain
duplicate indexes. Sékhe Relation Clasfor details.

105

Chapter 5. The Collection Classes

Set

A collection where the index and the item are the same object. Set indexes can be any object (as
with the table class) and each index is unique. Bee Set Clasfor details.

Bag

A collection where the index and the item are the same object. Bag indexes can be any object (as
with the table class) and each index can appear more than oncéh&&ag Clasfor details.

The following sections describe the individual collection classes in alphabetical order and the methods
that they define and inherit. It also describes the concept of set operations.

5.1. The Array Class

An array is a possibly sparse collection with indexes that are positive whole numbers. You can reference
array items by using one or more indexes. The number of indexes is the same as the number of
dimensions of the array. This number is called the dimensionality of the array.

Array objects are variable-sized. The dimensionality of an array is fixed, but the size of each dimension

is variable. When you create an array, you can specify a hint about how many elements you expect to put
into the array or the array’s dimensionality. However, you do not need to specify a size or dimensionality
of an array when you are creating it. You can use any whole-number indexes to reference items in an
array.

Methods the Array class defines:

NEW (Class method. Overrides Object class method.)
OF (Class method)

I

I]:

AT
DIMENSION
FIRST
HASINDEX
ITEMS

LAST
MAKEARRAY
MAKESTRING
NEXT
PREVIOUS
PUT
REMOVE
SECTION
SIZE
SUPPLIER

Methods inherited from the Object class:

Operator methods: =, ==, \=<, <>, \==
CLASS

COPY

DEFAULTNAME

HASMETHOD

OBJECTNAME

OBJECTNAME=

REQUEST

106

Chapter 5. The Collection Classes

RUN
SETMETHOD
START

STRING
UNSETMETHOD

Note: The Array class also has available class methods that its metaclass, the Class class, defines.

5.1.1. NEW (Class Method)

Returns a new empty array. If you specify aige the size is taken as a hint about how big each
dimension should be. The language processor uses this only to allocate the array object initially. For
multiple dimension arrays, you can also specify how much space is to be allocated initially for each
dimension of the array.

Eachsizeargument must be or a positive whole number. If it ig, the corresponding dimension is
initially empty.

5.1.2. OF (Class Method)

+-(--—-item—+--)-+
Returns a newly created single-index array containing the spett#ieabjects. The firsitemhas index
1, the second has index 2, and so on.

If you use the OF method and omit any argument items, the returned array does not include the indexes
corresponding to those you omitted.

5.1.3.]
+-, +
v I

>>-[--—index-+-]-- -- -- -- ><

Returns the same value as the AT method, which follows /See

107

Chapter 5. The Collection Classes

108

5.1.4. []=
o, mmmmm +
v I
>>-[---index-+-]=value--- -- -- -- -- ><

This method is the same as the PUT method, which follows PEEE

v |
>>-AT(---index—+-) - - - ><

Returns the item associated with the speciff@tbxor indexes. If the array has no item associated with
the specifiedndexor indexes, this method returns the NIL object.

5.1.6. DIMENSION

>>-DIMENSION-+----- o ><
+-(n) -+

Returns the current size (upper bound) of dimensi¢a positive whole number). If you omit, this
method returns the dimensionality (number of dimensions) of the array. If the number of dimensions has
not been determined, DIMENSION returas

5.1.7. FIRST

>>-FIRST----- - - - - ><

Returns the index of the first item in the array or the NIL object if the array is empty. The FIRST method
is valid only for single-index arrays.

5.1.8. HASINDEX

v |
>>-HASINDEX (---index-+-) - - - - - ><

Returnst (true) if the array contains an item associated with the specified index or indexes. Returns
(false) otherwise.

Chapter 5. The Collection Classes

5.1.9. ITEMS

>>-ITEMS---—-=-===—————mmmmmmo— mmmmm oo -- ><

Returns the number of items in the collection.

5.1.10. LAST

>>-LAST---- -- -- -- -- ><

Returns the index of the last item in the array or the NIL object if the array is empty. The LAST method
is valid only for single-index arrays.

5.1.11. MAKEARRAY

>>-MAKEARRAY- - - - ><

Returns a single-index array with the same number of items as the receiver object. Any index with no
associated item is omitted from the new array. Items in the new array will have the same order as the
source array.

5.1.12. MAKESTRING

+-(LINE)-—+
>>-MAKESTRING----+----——--- oo ><
+-(CHAR) ——+

Returns a stream that contains the data of an array (one to n dimensional). The elements of the array are
treated either in line or character format, starting at the first element in the array. The line format is the
default.

5.1.13. NEXT

>>-NEXT (index)---- - - - ><

Returns the index of the item that follows the array item having indégxor returns the NIL object if
the item having that index is last in the array. The NEXT method is valid only for single-index arrays.

5.1.14. PREVIOUS

>>-PREVIOUS (index) - - _— S<¢

Returns the index of the item that precedes the array item having indexor the NIL object if the
item having that index is first in the array. The PREVIOUS method is valid only for single-index arrays.

109

Chapter 5. The Collection Classes

110

5.1.15. PUT
o +
v |
>>-PUT(item—--,index—+-)- - - - - ><

Makes the objedtema member item of the array and associates it with the speaifiekor indexes.

This replaces any existing item associated with the spegifaekor indexes with the new item. If the
indexfor a particular dimension is greater than the current size of that dimension, the array is expanded
to the new dimension size.

5.1.16. REMOVE

v |
>>-REMOVE (-—-index-+-)--- - - - - ><

Returns and removes the member item with the spedifidekor indexes from the array. If there is no
item with the specifieéhdexor indexes, the NIL object is returned and no item is removed.

5.1.17. SECTION

>>-SECTION(start-+-------- +-)—-- -- -- ><
+-,items-+

Returns a new array (of the same class as the receiver) containing selected items from the receiver array.
The first item in the new array is the item corresponding to irgtext in the receiver array. Subsequent

items in the new array correspond to those in the receiver array (in the same sequence). If you specify the
whole numbeitems the new array contains only this number of items (or the number of subsequent

items in the receiver array, if this is less thitamg. If you do not specifyitems the new array contains

all subsequent items of the receiver array. The receiver array remains unchanged. The SECTION method
is valid only for single-index arrays.

5.1.18. SIZE

>>-SIZE---- - - - - - ><

Returns the number of items that can be placed in the array before it needs to be extended. This value is
the same as the product of the sizes of the dimensions in the array.

5.1.19. SUPPLIER

-SUPPLIER-- - —_————————————ee e - ><

Chapter 5. The Collection Classes

Returns a supplier object for the collection. After you have obtained a supplier, you can send it messages
(seeThe Supplier Claggo enumerate all the items that were in the array at the time of the supplier’s
creation. The supplier enumerates the array items in their sequenced order.

5.1.20. Examples
arrayl=.array~of(1,2,3,4) /* Loads the array */

/* Alternative way to create and load an array */

array2=.array new(4) /* Creates array2, containing 4 items */

do i=1 to 4 /* Loads the array */
array2[il=i

end

You can produce the elements loaded into an array, for example:
do i=1 to 4
say arrayl[i]

end

If you omit any argument values before arguments you supply, the corresponding indexes are skipped in
the returned array:

directions=.array~of ("North","South", ,"West")
do i=1 to 4 /* Produces: North */
say directions[i] /* South x/
/* The NIL object */
end /* West */

Here is an example using the ~~:

z=.array~of(1,2,3) " "put(4,4)
do i =1 to z"size

say z[i] /* Produces: 1 2 3 4 x/
end

5.2. The Bag Class

A bag is a collection that restricts the elements to having an item that is the same as the index. Any
object can be placed in a bag, and the same object can be placed in a bag several times.

The Bag class is a subclass of the Relation class. In addition to its own methods, it inherits the methods
of the Object class and the Relation class.

Methods the Bag class defines:

OF (Class method)

[J= (Overrides Relation class method)

111

Chapter 5. The Collection Classes

HASINDEX
MAKEARRAY _
PUT (Overrides Relation class method)

SUPPLIER

Methods inherited from the Relation class:

ALLAT
ALLINDEX

AT

HASITEM
INDEX

ITEMS
REMOVE
REMOVEITEM

Set-operator methods inherited from the Relation class:

DIFFERENCE
INTERSECTION
SUBSET
UNION

XOR

Methods inherited from the Object class:

NEW (Class method)
Operator methods: =, ==, \= <5 <>, \==
CLASS

COPY
DEFAULTNAME
HASMETHOD

INIT

OBJECTNAME
OBJECTNAME=
REQUEST

RUN

SETMETHOD
START

STRING
UNSETMETHOD

Note: The Bag class also has available class methods that its metaclass, the Class class, defines.

5.2.1. OF (Class Method)

v |
>>-0F (---item—+-)- - - - ><

Returns a newly created bag containing the spedcitiesdobjects.

112

Chapter 5. The Collection Classes

5.2.2.]

>>-[index] ———-—-=—==-———= - —— e - ><

Returns the same value as the AT method in the Relation clas&\TSee

5.2.3. [|=

>>-[index]=item—-- - - - ><

This method is the same as the PUT method.FBé&€.

5.2.4. HASINDEX

>>-HASINDEX (index) - - - ><

Returnst (true) if the collection contains any item associated with indebex or o (false).

5.2.5. MAKEARRAY

>>-MAKEARRAY---—-- - - - - -_ ><

Returns a single-index array containing the index objects. The array indexes rangetér¢ime number
of items. The collection items appear in the array in an unspecified order. (The program should not rely
on any order.)

5.2.6. PUT

>>-PUT (item—+-——----—+-) - - - - ><
+-,index-+

Makes the objedtema member item of the collection and associates it with inddex If you specify
index it must be the same @&m

5.2.7. SUPPLIER

>>-SUPPLIER - - - - - ><

Returns a supplier object for the collection. After you have obtained a supplier, you can send it messages
(seeThe Supplier Clagdo enumerate all the items that were in the collection at the time of the supplier’s
creation. The supplier enumerates the items in an unspecified order. (The program should not rely on any
order.)

113

Chapter 5. The Collection Classes

5.2.8. Examples

/* Create a bag of fruit
.bag~of ("Apple",
say fruit“items

fruit =

say fruit~items("Apple")
fruit~remove ("Apple")

*/

"Orange", "Apple", "Pear")
/* How many pieces? (4)

/* How many apples? (2)

/* Remove one of the apples.

fruit”~put ("Banana") “put ("Orange") /* Add a couple.

say fruit“items

/* How many pieces? (5)

5.3. The CircularQueue Class

The CircularQueue class allows for storing objects in a circular queue of a predefined size. Once the end
of the queue has been reached, new item objects are inserted from the beginning, replacing earlier entries.

The collected objects can be processed in FIFO (first in, first out) or in a stack-like LIFO (last in, first

out) order.

The CircularQueue class is a subclass of the Queue class. In addition to its own methods it inherits the
methods of the Queue class (Sge Queue cla3and the Object class (sé@de Object Clags

Methods the CircularQueue class defines:

OF (Class method)
INIT

MAKEARRAY
PUSH

QUEUE

RESIZE

SIZE

STRING
SUPPLIER

Methods inherited from the Queue class:

I

I]:

AT
HASINDEX
ITEMS
MAKEARRAY
PEEK
PULL
PUSH

PUT
QUEUE
REMOVE
SUPPLIER

Methods inherited from the Object class:

NEW (Class method)

Operator methods: =, ==, \x;<, <>, \==

CLASS
COPY

114

*/
*/
*/
*/
*/

Chapter 5. The Collection Classes

DEFAULTNAME
HASMETHOD
INIT
OBJECTNAME
OBJECTNAME=
REQUEST

RUN
SETMETHOD
START

STRING
UNSETMETHOD

Note: The CircularQueue class also has available class methods that its metaclass, the Class class,
defines.

5.3.1. OF (Class Method)

+=(—---item-+--) -+

Returns a newly created circular queue containing the spedifiecbbjects. The firsitemhas index 1,
the second has index 2, and so on. The numbéenfobjects determines trezeof the circular queue.

5.3.2. INIT

>>-INIT(size) - - - - - ><

Constructor method invoked by the NEW method, which determinesizikef the circular queue.

5.3.3. MAKEARRAY

+-Fifo----+
>>-MAKEARRAY (—+-------—- +=)————-— -- -- -- ><
+--order—-+

Returns a single-index array containing the items of the circular queue in the spedmiféed

The followingorder can be used. (Only the capitalized letter is needed; all characters following it are
ignored.)

Fifo

First-in, first-out, default

Lifo

Last-in, first-out (stacklike)

115

Chapter 5. The Collection Classes

116

5.3.4. PUSH

>>-PUSH(item)-———-------- -- —mmmmmmm o -- ><

Makes the objedtema member item of the circular queue, inserting the item object in front of the first
item in the queue. The pushed item object will be the new first item in the circular queue.

If the circular queue is full, than the last item stored in the circular queue will be deleted, before the
insertion takes place. In this case thadeted itenwill be returned, otherwisanil.

5.3.5. QUEUE

>>-QUEUE (item)----------- -- e -- ><

Makes the objedtema member item of the circular queue, inserting the item at the end of the circular
queue.

If the circular queue is full, than the first item will be deleted, before the insertion takes place. In this
case thaleleted itenwill be returned, otherwisenil.

5.3.6. RESIZE
+--,Fifo-——+
>>-RESIZE(-newSize-+----—----— +=)—————- - ><

+--,order--+
Resizes the circular queue object to be able to comeiSizétems. If the previous size was larger than
newSizethen the now superfluous items are removed in the specifibat.

The followingorder can be used. (Only the capitalized letter is needed; all characters following it are
ignored.)

Fifo
First-in, first-out, default: keeps the newest entries
Lifo
Last-in, first-out (stacklike): keeps the oldest entries
Note:: Resizing with a value of o effectively removes all items from the circular queue.
5.3.7. SIZE
>>-SIZE---- -- - - ><

Returns the maximum number of objects that can be stored in the circular queue.

Chapter 5. The Collection Classes

5.3.8. STRING
oot e + +-,-Fifo--+
>>-STRING (—+-——-—-————- e +-) - ><

+-delimiter-+ +-,-order-+
Returns a string object that concatenates the string values of the collected item objects, using the
delimiter string to delimit them, in the specifieatder. The defauldelimiteris a single comma.

If the delimiter string argument is omitted the comma charactgy) (s used as the default delimiter
string.

The followingorder can be used. (Only the capitalized letter is needed; all characters following it are
ignored.)
Fifo
First-in, first-out, default
Lifo

Last-in, first-out (stacklike)

5.3.9. SUPPLIER

+--Fifo----+
>>-SUPPLIER (-+-——--—-—--- e - - ><
+--order---+

Returns a supplier object for the collection. After you have obtained a supplier, you can send it messages
(seeThe Supplier Claggo enumerate all the items that were in the queue at the time of the supplier’'s
creation.

The supplier will enumerate the items in the specifieder. (Only the capitalized letter is needed; all
characters following it are ignored.)

Fifo
First-in, first-out, default
Lifo

Last-in, first-out (stacklike)

5.3.10. Example

—-- create a circular buffer with five items

u=.circularQueue~of ("a", "b", "c", "d", "e")

say "content: ["u"]," "content (LIFO): ["u“string("->","L")"]"
say

u“resize(4, "FIFO") -- resize fifo-style (keep newest)

117

Chapter 5. The Collection Classes

say "after resizing to 4 items in FIFO style (keeping the newest):"

say "content: ["u"]," "content (LIFO): ["u"string("->","L")"]"
say

u“resize(2, "LILO") -- resize lifo-style (keep oldest)

say "after resizing to 2 items in LIFO style (keeping the oldest):"
say "content: ["u"]," "content (LIFO): ["u“string("->","L")"]"
say

u“resize(0) -- resize lifo-style (keep oldest)

say "after resizing to O items, thereby deleting all items:"
say "content: ["u"]," "content (LIF0): ["u"string("->","L")"]"
say

u“resize(2) -- resize lifo-style (keep oldest)

say "after resizing to 2, size="u"size "and items="u"items
u~~queue('x') “~queue('y") “~queue ('z")

say "after queuing the three items 'x', 'y', 'z':"

say "content: ["u"]," "content (LIF0): ["u“string("->","L")"]"
say

u”“push('1') ““push('2') “~push('3")
say "after pushing the three items '1', '2', '3":"

say "content: ["u"]," "content (LIF0): ["u“string("->","L")"]"
say
Output:

content: [a,b,c,d,e], content (LIFQ0): [e->d->c->b->al

after resizing to 4 items in FIFO style (keeping the newest):
content: [b,c,d,e], content (LIFQ0): [e->d->c->b]

after resizing to 2 items in LIFO style (keeping the oldest):
content: [b,c], content (LIF0): [c->b]

after resizing to O items, thereby deleting all items:
content: [], content (LIF0): []

after resizing to 2, size=2 and items=0
|yl, '
content: [y,z], content (LIF0): [z->y]

after queuing the three items 'x', z':

after pushing the three items '1', '2', '3":
content: [3,2], content (LIF0): [2->3]

118

Chapter 5. The Collection Classes

5.4. The Directory Class

A directory is a collection with unique indexes that are character strings representing names.

Directories let you refer to objects by name, for example:
.environment~array

For directories, items are often referred to as entries.

Methods the Directory class defines:

I

I]:

AT

ENTRY
HASENTRY
HASINDEX
ITEMS
MAKEARRAY
PUT

REMOVE
SETENTRY)]
SETMETHOD (Overrides Object class method)

SUPPLIER
UNKNOWN

Set-operator methods the Directory class defines:

DIFFERENCE
INTERSECTION
SUBSET
UNION

XOR

Methods Inherited from the Object Class:

NEW (Class method)
Operator methods: =, ==, \=<, <>, \==
CLASS

COPY
DEFAULTNAME
HASMETHOD

INIT

OBJECTNAME
OBJECTNAME=
REQUEST

RUN

START

STRING
UNSETMETHOD

Note: The Directory class also has available class methods that its metaclass, the Class class,
defines.

119

Chapter 5. The Collection Classes

120

5.4.1.]

>>-[name] ——---—-————————= - —— e - ><

Returns the same item as the AT method, which follows.Aee

5.4.2. []=

>>-[name]=item - - - ><

This method is the same as the PUT method.FBé&€.

5.4.3. AT

>>-AT (name) —— - - - ><

Returns the item associated with indeame If a method that SETMETHOD supplies is associated with
indexname the result of running this method is returned. If the collection has no item or method
associated with indemame this method returns the NIL object.

Example:

say .environment~AT("OBJECT") /#* Produces: "The Object class" */

5.4.4. ENTRY

>>-ENTRY (name) -—-- - - - ><

Returns the directory entry with namame(translated to uppercase). If there is no such enayne
returns the item for any method that SETMETHOD supplied. If there is neither an entry nor a method for
nameor for UNKNOWN, the language processor raises an error.

5.4.5. HASENTRY

>>-HASENTRY (name) -------- - - - - ><

Returnst (true) if the directory has an entry or a method for narase(translated to uppercase), @r
(false).

5.4.6. HASINDEX

>>-HASINDEX (name) - - - - - - ><

Returnst (true) if the collection contains any item associated with indame or o (false).

Chapter 5. The Collection Classes

5.4.7. ITEMS

>>-ITEMS---—---—-=-—-=-—- -- mmmmm oo -- ><

Returns the number of items in the collection.

5.4.8. MAKEARRAY

>>-MAKEARRAY - - - ><

Returns a single-index array containing the index objects. The array indexes rangetérdime number
of items. The collection items appear in the array in an unspecified order. (The program should not rely
on any order.)

5.4.9. PUT

>>-PUT (item,name) - - - - ><

Makes the objedtema member item of the collection and associates it with intiaxe The new item
replaces any existing item or method associated with imgene

5.4.10. REMOVE
>>-REMOVE (name) ——=———— === == === oo ><

Returns and removes the member item with indasnefrom a collection. If a method is associated with
SETMETHOD for indexname REMOVE removes the method and returns the result of running it. If
there is no item or method with inderame the UNKNOWN method returns the NIL object and
removes nothing.

5.4.11. SETENTRY

>>-SETENTRY (name—+-------- +-)-—- - - - ><
+-,entry-+

Sets the directory entry with nanmame(translated to uppercase) to the objestry, replacing any
existing entry or method faname If you omit entry, this method removes any entry or method with this
name

5.4.12. SETMETHOD

>>-SETMETHOD (name-+--—======+-) - - - - ><
+-,method-+

121

Chapter 5. The Collection Classes

Associates entry nameame(translated to uppercase) with methmdthod Thus, the language processor
returns the result of runningethodwhen you access this entry. This occurs when you speecifyeon
the AT, ENTRY, or REMOVE method. This method replaces any existing item or methazhfoe

You can specify the name UNKNOWN asme Doing so supplies a method to run whenever an AT or
ENTRY message specifies a name for which no item or method exists in the collection. This method’s
first argument is the specified directory index. This method has no effect on the action of any
HASENTRY, HASINDEX, ITEMS, REMOVE, or SUPPLIER message sent to the collection.

Themethodcan be a string containing a method source line instead of a method object. Alternatively, an
array of strings containing individual method lines can be passed. In either case, SETMETHOD creates
an equivalent method object.

If you omit method SETMETHOD removes the entry with the specifigime

5.4.13. SUPPLIER

>>-SUPPLIER - - - ><

Returns a supplier object for the collection. After you have obtained a supplier, you can send it messages
(seeThe Supplier Claggo enumerate all the items that were in the collection at the time of the supplier’s
creation. The supplier enumerates the items in an unspecified order. (The program should not rely on any
order.)

5.4.14. UNKNOWN

>>-UNKNOWN (messagename ,messageargs) ——————-—-—-—-—-- - ><

Runs either the ENTRY or SETENTRY method, depending on whettemsagenamends with an equal
sign. If messagenamdoes not end with an equal sign, this method runs the ENTRY method, passing
messagenames its argument. The language processor ignores any arguments specified in the array
messageargdn this case, UNKNOWN returns the result of the ENTRY method.

If messagenamdoes end with an equal sign, this method runs the SETENTRY method, passing the first
part ofmessagenam@p to, but not including, the final equal sign) as its first argument, and the first item
in the arraymessageargas its second argument. In this case, UNKNOWN returns no result.

5.4.15. DIFFERENCE

>>-DIFFERENCE (argument) -~ - - - ><

Returns a new collection (of the same class as the receiver) containing only those items from the receiver
whose indexes thargumentcollection does not contain. Tleggumentcan be any object described in

The Argument Collection ClasseBheargumentmust also allow all of the index values in the receiver
collection.

122

Chapter 5. The Collection Classes

5.4.16. INTERSECTION

>>-INTERSECTION (argument) - B - ><

Returns a new collection (of the same class as the receiver) containing only those items from the receiver
whose indexes are in both the receiver collection andthamentcollection. Theargumentcan be any

object described iThe Argument Collection ClasseBheargumentmust also allow all of the index

values in the receiver collection.

5.4.17. SUBSET

>>-SUBSET (argument) ———--— - - - - ><

Returnst (true) if all indexes in the receiver collection are also contained imtgementcollection;
returnso (false) otherwise. Thargumentcan be any object describedTime Argument Collection
ClassesTheargumentmust also allow all of the index values in the receiver collection.

5.4.18. UNION

>>-UNION (argument) - - - ><

Returns a new collection of the same class as the receiver that contains all the items from the receiver
collection and selected items from taggumentcollection. This method includes an item frargument

in the new collection only if there is no item with the same associated index in the receiver collection and
the method has not already included an item with the same index. The order in which this method selects
items inarguments unspecified. (The program should not rely on any order.) See also the UNION
method of the Tablel{NION) and Relation NION) classes. Thargumentcan be any object described

in The Argument Collection ClasseBheargumentmust also allow all of the index values in the receiver
collection.

5.4.19. XOR

>>-XO0R (argument)-- - - - ><

Returns a new collection of the same class as the receiver that contains all items from the receiver
collection and thergumentcollection; all indexes that appear in both collections are removed. The
argumentcan be any object describedTime Argument Collection ClasseEheargumentmust also
allow all of the index values in the receiver collection.

5.4.20. Examples

[F A A KA KA KA KA A A KA KA KA KK KK KK KK A K KA KA KA KA KA KA KA KA KKK KKK [
/* A Phone Book Directory program x/

/* This program demonstrates use of the directory class. x/
[/ srskokokskosk kskskosk ok stk ok stk ki sk ok stk ok stk ok sk ksl sk ok sk sk ok sk ksl sk ok stk sk ok sksksok sk sk ksl ks sk ok stk ok sk sk ksk sk /

123

Chapter 5. The Collection Classes

/* Define an UNKNOWN method that adds an abbreviation lookup feature. x/
/* Directories do not have to have an UNKNOWN method. */
book = .directory~new” ~“setmethod ("UNKNOWN", .methods["UNKNOWN"])

book ["ANN"] = "Ann B. 555-6220"

book["ann"] = "Little annie . 555-1234"

book ["JEFF"] = "Jeff G. 555-5115"

book ["MARK"] = "Mark C. 555-5017"

book ["MIKE"] = "Mike H. 555-6123"

book~Rick = "Rick M. 555-5110" /* Same as book["RICK"] = ... */

Do i over book /* Iterate over the collection x/
Say book[i]

end i

Say "" /* Index lookup is case sensitive... */

Say book~entry("Mike") /* ENTRY method uppercases before lookup x/

Say book["ANN"] /* Exact match */

Say book™ann /* Message sends uppercase before lookup x/

Say book["ann"] /* Exact match with lowercase index x/

Say ""

Say book["M"] /* Uses UNKNOWN method for lookup */

Say book["Z"]

Exit

/* Define an unknown method to handle indexes not found. */

/* Check for abbreviations or indicate listing not found */

: :Method UNKNOWN
Parse arg at_index
value = ""
Do i over self
If abbrev(i, at_index) then do

If value <> "" then value = value", "
value = value || self~at(i)
end
end i
If value = "" then value = "No listing found for" at_index

Return value

5.5. The List Class

A list is a non-sparse sequenced collection similar tofthe Array Clasgo which you can add new

items at any position in the sequence. The collection supplies the list indexes at the time items are added
with the INSERT method. The FIRST, LAST, and NEXT methods can also retrieve list indexes. Only
indexes the list object generates are valid i.e. the list is never a sparse list and the list object may modify
idexes for items in the list.

Methods the List class defines:

124

Chapter 5. The Collection Classes

OF (Class method)
I

I]:

AT

FIRST
FIRSTITEM
HASINDEX
INSERT
ITEMS
LAST
LASTITEM
MAKEARRAY
NEXT
PREVIOUS
PUT
REMOVE
SECTION
SUPPLIER

Methods inherited from the Object class:

NEW (Class method)
Operator methods: =, ==, \=<, <>, \==
CLASS

COPY
DEFAULTNAME
HASMETHOD

INIT

OBJECTNAME
OBJECTNAME=
REQUEST

RUN

SETMETHOD
START

STRING
UNSETMETHOD

Note: The List class also has available class methods that its metaclass, the Class class, defines.

5.5.1. OF (Class Method)

v |
>>-0F (-—-item—+-) ———=====—=————- ————m - ><

Returns a newly created list containing the specitieh objects in the order specified.

5.5.2. []

>>-[index] - -- -- -- -- -- ><

Returns the same item as the AT method. 8Ee

125

Chapter 5. The Collection Classes

126

5.5.3. [|=

>>-[index]=item---------- - —— e - ><

This method is the same as the PUT method.FBé€.

5.5.4. AT

>>-AT (index) - - - ><

Returns the item associated with indagex If the collection has no item associated wiitdex this
method returns the NIL object.

5.5.5. FIRST

>>-FIRST----- - - - ><

Returns the index of the first item in the list or the NIL object if the list is empty. The example for
INSERT (sedNSERT) includes FIRST.

5.5.6. FIRSTITEM

>>-FIRSTITEM------------- - S — — 5<

Returns the first item in the list or the NIL object if the list is empty.

Example:
musketeers=.list~of (Porthos,Athos,Aramis) /* Creates list MUSKETEERS */
item=musketeers~firstitem /* Gives first item in list */

/* (Assigns "Porthos" to item) %/

5.5.7. HASINDEX

>>-HASINDEX (index) - - - - <

Returnst (true) if the collection contains any item associated with inidebex or o (false).

5.5.8. INSERT

>>-INSERT (item—+--—-—---—- +=) == - - - ><
+-,index-+

Chapter 5. The Collection Classes

Returns a list-supplied index for a new itétam, which is added to the list. The new item follows the
existing item with indexndexin the list ordering. lfindexis the NIL object, the new item becomes the
first item in the list. If you omiindex the new item becomes the last item in the list.

Inserting an item in the list at positiandexwill cause the items in the list after positiamdexto have
their indexes modified by the list object.

musketeers=.list~of (Porthos,Athos,Aramis) /* Creates list MUSKETEERS *x/
/* consisting of: Porthos */
/* Athos */
/* Aramis */

index=musketeers~first /* Gives index of first item */

musketeers~insert ("D'Artagnan",index) /* Adds D'Artagnan after Porthos */
/* List is now: Porthos */
/* D'Artagnan */
/* Athos */
/* Aramis */

/* Alternately, you could use */

musketeers~insert ("D'Artagnan", .nil) /* Adds D'Artagnan before Porthos */
/* List is now: D'Artagnan */
/* Porthos */
/* Athos */
/* Aramis */

/* Alternately, you could use */

musketeers~insert ("D'Artagnan") /* Adds D'Artagnan after Aramis */
/* List is now: Porthos */
/* Athos */
/* Aramis */
/* D'Artagnan */

5.5.9. ITEMS

>>~ITEMS---------- - - - - - ><

Returns the number of items in the collection.

5.5.10. LAST

>>-LAST---- - - - ><

Returns the index of the last item in the list or the NIL object if the list is empty.

5.5.11. LASTITEM

>>-LASTITEM-- - - - S<¢

Returns the last item in the list or the NIL object if the list is empty.

127

Chapter 5. The Collection Classes

128

5.5.12. MAKEARRAY

>>-MAKEARRAY- - - — ><

Returns a single-index array containing the receiver collection items. The array indexes rangédrom
the number of items. The order in which the collection items appear in the array is the same as their
sequence in the list collection.

5.5.13. NEXT

>>-NEXT (index)----------- -- mmmmm oo - ><

Returns the index of the item that follows the list item having inihebexor returns the NIL object if the
item having that index is last in the list.

5.5.14. PREVIOUS

>>-PREVIQOUS (index) - - - - ><

Returns the index of the item that precedes the list item having iimdiexor the NIL object if the item
having that index is first in the list.

5.5.15. PUT

>>-PUT(item, index) - - - ><

Replaces any existing item associated with the spedifigekwith the new itemitem If the indexdoes
not exist in the list, an error is raised.

5.5.16. REMOVE

>>-REMOVE (index) —--——-—--—------- ittt -- ><

Returns and removes from a collection the member item with imatex If no item has indexndex
this method returns the NIL object and removes no item.

Removinf an item from the list at positiandexwill cause the items in the list after positiamdexto
have their indexes modified by the list object.

5.5.17. SECTION

>>-SECTION(start—+-------- +=)-—- - -- ><
+-,items-+

Chapter 5. The Collection Classes

Returns a new list (of the same class as the receiver) containing selected items from the receiver list. The
first item in the new list is the item corresponding to indéartin the receiver list. Subsequent items in

the new list correspond to those in the receiver list (in the same sequence). If you specify the whole
numberitems the new list contains only this number of items (or the number of subsequent items in the
receiver list, if this is less thaitems. If you do not specifyitems the new list contains all subsequent

items from the receiver list. The receiver list remains unchanged.

5.5.18. SUPPLIER

>>-SUPPLIER - - - ><

Returns a supplier object for the list. If you send appropriate messages to the suppligre sagpplier
Clasg, the supplier enumerates all the items in the list at the time of the supplier’s creation. The supplier
enumerates the items in their sequenced order.

5.6. The Queue Class

A queue is a non-sparse sequenced collection with whole-number indexes. The indexes specify the
position of an item relative to the head (first item) of the queue. Adding or removing an item changes the
association of an index to its queue item. You can add items at either the tail or the head of the queue.

Methods the Queue class defines:

[l

[l:

AT
HASINDEX
ITEMS
MAKEARRAY
PEEK
PULL
PUSH
PUT
QUEUE
REMOVE
SUPPLIER

Methods inherited from the Object class:

NEW (Class method)
Operator methods: =, ==, \=<, <>, \==
CLASS

COPY
DEFAULTNAME
HASMETHOD

INIT

OBJECTNAME
OBJECTNAME=
REQUEST

RUN

SETMETHOD
START

129

Chapter 5. The Collection Classes

130

STRING
UNSETMETHOD

Note: The Queue class also has available class methods that its metaclass, the Class class, defines.

5.6.1. []

>>-[index]-—- - - - ><

Returns the same value as the AT method. See

The order in which the queue items appear in the array is the same as their queuing order, with the head
of the queue as index 1.

5.6.2. [|=

>>-[index]=item—-- - - - ><

This method is the same as the PUT method. &€

5.6.3. AT

>>-AT(index)----—- - - - -~ - ><

Returns the item associated with indaglex If the collection has no item associated wittldex this
method returns the NIL object.

5.6.4. HASINDEX

>>-HASINDEX (index) - - - ><

Returnst (true) if the collection contains any item associated with inidebex or o (false).

5.6.5. ITEMS

>>-ITEMS----- - -- - ><

Returns the number of items in the collection.

5.6.6. MAKEARRAY

>>-MAKEARRAY- - - - - -_ ><

Chapter 5. The Collection Classes
Returns a single-index array containing the receiver queue items. The array indexes rangtftben

number of items. The order in which the queue items appear in the array is the same as their queuing
order, with the head of the queue as index 1.

5.6.7. PEEK

>>-PEEK---- - - -- ><

Returns the item at the head of the queue. If the queue is empty then the method returns the .NIL object.
The collection remains unchanged.

5.6.8. PULL

>>=PULL=mmmmmmmmmmmmm e e ><

Returns and removes the item at the head of the queue. If the queue is empty then the method returns the
.NIL object

5.6.9. PUSH

>>-PUSH(item) - - - - - ><

Adds the objecitemto the head of the queue.

5.6.10. PUT

>>-PUT(item, index) - - - ><

Replaces any existing item associated with the spedifigekwith the new item. If théndexdoes not
exist in the queue, an error is raised.

5.6.11. QUEUE

>>-QUEUE (item) -—-----------—---- e - ><

Adds the objecitemto the tail of the queue.

5.6.12. REMOVE

>>-REMOVE (index) -- - - - - ><

Returns and removes from a collection the member item with imttdex If no item has indexndex
this method returns the NIL object and removes no item.

131

Chapter 5. The Collection Classes

5.6.13. SUPPLIER

>>-SUPPLIER--------—-—--- -- mmmmm oo -- ><

Returns a supplier object for the collection. After you have obtained a supplier, you can send it messages
(seeThe Supplier Claggo enumerate all the items that were in the queue at the time of the supplier’'s
creation. The supplier enumerates the items in their queuing order, with the head of the queue first.

5.7. The Relation Class

132

A relation is a collection with indexes that can be any objects the user supplies. In a relation, each item is
associated with a single index, but there can be more than one item with the same index (unlike a table,
which can contain only one item for any index).

Methods the Relation class defines:

[]_

ALLAT
ALLINDEX
AT

HASINDEX
HASITEM
INDEX
ITEMS
MAKEARRAY
PUT
REMOVE
REMOVEITEM
SUPPLIER

Set-operator methods the Relation class defines:

DIFFERENCE
INTERSECTION
SUBSET
UNION

XOR

Methods inherited from the Object class:

NEW (Class method)
Operator methods: =, ==, \z<, <>, \==
CLASS

COPY
DEFAULTNAME
HASMETHOD

INIT

OBJECTNAME
OBJECTNAME=
REQUEST

RUN

SETMETHOD
START

STRING
UNSETMETHOD

Chapter 5. The Collection Classes

Note: The Relation class also has available class methods that its metaclass, the Class class,
defines.

5.7.1.]

>>-[index] - - - - - - ><

Returns the same item as the AT method. 8Ee

5.7.2.[]=

>>-[index]=item--- - - - ><

This method is the same as the PUT method. &€

5.7.3. ALLAT
>>-ALLAT (index) ——=——=——=——=——=————— - ><

Returns a single-index array containing all the items associated with index The indexes of the
returned array range fromto the number of items. Items in the array appear in an unspecified order.

5.7.4. ALLINDEX

>>-ALLINDEX (item) - == == == == -= ><

Returns a single-index array containing all indexes for ittemm, in an unspecified order. (The program
should not rely on any order.)

5.7.5. AT

>>-AT (index) - - - ><

Returns the item associated with indegex If the relation contains more than one item associated with
indexindex the item returned is unspecified. (The program should not rely on any particular item being
returned.) If the relation has no item associated with indeex this method returns the NIL object.

5.7.6. HASINDEX

>>-HASINDEX (index) -—----- - e - ><

Returnst (true) if the collection contains any item associated with inidebex or o (false).

133

Chapter 5. The Collection Classes

5.7.7. HASITEM

>>-HASITEM(item,index)--- -— ———————— e -— ><

Returnst (true) if the relation contains the member itéem (associated with indexdex or o (false).

5.7.8. INDEX

>>-INDEX (item)---- - - - ><

Returns the index for itentem If there is more than one index associated with itesm, the one this
method returns is not defined.

5.7.9. ITEMS

>>-TTEMS—+--- 4 - - - ><
+-(index) -+

Returns the number of relation items with indagex If you specify noindex this method returns the
total number of items associated with all indexes in the relation.

5.7.10. MAKEARRAY

>>-MAKEARRAY - - - ><

Returns a single-index array containing the index objects. The array indexes rangetérdime number
of items. The collection items appear in the array in an unspecified order. (The program should not rely
on any order.)

5.7.11. PUT

>>-PUT (item, index)-—----- - ———— - ><

Makes the objedtema member item of the relation and associates it with iriddex If the relation
already contains any items with indedex this method adds a new member itéemwith the same
index, without removing any existing member items.

5.7.12. REMOVE

>>-REMOVE (index) -~ - - - - - ><

Returns and removes from a relation the member item with iivtex If the relation contains more
than one item associated with indexiex the item returned and removed is unspecified. If no item has
indexindex this method returns the NIL object and removes nothing.

134

Chapter 5. The Collection Classes

5.7.13. REMOVEITEM

>>-REMOVEITEM(item, index) - B - ><

Returns and removes from a relation the member item (associated with indeixde. If valueis not
a member item associated with indexex this method returns the NIL object and removes no item.

5.7.14. SUPPLIER

>>-SUPPLIER-—+-=---=--- +- -- -- -- ><
+-(index)-+

Returns a supplier object for the collection. After you have obtained a supplier, you can send it messages
(seeThe Supplier Claggo enumerate all the items that were in the collection at the time of the supplier’s
creation. The supplier enumerates the items in an unspecified order. (The program should not rely on any
order.) If you specifyindex the supplier enumerates all of the items in the relation with the specified

index.

5.7.15. DIFFERENCE

>>-DIFFERENCE (argument) -— - - - - ><

Returns a new collection (of the same class as the receiver) containing only those itemsahairient
collection does not contain (with the same associated index)afhusnentcan be any object described
in The Argument Collection Classes

5.7.16. INTERSECTION

>>-INTERSECTION (argument) - - - ><

Returns a new collection (of the same class as the receiver) containing only those items that are in both
the receiver collection and tlegumentcollection with the same associated index. Bngumentcan be
any object described ifihe Argument Collection Classes

5.7.17. SUBSET

>>-SUBSET (argument) - - - ><

Returnst (true) if all items in the receiver collection are also contained iratfggimentcollection with
the same associated index; retuer(false) otherwise. Thargumentcan be any object describedTine
Argument Collection Classes

135

Chapter 5. The Collection Classes

5.7.18. UNION

>>-UNION (argument)------- - —— e - ><

Returns a new collection containing all items from the receiver collection arargiuenentcollection.
Theargumentcan be any object describedTine Argument Collection Classes

5.7.19. XOR

>>-XO0R (argument) -~ - - - ><

Returns a new collection of the same class as the receiver that contains all items from the receiver
collection and theargumentcollection. All index-item pairs that appear in both collections are removed.
Theargumentcan be any object describedTine Argument Collection Classes

5.7.20. Examples

/* Use a relation to express parent-child relationships */

family = .relation"new

family["Henry"] = "Peter" /* Peter is Henry's child */
family["Peter"] = "Bridget" /* Bridget is Peter's child */
family["Henry"] = "Jane" /* Jane is Henry's child */

/* Show all children of Henry recorded in the family relation */
henrys_kids = family~allat("Henry")
Say "Here are all the listed children of Henry:"
Do kid Over henrys_kids
Say " "kid
End

/* Show all parents of Bridget recorded in the family relation */
bridgets_parents = family~allindex("Bridget")
Say "Here are all the listed parents of Bridget:"
Do parent Over bridgets_parents
Say " '"parent
End

/* Display all the grandparent relationships we know about. */

checked_for_grandkids = .set™new /* Records those we have checked */
Do grandparent Over family /* Iterate for each index in family */
If checked_for_grandkids~hasindex(grandparent)

Then Iterate /* Already checked this one */
kids = family~allat(grandparent) /* Current grandparent's children */
Do kid Over kids /* Iterate for each item in kids */

grandkids = family~allat(kid) /* Current kid's children */

Do grandkid Over grandkids /* Iterate for each item in grandkids */

Say grandparent "has a grandchild named" grandkid"."

End

End

136

Chapter 5. The Collection Classes

checked_for_grandkids~put (grandparent) /* Add to already-checked set */
End

5.8. The Set Class

A set is a collection containing the member items where the index is the same as the item. Any object
can be placed in a set. There can be only one occurrence of any object in a set.

The Set class is a subclass of the Table class. In addition to its own methods, it inherits the methods of
the Object class (seehe Object Clagsand the Table class.

Methods the Set class defines:

OF (Class method)

I

I]:

AT
HASINDEX
ITEMS
MAKEARRAY
PUT

REMOVE
SUPPLIER

Set-operator methods inherited from the Table class:

DIFFERENCE
INTERSECTION
SUBSET
UNION

XOR

Methods inherited from the Object class:

NEW (Class method)
Operator methods: =, ==, \s3<, <>, \==
CLASS

COPY
DEFAULTNAME
HASMETHOD

INIT

OBJECTNAME
OBJECTNAME=
REQUEST

RUN

SETMETHOD
START

STRING
UNSETMETHOD

Note: The Set class also has available class methods that its metaclass, the Class class, defines.

137

Chapter 5. The Collection Classes

5.8.1. OF (Class Method)

v |
>>-0F (---item—+-)- -- -- -- -- -- ><

Returns a newly created set containing the specitiggdobjects.

5.8.2.]

>>-[index]- - - - ><

Returns the same item as the AT method. 8Ee

5.8.3. =

>>-[index]=item---------- - - - - ><

This method is the same as the PUT method.FBé¢.

5.8.4. AT

>>-AT (index) - - - - - ><

Returns the item associated with indagex If the collection has no item associated wiitdex this
method returns the NIL object.

5.8.5. HASINDEX

>>-HASINDEX (index) - - - ><

Returnst (true) if the collection contains any item associated with inidebex or o (false).

5.8.6. ITEMS

>>-ITEMS-------=---==---- - S - <

Returns the number of items in the collection.

5.8.7. MAKEARRAY

>>-MAKEARRAY -- - - - - ><

138

Chapter 5. The Collection Classes

Returns a single-index array containing the index objects. The array indexes rangetérdime number
of items. The collection items appear in the array in an unspecified order. (The program should not rely
on any order.)

5.8.8. PUT

>>-PUT (item—+-—————-———+-) - - - - ><
+-,index-+

Makes the objedtema member item of the collection and associates it with iriddex If you specify
index it must be the same @&&m

5.8.9. REMOVE

>>-REMOVE (index) -- - - - ><

Returns and removes from a collection the member item with imatx If no item has indexndex
this method returns the NIL object and removes no item.

5.8.10. SUPPLIER

>>-SUPPLIER------—--—---—- - - - - ><

Returns a supplier object for the collection. After you have obtained a supplier, you can send it messages
(seeThe Supplier Claggo enumerate all the items that were in the collection at the time of the supplier’s
creation. The supplier enumerates the items in an unspecified order. (The program should not rely on any
order.)

5.9. The Table Class

A table is a collection with indexes that can be any object the user supplies. In a table, each item is
associated with a single index, and there can be only one item for each index (unlike a relation, which
can contain more than one item with the same index).

Methods the Table class defines:

I

I]:

AT
HASINDEX
ITEMS
MAKEARRAY
PUT
REMOVE
SUPPLIER

139

Chapter 5. The Collection Classes

Set-operator methods the Table class defines:

DIFFERENCE
INTERSECTION
SUBSET
UNION

XOR

Methods inherited from the Object class:

NEW (Class method)
Operator methods: =, ==, \=<, <>, \==
CLASS

COPY
DEFAULTNAME
HASMETHOD

INIT

OBJECTNAME
OBJECTNAME=
REQUEST

RUN

SETMETHOD
START

STRING
UNSETMETHOD

Note: The Table class also has available class methods that its metaclass, the Class class, defines.

5.9.1. []

>>-[index]-—- - - - ><

Returns the same item as the AT method. 8Ee

5.9.2. [|=

>>-[index]=item-—- - - - - - ><

This method is the same as the PUT method.FBé¢.

5.9.3. AT

>>-AT (index) - - - ><

Returns the item associated with indaglex If the collection has no item associated wiitdex this
method returns the NIL object.

140

Chapter 5. The Collection Classes

5.9.4. HASINDEX

>>-HASINDEX (index)------- -- et -- ><

Returnst (true) if the collection contains any item associated with indebex or o (false).

5.9.5. ITEMS

>>-ITEMS--- -- - - ><

Returns the number of items in the collection.

5.9.6. MAKEARRAY

>>-MAKEARRAY- - — — ><

Returns a single-index array containing the index objects. The array indexes rangetérdime number
of items. The collection items appear in the array in an unspecified order. (The program should not rely
on any order.)

5.9.7. PUT

>>-PUT(item, index)---—--- - —————— - ><

Makes the objedtema member item of the collection and associates it with iriddex The new item
replaces any existing items associated with indebex

5.9.8. REMOVE

>>-REMOVE (index) -- - - - - ><

Returns and removes from a collection the member item with imttdex If no item has indexndex
this method returns the NIL object and removes no item.

5.9.9. SUPPLIER

>>-SUPPLIER-- - - - ><

Returns a supplier object for the collection. After you have obtained a supplier, you can send it messages
(seeThe Supplier Claggo enumerate all the items that were in the collection at the time of the supplier’s
creation. The supplier enumerates the items in an unspecified order. (The program should not rely on any
order.)

141

Chapter 5. The Collection Classes

142

5.9.10. DIFFERENCE

>>-DIFFERENCE (argument) -— - ————m———— - ><

Returns a new collection (of the same class as the receiver) containing only those index-item pairs of the
receiver whose indexes tlaegumentcollection does not contain. Tleggumentcan be any object

described inThe Argument Collection ClasseBheargumentmust also allow all of the index values in

the receiver collection.

5.9.11. INTERSECTION

>>-INTERSECTION (argument) - - - - ><

Returns a new collection (of the same class as the receiver) containing only those index-item pairs of the
receiver whose indexes are in both the receiver collection anarthuementcollection. Theargumentcan

be any object described the Argument Collection ClasseéBheargumentmust also allow all of the

index values in the receiver collection.

5.9.12. SUBSET

>>-SUBSET (argument) - - - ><

Returnst (true) if all indexes in the receiver collection are also contained imtgementcollection;
returnso (false) otherwise. Thargumentcan be any object describedTime Argument Collection
ClassesTheargumentmust also allow all of the index values in the receiver collection.

5.9.13. UNION

>>-UNION (argument) - - - ><

Returns a new collection of the same class as the receiver that contains all the items from the receiver
collection and selected items from talgumentcollection. This method includes an item frargument

in the new collection only if there is no item with the same associated index in the receiver collection and
the method has not already included an item with the same index. The order in which this method selects
items inarguments unspecified. (The program should not rely on any order.) See also the UNION
method of the Directory (segNION) and Relation (se&NION) classes. Thethercan be any object
described irfThe Argument Collection ClasseBheargumentmust also allow all of the index values in

the receiver collection.

5.9.14. XOR

>>-X0R (argument) -——------ - e - ><

Returns a new collection of the same class as the receiver that contains all items from the receiver
collection and theargumentcollection; all indexes that appear in both collections are removed. The

Chapter 5. The Collection Classes

argumentcan be any object describedTime Argument Collection ClasseBheargumenimust also
allow all of the index values in the receiver collection.

5.10. The Concept of Set Operations

The following sections describe the concept of set operations to help you work with set operators, in
particular if the receiver collection class differs from the argument collection class.

Rexx provides the following set-operator methods:

- DIFFERENCE

+ INTERSECTION
+ SUBSET

+ UNION

« XOR

These methods are only available to instances of the following collection classes:

- Directory
« Table and its subclass Set
« Relation and its subclass Bag

The collection classes Array, List, and Queue do not have set-operator methods but their instances can be
used as the argument collections.

Set operations have the following form:
result = receiver”setoperator (argument)

where:

receiver
is the collection receiving the set-operator message. It can be an instance of the Directory, Relation,
Table, Set, or Bag collection class.

setoperator

is the set-operator method used.

argument

is the argument collection supplied to the method. It can be an instance of one of the receiver
collection classes or of a collection class that does not have set-operator methods, namely Array,
List, or Queue.

The resulting collection is of the same class as the receiver collection.

143

Chapter 5. The Collection Classes

144

5.10.1. The Principles of Operation

A set operation is performed by iterating over the elements of the receiver collection to compare each
element of the receiver collection with each element of the argument collection. The element is defined

as the tuple< index,iten» (seeDetermining the Identity of an ItejnDepending on the set-operator

method and the result of the comparison, an element of the receiver collection is, or is not, included in

the resulting collection. A receiver collection that allows for duplicate elements can, depending on the
set-operator method, also accept elements of the argument collection after they have been coerced to the
type of the receiver collection.

The following examples are to help you understand the semantics of set operations. The collections are
represented as a list of elements enclosed in curly brackets. The list elements are separated by a comma.

5.10.1.1. Set Operations on Collections without Duplicates

Assume that the example sets a#€a,b} ands={b,c,d}. The result of a set operation is another set.
The only exception is a subset resulting in a Boolean .true or .false. Using the colleetiois, the
different set operators produce the following:

UNION operation
All elements ofa andB are united:

A UNION B = {a,b,c,d}

DIFFERENCE operation

The resulting collection contains all elements of the first set except for those that also appear in the
second set. The system iterates over the elements of the second set and removes them from the first
set one by one.

A DIFFERENCE B = {a}
B DIFFERENCE A = {c,d}

XOR operation

The resulting collection contains all elements of the first set that are not in the second set and all
elements of the second set that are not in the first set:

A XOR B = {a,c,d}

INTERSECTION operation
The resulting collection contains all elements that appear in both sets:
A INTERSECTION B = {b}

SUBSET operation

Returns. true if the first set contains only elements that also appear in the second set, otherwise it
returns. false:

A SUBSET B = .false
B SUBSET A = .false

Chapter 5. The Collection Classes

5.10.1.2. Set-Like Operations on Collections with Duplicates

Assume that the example bags a#¢a,b,b} andB={b,b,c,c,d}. The result of any set-like operation is
a collection, in this case a bag. The only exception is SUBSET resulting in a Boolean .true or .false.
Using the collectiona ands, the different set-like operators produce the following:

UNION operation
All elements ofa andB are united:

A UNION B = {a,b,b,b,b,c,c,d}

DIFFERENCE operation

The resulting collection contains all elements of the first bag except for those that also appear in the
second bag. The system iterates over the elements of the second bag and removes them from the
first bag one by one.

A DIFFERENCE B = {a}
B DIFFERENCE A = {c,c,d}

XOR operation

The resulting collection contains all elements of the first bag that are not in the second bag and all
elements of the second bag that are not in the second bag:

A XOR B = {a,c,c,d}

INTERSECTION operation
The resulting collection contains all elements that appear in both bags:
A INTERSECTION B = {b,b}

SUBSET operation

Returns. true if the first set contains only elements that also appear in the second set, otherwise it
returns. false:

A SUBSET B = .false
B SUBSET A = .false

5.10.2. Determining the Identity of an Item

Set operations require the definition of the identity of an element to determine whether a certain element
exists in the receiver collection. The element of a collection is conceived as thetimglex,iter». The

indexis used as the identification tag associated with the item. Depending on the collection class, the
index is an instance of a particular class, for example, the string class for a directory element, an integer
for an array, or any arbitrary class for a relation. The Array class is an exception because it can be
multidimensional having more than one index. However, as a collection, it is conceptionally linearized

by the set operator.

145

Chapter 5. The Collection Classes

For collections of collection classes that require unique indexes, namely the Set, Table, and Directory
classes, an item is identified by itedex For collections of collection classes that allow several items to
have the same index, namely the Relation class, an item is identified by binttheixand itsitem For

the Bag and the Set subclasses, where several items can have the same imdkxbatlitemmust be
identical, the item is identified by iisdex According to this concept, an item of a collection is identified
as follows:

« HASINDEX(index for Bag, Directory, Set, and Table collections
- HASITEM(item,index)or the Relation collections

Items of the Array, List, and Queue collections are identified byt not theindex The index is only

used as a means to access the item but carries no semantics. In a Queue collection class, for example, the
index of a particular item changes when another item is added to the queue and therefore is not a
permanent identification of an item.

5.10.3. The Argument Collection Classes

A argument collection can be an instance of any collection class, including the Array, List, and Queue
classes, which do not have set-operator methods.

If the collection does not contain a UNION method, the following must apply:

« The collection must support the MAKEARRAY method so that the set or set-like operator can iterate
over the supplied elements.

« The collection must conceptionally be coerced into a bag-like collection before the set operation.
Conceptionally, sparse arrays are condensed and multidimensional arrays are linearized.

Collections having the UNION method must support the SUPPLIER method.

5.10.4. The Receiver Collection Classes

In addition to the set and set-like methods, a collection must support the following methods to qualify as
a receiver collection:

« Methods for collections not allowing elements with duplicate indexes:

- HASINDEX
- PUTor (=
- REMOVE
- ITEMS

« Methods for collections allowing elements with duplicate indexes:
- HASITEM,; for bags, HASINDEX is sufficient
- ATor]]

146

Chapter 5. The Collection Classes

PUT or []=
REMOVEITEM; for bags, REMOVE is sufficient
ITEMS

5.10.5. Classifying Collections

To determine whether the items in a collection class can be used in a set operation, check the following
criteria:

- Is an object a collection?
To answer this question, send the HASMETHOD method with parameter "hasindetjett

: :ROUTINE isCollection
use arg object
return object~hasmethod("hasindex")

This function returns TRUE if the object is an instance of the Array, List, Queue, Set, Bag, Relation,
or Table collection class.

- Does the collection class have set-operator methods?
To answer this question, send the HASMETHOD method with parameter "uniafject

: :ROUTINE hasSetOperators
use arg object
return object~hasmethod("union")

This function returns TRUE if the object is an instance of the Set, Bag, Relation, or Table collection
class.

147

Chapter 5. The Collection Classes

148

Chapter 6. Other Classes

This chapter describes the following classes:

« Alarm class

« Class class

- Message class

« Method class

« Monitor class

+ MutableBuffer class

+ Object class

« Regular Expression class

« Stem class

+ Stream class

« String class

« Supplier class

« WindowsProgramManager class
« WindowsRegistry class

« WindowsEventLog class

- WindowsManager class

« WindowsObiject class

« WindowsMenuObject class
- WindowsClipboard class

+ Windows OLEObiject class

6.1. The Alarm Class

An alarm object provides timing and notification capability by supplying a facility to send any message
to any object at a given time. You can cancel an alarm before it sends its message.

The Alarm class is a subclass of the Object class.

Methods the Alarm class defines:

CANCEL)
INIT (Overrides Object class method)

Methods inherited from the Object class:

NEW (Class Method)

149

Chapter 6. Other Classes

150

Operator methods: =, ==, \=<5 <>, \==
CLASS

COPY
DEFAULTNAME
HASMETHOD
OBJECTNAME
OBJECTNAME=
REQUEST

RUN
SETMETHOD
START

STRING
UNSETMETHOD

Note: The Alarm class also has available class methods that its metaclass, the Class class, defines.

6.1.1. CANCEL

>>-CANCEL---- -- - -- ><

Cancels the pending alarm request represented by the receiver. This method takes no action if the
specified time has already been reached.

6.1.2. INIT

>>-INIT(atime,message)-—— - - - - ><

Sets up an alarm for a future tinatime At this time, the alarm object sends the messagentiestsagea
message object, specifies. (Sé¢e Message ClagsTheatimeis a string. You can specify this in the

default format thh:mm:ss') or as a number of seconds starting at the present time. If you use the default
format, you can specify a date in the default formad (Mmm yyyy') after the time with a single blank
separating the time and date. Leading and trailing blanks are not allowedatirttes If you do not

specify a date, the language processor uses the first future occurrence of the specified time. You can use
the CANCEL method to cancel a pending alarm. Bealization for more information.

6.1.3. Examples

The following code sets up an alarm at 5:10 p.m. on October 8, 1996. (Assume today’s date is October 5,
1996.)

/* Alarm Examples */

PersonalMessage=.MyMessageClass“new("Call the Bank")
msg=.message new(PersonalMessage, "RemindMe")

a=.alarm™new("17:10:00 8 Oct 1996", msg)
exit
/* ::CLASS describes the ::CLASS directive */

Chapter 6. Other Classes

/* ::METHOD describes the ::METHOD directive */

: :CLASS MyMessageClass public

::Method init

expose inmsg

use arg inmsg

: :Method RemindMe

expose inmsg

say "It is now" "TIME"("C")".Please "inmsg

/* On the specified data and time, displays the following message: */
/* "It is now 5:10pm. Please Call the Bank" */

For the following example, the user uses the same code as in the preceding example ixgedine
message object to run at the specified time. The following code sets up an alarm tozxsg thessage
object in 30 seconds from the current time:

a=.alarm"new(30,msg)

6.2. The Class Class

The Class class is like a factory producing the factories that produce objects. It is a subclass of the Object
class. The instance methods of the Class class are also the class methods of all classes.

Methods the Class class define¢They are all both class and instance methods.)

BASECLASS))

DEFAULTNAME (Overrides Object class method)
DEFINE

DELETE

EDNHANCED

INHERIT _

INIT (Overrides Object class method)

METACLASS

METHOD

METHODS

MIXINCLASS .

NEW (Overrides Object class method)
QUERYMIXINCLASS

SUBCLASS

SUBCLASSES

SUPERCLASSES

UNINHERIT

Methods inherited from the Object class:

Operator methods: =, ==, \=<5 <>, \==
CLASS

COPY

HASMETHOD

OBJECTNAME

OBJECTNAME=

REQUEST

RUN
SETMETHOD

151

Chapter 6. Other Classes

START
STRING
UNSETMETHOD

6.2.1. BASECLASS

>>-BASECLASS------------- - e - ><

Returns the base class associated with the class. If the class is a mixin class, the base class is the first
superclass that is not also a mixin class. If the class is not a mixin class, the base class is the class
receiving the BASECLASS message.

6.2.2. DEFAULTNAME

>>-DEFAULTNAME---- - - - - - ><

Returns a short human-readable string representation of the class. The string returned is of the form

The id class

whereid is the identifier assigned to the class when it was created.
Examples:
say .array defaultname /* Displays "The Array class" */

say .account~defaultname /* Displays "The ACCOUNT class" */
say .savings“defaultname /* Displays "The Savings class" */

::class account /* Name is all upper case x/
::class "Savings" /* String name is mixed case */
>>-DEFINE (methodname-+--—------ +=)————— - ><

+-,method-+

Incorporates the method objenethodin the receiver class’s collection of instance methods. The
language processor translates the method masteodnaméo uppercase. Using the DEFINE method
replaces any existing definition fanethodnamén the receiver class.

If you omit method the method nammethodnamé made unavailable for the receiver class. Sending a
message of that name to an instance of the class causes the UNKNOWN method (if any) to be run.

Themethodargument can be a string containing a method source line instead of a method object.
Alternatively, you can pass an array of strings containing individual method lines. Either way, DEFINE
creates an equivalent method object.

Notes:

1. The classes Rexx provides do not permit changes or additions to their method definitions.

152

Chapter 6. Other Classes

2. The DEFINE method is a protected method.

Example:

bank_account=.object “subclass("Account")
bank_account~define ("TYPE",'return "a bank account"')

6.2.4. DELETE

>>-DELETE (methodname) -——- - - - - ><

Removes the receiver class’s definition for the method nawethodnamdf the receiver class defined
methodnamas unavailable with the DEFINE method, this definition is nullified. If the receiver class had
no definition formethodnameno action is taken.

Notes:

1. The classes Rexx provides do not permit changes or additions to their method definitions.

2. DELETE deletes only methods the target class defines. You cannot delete inherited methods the
target’s superclasses define.

3. The DELETE method is a protected method.

Example:

myclass=.object“subclass("Myclass") /* After creating a class */
myclass~define ("TYPE",'return "my class"') /* and defining a method */
myclass~delete ("TYPE") /* this deletes the method */

6.2.5. ENHANCED

>>-ENHANCED (methods—+-----=-=-——---- +-) -- -- ><

| v [
+--—,argument-+-+

Returns an enhanced new instance of the receiver class, with object methods that are the instance
methods of the class, enhanced by the methods in the collenttimodsThe collection indexes are the
names of the enhancing methods, and the items are the method objects (or strings or arrays of strings
containing method code). (See the descriptioDBFINE.) You can use any collection that supports a
SUPPLIER method.

ENHANCED sends an INIT message to the created object, passirgghmens specified on the
ENHANCED method.

Example:
/* Set up rclass with class method or methods you want in your */

/* remote class */
rclassmeths = .directory™new

153

Chapter 6. Other Classes

154

rclassmeths ["DISPATCH"]=d_source /* d_source must have code for a */

/* DISPATCH method. */
/* The following sends INIT("Remote Class") to a new instance */
rclass=.class enhanced(rclassmeths, "Remote Class")

6.2.6. ID

>>-1D- - -- -- - ><

Returns the class identity (instance) string. (This is the string that is an argument on the SUBCLASS and
MIXINCLASS methods.) The string representations of the class and its instances contain the class
identity.

Example:

myobject=.object subclass("my object") /* Creates a subclass */
say myobject~id /* Produces: "my object" */
>>-INHERIT(classobj—+-—--—-—--—--- +=)——-- -- -- ><

+-,classpos—-+

Causes the receiver class to inherit the instance and class methods of the classdastgeb} The
classposs a class object that specifies the position of the new superclass in the list of superclasses. (You
can use the SUPERCLASSES method to return the immediate superclasses.)

The new superclass is inserted in the search order after the specified classldéipp<lass is not
found in the set of superclasses, an error is raised. If you do not spasfyposthe new superclass is
added to the end of the superclasses list.

Inherited methods can take precedence only over methods defined at or above the base class of the
classobijin the class hierarchy. Any subsequent change to the instance methddssabjtakes
immediate effect for all the classes that inherit from it.

The new superclasdassobjmust be created with the MIXINCLASS option of the ::CLASS directive or
the MIXINCLASS method and the base class of thessobjmust be a direct superclass of the receiver
object. The receiver must not already descend fetamsobijin the class hierarchy and vice versa.

The method search order of the receiver class after INHERIT is the same as before INHERIT, with the
addition ofclassobjand its superclasses (if not already present).

Notes:

1. You cannot change the classes that Rexx provides by sending INHERIT messages.
2.The INHERIT method is a protected method.

Example:

Chapter 6. Other Classes

room~inherit(.location)

6.2.8. INIT

>>-INIT(classid)-- - - - ><

Sets the receiver class identity to the strat@ssid You can use the ID method (described previously) to
return this string, which is the class identity. Seiialization for more information.

6.2.9. METACLASS

>>-METACLASS- - - - ><

Returns the receiver class’s default metaclass. This is the class used to create subclasses of this class
when you send SUBCLASS or MIXINCLASS messages (with no metaclass arguments). If the receiver
class is an object class (s@bject Classésthis is also the class used to create the receiver class. The
instance methods of the default metaclass are the class methods of the receiver class. For more
information about class methods, s@bject ClassesSee also the description of the SUBCLASS method
in SUBCLASS

6.2.10. METHOD

>>-METHOD (methodname) ———-====-== e - ><

Returns the method object for the receiver class’s definition for the methodmathednamdf the
receiver class definadethodnamas unavailable, this method returns the NIL object. If the receiver
class did not definenethodnamethe language processor raises an error.

Example:

/* Create and retrieve the method definition of a class */

myclass=.object“subclass("My class") /* Create a class */
mymethod=.method new(" ","Say arg(1)") /* Create a method object */
myclass~define ("ECHO" ,mymethod) /* Define it in the class */
method_source = myclass method("ECHO") “source /* Extract it */
say method_source /* Says "an Array" */
say method_source[1] /* Shows the method source code */

6.2.11. METHODS

>>-METHODS—+--==-===-==--=~=~ +-—n -- -- -- ><
+-(class_object) -+

Returns a supplier object for all the instance methods of the receiver class and its superclasses, if you
specify no argument. iflass_objects the NIL object, METHODS returns a supplier object for only the

155

Chapter 6. Other Classes

instance methods of the receiver class. If you specdlaas objectthis method returns a supplier object
containing only the instance methods thitss _objectlefines. If you send appropriate messages to a
supplier object, the supplier enumerates all the instance methods existing at the time of the supplier's
creation. (Se&he Supplier Clasfor details.)

Note: Methods that have been hidden with a SETMETHOD or DEFINE method are included with the
other methods that METHODS returns. The hidden methods have the NIL object for the associated
method.

Example:

objsupp=.object “methods
do while objsupp~available

say objsupp”index /* Says all instance methods */
objsupp~next /* of the Object class */
end

6.2.12. MIXINCLASS

>>-MIXINCLASS (classid—+-- -- -- ———=t+-) -- ><
+-,metaclass—+-————————— +-+
+-,methods-+

Returns a new mixin subclass of the receiver class. You can use this method to create a new mixin class
that is a subclass of the superclass to which you send the messag#addidis a string that identifies
the new mixin subclass. You can use the ID method to retrieve this string.

Themetaclasss a class object. If you specifpetaclassthe new subclass is an instancemndtaclass(A
metaclass is a class that you can use to create a class, that is, a class whose instances are classes. The
Class class and its subclasses are metaclasses.)

If you do not specify anetaclassthe new mixin subclass is an instance of the default metaclass of the
receiver class. For subclasses of the Object class, the default metaclass is the Class class.

Themethodss a collection whose indexes are the names of methods and whose items are method
objects (or strings or arrays of strings containing method code). If you speeifiyodsthe new class is
enhanced with class methods from this collection. (The metaclass of the new class is not affected.)

The METACLASS method returns the metaclass of a class.

The method search order of the new subclass is the same as that of the receiver class, with the addition of
the new subclass at the start of the order.

Example:

buyable=.object mixinclass("Buyable") /* New subclass is buyable */
/* Superclass is Object class */

156

Chapter 6. Other Classes

6.2.13. NEW

>>-NEW-+---———————————— +- - - -- ><
| =, -t |
| v | |
+=(——--arg-+--)-+

Returns a new instance of the receiver class, whose object methods are the instance methods of the class.
This method initializes a new instance by running its INIT methods. (S&elization.) NEW also sends
an INIT message. If you specify args, NEW passes these arguments on the INIT message.

Example:

/* NEW method example */

a = .accountnew /* -> Object variable balance=0 */

y = .account”new(340.78) /* —> Object variable balance=340.78 */
/* plus free toaster oven x/

::class account subclass object

: :method INIT /* Report time each account created x/

/* plus free toaster when more than $100 */
Expose balance
Arg opening_balance
Say "Creating" self”objectname "at time" time()
If datatype(opening_balance, "N") then balance = opening_balance
else balance = 0
If balance > 100 then Say " You win a free toaster oven"

6.2.14. QUERYMIXINCLASS

>>-QUERYMIXINCLASS - - - - - ><

Returnst (true) if the class is a mixin class, or(false).

6.2.15. SUBCLASS

>>-SUBCLASS(classid—+---— -- -- ——+-)-- -- ><
+-,metaclass—+--————---—- +-+
+-,methods-+

Returns a new subclass of the receiver class. You can use this method to create a new class that is a
subclass of the superclass to which you send the messagelabBalis a string that identifies the
subclass. (You can use the ID method to retrieve this string.)

Themetaclasss a class object. If you specifpetaclassthe new subclass is an instancerdtaclass(A
metaclass is a class that you can use to create a class, that is, a class whose instances are classes. The
Class class and its subclasses are metaclasses.)

If you do not specify anetaclassthe new subclass is an instance of the default metaclass of the receiver
class. For subclasses of the Object class, the default metaclass is the Class class.

157

Chapter 6. Other Classes

158

Themethodss a collection whose indexes are the names of methods and whose items are method
objects (or strings or arrays of strings containing method code). If you speeifiyodsthe new class is
enhanced with class methods from this collection. (The metaclass of the new class is not affected.)

The METACLASS method returns the metaclass of a class.

The method search order of the new subclass is the same as that of the receiver class, with the addition of
the new subclass at the start of the order.

Example:
room=.object subclass("Room") /* Superclass is .object */

/* Subclass is room */
/* Subclass identity is Room */

6.2.16. SUBCLASSES

>>-SUBCLASSES - - - ><

Returns the immediate subclasses of the receiver class in the form of a single-index array of the required
size, in an unspecified order. (The program should not rely on any order.) The array indexes range from 1
to the number of subclasses.

6.2.17. SUPERCLASSES

>>=SUPERCLASSES~~— === === === = oo oo ><

Returns the immediate superclasses of the receiver class in the form of a single-index array of the
required size. The immediate superclasses are the original class used on a SUBCLASS or a
MIXINCLASS method, plus any additional superclasses defined with the INHERIT method. The array is
in the order in which the class has inherited the classes. The original class used on a SUBCLASS or
MIXINCLASS method is the first item of the array. The array indexes range fraorthe number of
superclasses.

Example:
z=.class " superclasses
/* To obtain the information this returns, you could use: */
do i over z
say i
end

6.2.18. UNINHERIT

>>-UNINHERIT (classobj)—————————————————————————————— ><

Nullifies the effect of any previous INHERIT message sent to the receiver for thectdssobj

Chapter 6. Other Classes

Note: You cannot change the classes that Rexx provides by sending UNINHERIT messages.

Example:

location=.object mixinclass("Location")
room=.object~subclass("Room")~~“inherit (location) /* Creates subclass */
/* and specifies inheritance */

room”UNINHERIT (location)

6.3. The WindowsMenuObiject Class

The MenuObject class provides methods to query, manipulate, and interact with the menu or submenu of
a window.

Methods the MenuObiject Class Defines

- FINDITEM

« FINDSUBMENU
- IDOF

- ISMENU

« ITEMS

+ PROCESSITEM
« SUBMENU

« TEXTOK(id)

« TEXTOF(position)

6.3.1. ISMENU

>>-ISMENU----------=-=--- -- e -- ><

Returns 1 if the associated window is a menu, otherwise 0.

6.3.2. ITEMS

>>-ITEMS--- -- - -- ><

Returns the number of menu items contained in the associated menu.

159

Chapter 6. Other Classes
6.3.3. IDOF

>>-IDOF-- (--position--)-- -- mmmmm oo -- ><

Returns the ID of the menu item at the specifp@dition starting with O.

6.3.4. TEXTOF(position)

>>-TEXTOF--(--position--) - - - ><

Returns the text of the menu item at the specifiedition starting with 0. A mnemonic (underscored
letter) is represented by a leading ampersand (&). If the menu item contains an accelerator, it is separated
by a tab.

6.3.5. TEXTOF(id)

>>-TEXTOF--(--id--) - - - ><

Returns the text of menu iteid. A mnemonic is represented by a leading ampersand (&). If the menu
item contains an accelerator, it is separated by a tab.

6.3.6. SUBMENU
>>-SUBMENU--(--position--)-———————————————————————————— ><

Returns an instance of the MenuObiject class that is associated with the submenu at the specified
position starting with 0. If no submenu exists at this position, the .NIL object is returned.

Example:

sub = menu~Submenu(5)
if sub \= .Nil then do
say "Items:" sub“items
end

6.3.7. FINDSUBMENU

>>-FINDSUBMENU--(--label--)----- - - ><

Returns an instance of the MenuObject class that is associated with the submenu with the spleeified
If the associated menu does not contain such a submenu, the .NIL object is returned.

160

Chapter 6. Other Classes
6.3.8. FINDITEM

>>-FINDITEM--(--1label--)- - - - ><

Returns the ID of the menu itefabel. If the specified label does not include an accelerator, the
comparison excludes the accelerators of the menu items. If no menu item is found that matches the
specified label, 0 is returned.

Example:

f = menu“FindItem("&Tools" || "9"x || "Ctrl+T")
if f \= 0 then menu~ProcessItem(f)

6.3.9. PROCESSITEM

>>-PROCESSITEM--(--id--)- -= -= -= -- ><

Selects the menu iteid. This causes a WM_COMMAND to be sent to the window owning the menu.

6.4. The Message Class

A message object provides for the deferred or asynchronous sending of a message. You can create a
message object by using the NEW or ENHANCED method of the Message class or the START method
of the Object class (se&TART). The Message class is a subclass of the Object class.

Methods the Message class defines:

COMPLETED
INIT (Overrides Object class method)

NOTIFY

RESULT

SEND

START (Overrides Object class method)

Methods inherited from the Object class:

NEW (Class method)
Operator methods: =, ==, \=<5 <>, \==
CLASS

COPY
DEFAULTNAME
HASMETHOD
OBJECTNAME
OBJECTNAME=
REQUEST

RUN

SETMETHOD
STRING
UNSETMETHOD

Note: The Message class also has available class methods that its metaclass, the Class class,

161

Chapter 6. Other Classes

defines.

6.4.1. COMPLETED

>>-COMPLETED- - - - ><

Returnst if the message object has completed its message,¥mu can use this method instead of
sending RESULT and waiting for the message to complete.

6.4.2. INIT

>>-INIT(target ,messagename—+-—-- oo ———+-)—><
| o + |
| v [
+-,Individual + +—+—+

| +-,argument-+ |

+-,Array,argument------—-------——- +

Initializes the message object for sending the message massagenante objecttarget

Themessagenanan be a string or an array.ffessagenarris an array object, its first item is the name
of the message and its second item is a class object to use as the starting point for the method search. For
more information, se€lasses and Inheritance of Methods

If you specify the Individual or Array option, any remaining arguments are arguments for the message.
(You need to specify only the first letter; the language processor ignores all characters following it.)

Individual
If you specify this option, specifyingrguments optional. The language processor passes any
argumensg as message argumentgdaetin the order you specify them.

Array

If you specify this option, you must specify angumentwhich is an array object. (S8ée Array

Class) The language processor then passes the member items of the aametdNVhen the

language processor passes the arguments taken from the array, the first argument is at index 1, the
second argument at index 2, and so on. If you omitted any indexes when creating the array, the
language processor omits their corresponding message arguments when passing the arguments.

If you specify neither Individual nor Array, the message sent has no arguments.

Note: This method does not send the message messagename to object target. The SEND or
START method (described later) sends the message.

162

Chapter 6. Other Classes

6.4.3. NOTIFY

>>-NOTIFY (message)———---- - —— e - ><

Requests notification about the completion of processing of the message SEND or START. The message
objectmessagés sent as the notification. You can use NOTIFY to request any number of notifications.
After the notification message, you can use the RESULT method to obtain any result from the messages
SEND or START.

Example:
/* Event-driven greetings */
.prompter “new prompt (.nil)
:class prompter
::method prompt
expose name
use arg msg
if msg \= .nil then do
name = msg result
if name = "quit" then return
say "Hello," name
end

say 'Enter your name ("quit" to quit):'

/* Send the public default object .INPUT a LINEIN message asynchronously */
msg=.message new(.input,"LINEIN") "“start

/* Sends self prompt(msg) when data available */
msg notify(.message new(self,"PROMPT","I",msg))

/* Don't leave until user has entered "quit" */
guard on when name="quit"

6.4.4. RESULT

>>-RESULT-- - - - ><

Returns the result of the message SEND or START. If message processing is not yet complete, this
method waits until it completes. If the message SEND or START raises an error condition, this method
also raises an error condition.

Example:

/* Example using RESULT method */
string="700" /* Create a new string object, string */
bond=string~start ("REVERSE") /* Create a message object, bond, and */

163

Chapter 6. Other Classes

/* start it. This sends a REVERSE */
/* message to string, giving bond */
/* the result. */

/* Ask bond for the result of the message */

say "The result of message was" bond~“result /* Result is 007 */
>>-SEND-—+- - -- -- -- -- ><

+-(target) -+

Returns the result (if any) of sending the message. If you sptoifigt, this method sends the message
to target Otherwise, this method sends the message ttatigetyou specified when the message object
was created. SEND does not return until message processing is complete.

You can use the NOTIFY method to request notification that message processing is complete. You can
use the RESULT method to obtain any result from the message.

6.4.6. START

>>-START-—+-- e - - - - ><
+-(target) -+

Sends the message to start processing at a specific target whereas the sender continues processing. If you
specifytarget, this method sends the messagéatget Otherwise, this method sends the message to the
targetthat you specified when the message object was created. This method returns as soon as possible
and does not wait until message processing is complete. When message processing is complete, the
message object retains any result and holds it until the sender requests it by sending a RESULT message.
You can use the NOTIFY method to request notification that message processing is complete.

6.4.7. Example

/* Using Message class methods */
/* Note: In the following example, ::METHOD directives define class Testclass */

/* with method SHOWMSG */
ez=.testclass " new /* Creates a new instance of Testclass x/
mymsg=ez~start ("SHOWMSG", "Hello, 0llie!",5) /* Creates and starts */
/* message mymsg to send */
/* SHOWMSG to ez */
/* Continue with main processing while SHOWMSG runs concurrently */

do 5
say "Hello, Stan!"
end

164

Chapter 6. Other Classes

/* Get final result of the SHOWMSG method from the mymsg message object */
say mymsg result
say "Goodbye, Stan..."

exit
::class testclass public /* Directive defines Testclass x/
::method showmsg /* Directive creates new method SHOWMSG */
use arg text,reps /* class Testclass x/
do reps

say text
end

reply "Bye Bye, Ollie..."
return

The following output is possible:

Hello, 0llie!
Hello, Stan!
Hello, 0llie!
Hello, Stan!
Hello, 0Ollie!
Hello, Stan!
Hello, 0Ollie!
Hello, Stan!
Hello, 0Ollie!
Hello, Stan!
Bye Bye, Ollie...
Goodbye, Stan...

6.5. The Method Class

The Method class creates method objects from Rexx source code. It is a subclass of the Object class.

Methods the Method class defines:

NEW (Class method. Overrides Object class method.)
NEWFILE (Class method)

SETGUARDED

SETPRIVATE

SETPROTECTED

SETSECURITYMANAGER

SETUNGUARDED

SOURCE

Methods inherited from the Object class:

Operator methods: =, ==, \=<5 <>, \==
CLASS

COPY

DEFAULTNAME

HASMETHOD

165

Chapter 6. Other Classes

INIT
OBJECTNAME
OBJECTNAME=
REQUEST

RUN
SETMETHOD
START

STRING
UNSETMETHOD

Note: The Method class also has available class methods that its metaclass, the Class class,
defines.

6.5.1. NEW (Class Method)

>>-NEW (name, source——+---————-———————————— +-==) - ><
+-—, methodobject-—-+

Returns a new instance of method class, which is an executable representation of the code contained in
thesource Thenameis a string. Thesourcecan be a single string or an array of strings containing
individual method lines.

The third parameter influences the scope of the method. If none is given, the program scope is used. If
another method object is given, its scope is used.

6.5.2. NEWFILE (Class Method)

>>-NEWFILE(filename)-——--— - - - - ><

Returns a new instance of method class, which is an executable representation of the code contained in
the file filename. The filename is a string.

For an example of the use of this method, see the code ex&erpler implements Security Manager

6.5.3. SETGUARDED

>>-SETGUARDED - - - - - ><

Reverses any previous SETUNGUARDED messages, restoring the receiver to the default guarded status.
If the receiver is already guarded, a SETGUARDED message has no effect.

6.5.4. SETPRIVATE

>>-SETPRIVATE - - - ><

166

Chapter 6. Other Classes
Specifies that a method is a private method. Only a message that an object sends to itself can run a private

method. If a method object does not receive a SETPRIVATE message, the method is a public method.
(Any object can send a message to run a public methodP8kkc and Private Methodsr details.)

6.5.5. SETPROTECTED

>>-SETPROTECTED--- - - - <

Specifies thata method is a protected method. If a method object does not receive a SETPROTECTED
message, the method is not protected. (Bee Security Managdor details.)

6.5.6. SETSECURITYMANAGER

>>-SETSECURITYMANAGER -+ === === === == — - m—mm bmmmmm e ><
+-(security_manager_object)-+

Replaces the existing security manager with the speafedrity manager_objedf
security_manager_objed omitted, any existing security manager is removed.

6.5.7. SETUNGUARDED

>>-SETUNGUARDED---------- - — - — <

Lets an object run a method even when another method is active on the same object. If a method object
does not receive a SETUNGUARDED message, it requires exclusive use of its object variable pool. A
method can be active for an object only when no other method requiring exclusive access to the object’s
variable pool is active in the same object. This restriction does not apply if an object sends itself a
message to run a method and it already has exclusive use of the same object variable pool. In this case,
the method runs immediately and has exclusive use of its object variable pool, regardless of whether it
received a SETUNGUARDED message.

6.5.8. SOURCE

>>-S0URCE-----—=--—--—--- - - - ><

Returns the method source code as a single-index array of source lines. If the source code is not
available, SOURCE returns an array of zero items.

6.6. The Monitor Class

The Monitor class forwards messages to a destination object. It is a subclass of the Object class.

Methods the Monitor class defines:

167

Chapter 6. Other Classes

168

CURRENT
DESTINATION
INIT (Overrides Object class method)

UNKNOWN

Methods inherited from the Object class:

NEW (Class method)
Operator methods: =, ==, \=5 <>, \==
CLASS

COPY
DEFAULTNAME
HASMETHOD
OBJECTNAME
OBJECTNAME=
REQUEST

RUN

SETMETHOD
START

STRING
UNSETMETHOD

Note: The Monitor class also has available class methods that its metaclass, the Class class,
defines.

6.6.1. CURRENT

>>-CURRENT- - - - ><

Returns the current destination object.

6.6.2. DESTINATION

>>-DESTINATION-—+-------- N - o<
+-(destination) -+

Returns a new destination object. If you speciBstination this becomes the new destination for any
forwarded messages. If you ondiéstination the previous destination object becomes the new
destination for any forwarded messages.

6.6.3. INIT

>>=INIT-=#=mmmmmmmmmmmmmm T - - - ><
+-(destination) -+

Initializes the newly created monitor object.

Chapter 6. Other Classes
6.6.4. UNKNOWN

>>-UNKNOWN (messagename ,messageargs) —————————————-—= - ><

Reissues or forwards to the current monitor destination all unknown messages sent to a monitor object.
For additional information, se@efining an UNKNOWN Method

6.6.5. Examples

.local”setentry("output", .monitor new(.stream™new("my.new")~~command("open nobuffer")))

/* The following sets the destination */
previous_destination=.output~destination(.stream™new("my.out")~~“command("open write"))
/* The following resets the destination */

.output”destination

.output~destination(.STDOUT)
current_output_destination_stream_object=.output”current

6.7. The MutableBuffer Class

The MutableBuffer class is a buffer that contains a string on which certain string operations such as
concatenation can be performed very efficiently. (Frequent concatenation of long strings without using
this class might result in weak performance, large memory allocation, or both.)

Methods the MutableBuffer class defines:

Init

Append
Delete
GetBufferSize
Insert

Length
Overlay
SetBufferSize
String

Substr

Methods inherited from the Object class:

Operator methods: =, ==, \=<5 <>, \==
CLASS

COPY
DEFAULTNAME
HASMETHOD
OBJECTNAME
OBJECTNAME=
REQUEST

RUN
SETMETHOD
START

169

Chapter 6. Other Classes

STRING
UNSETMETHOD
6.7.1. INIT
o ,—256--——-- +
>>-INIT(-+--- oo m =) mm e ><

+-string-+ +-,-buffer size--+

Initialize the buffer, optionally assign a buffer content and a stafiinfter size The default size is 256;
the buffer size increases to the length of siigng if the string does not fit into the buffer.

6.7.2. APPEND

>>-APPEND (string)- - - -—=><

Appends string string to the buffer content. The buffer size is increased if necessary.

6.7.3. DELETE
>>-DELETE (n---+--------- e ><
+-,length-+

Deletedengthcharacters from the buffer beginning at thih character. If length is omitted, or if length

is greater than the number of characters frota the end of the buffer, the method deletes the remaining
buffer contents (including the'th character). The length must be a positive integer or zero nlthast

be a positive integer. Ifiis greater than the length of the buffer or zero, the method does not modify the
buffer content.

6.7.4. GETBUFFERSIZE

>>-GETBUFFERSIZE-- - - ———><

Retrieves the current buffer size.

6.7.5. INSERT
>>-INSERT (new—+--- - - - - +-=)><
et e - ——+——+
+-n-+ -, ——F———————— s e +-—+

>

+-length-+ +-,pad-+

Inserts the stringew, padded or truncated to lend#ngth into the mutable buffer after theéth
character. The default value foiis 0, which means insertion at the beginning of the string. If specified,
and length must be positive integers or zeros.if greater than the length of the buffer contents, the

170

Chapter 6. Other Classes
string new is padded at the beginning. The default valuéefogthis the length ohew If length is less

than the length of stringew INSERT truncatesewto lengthlength The defaulpad character is a
blank.

6.7.6. LENGTH

>>-LENGTH-- - - ——-><

Returns length of data in buffer.

6.7.7. OVERLAY

>>-QVERLAY (new-+--------- -- mmmmm oo —+-=)=-><
B e et S - ——t——t

+-n-+ +-,-—+-——————- e +-—+
+-length-+ +-,pad-+

Modifies the buffer content by overlaying it, starting at tith character, with the stringew padded or
truncated to lengtlength The overlay can extend beyond the end of the buffer. In this case the buffer
size will be increased. If you specifgngth it must be a positive integer or zero. The default value for
lengthis the length ohew If nis greater than the length of the buffer content, padding is added before
the new string. The defayttad character is a blank, and the default valuerfés 1. If you specifyn, it

must be a positive integer.

6.7.8. SETBUFFERSIZE

>>-SETBUFFERSIZE (n) ------ - e ——-><

Sets the buffer size. His less than the length of buffer content, the content is truncateds|®, the
entire contents is erased and the new buffer size is the value given in the INIT method.

6.7.9. STRING

>>-STRING-- - - - - ——=>Z

Retrieves the content of the buffer (a string).

6.7.10. SUBSTR

>>-SUBSTR (n—+----- - e et B ><
R i +-—+
+-length-+ +-,pad-+

171

Chapter 6. Other Classes

Returns a substring from the buffer content that begins at'thecharacter and is of lengtiength
padded withpadif necessary. Tha must be a positive integer. iifis greater than
receiving_string~LENGTH, onlpad characters are returned. If you or@hgth the remaining buffer
content is returned. The defapiad character is a blank.

6.8. The Object Class

172

The Obiject class is the root of the class hierarchy. The instance methods of the Object class are,
therefore, available on all objects.

Methods the Object class defines:

NEW (Class method)
Operator methods: =, ==, \=<5 <>, \==
CLASS

COPY
DEFAULTNAME
HASMETHOD

INIT

OBJECTNAME
OBJECTNAME=
REQUEST

RUN

SETMETHOD
START

STRING
UNSETMETHOD

Note: The Object class also has available class methods that its metaclass, the Class class, defines.

6.8.1. NEW (Class Method)

>>-NEW -- -- -- -- - ><

Returns a new instance of the receiver class.

6.8.2. Operator Methods

>>-comparison_operator (argument)-——--------=-------————————————— ><

Note: The argument is optional for the == operator.

Returnst (true) oro (false), the result of performing a specified comparison operation. If you specify the
== operator and omirgument a string representation is returned representing a hash value for Set, Bag,
Table, Relation, and Directory.

Chapter 6. Other Classes

For the Object class, the arguments must match the receiver object. If they do not match the receiver
object, you can define subclasses of the Object class to match the arguments.

The comparison operators you can use in a message are:

True if the terms are the same object.

\=, ><, <>, \==

True if the terms are not the same object (inverse of =).

6.8.3. CLASS

>>-CLASS--- -- - -- ><

Returns the class object that received the message that created the object.

6.8.4. COPY

>>=C0PY-—-=mmmmmmmmmm e -- o -- ><

Returns a copy of the receiver object. The copied object has the same methods as the receiver object and
an equivalent set of object variables, with the same values.

Example:

myarray=. array"of("N" s ngn s ngn s uwu)
directions=myarray~copy /* Copies array myarray to array directions */

6.8.5. DEFAULTNAME

>>-DEFAULTNAME---- - — — — ><

Returns a short human-readable string representation of the object. The exact form of this representation
depends on the object and might not alone be sufficient to reconstruct the object. All objects must be able
to produce a short string representation of themselves in this way, even if the object does not have a
string value. Se®equired String Valuefor more information. The DEFAULTNAME method of the

Object class returns a string that identifies the class of the object, for example, an Array or a Directory.
See als®BJECTNAMEandSTRING. SeeOBJECTNAME=for an example using DEFAULTNAME.

6.8.6. HASMETHOD

>>-HASMETHOD (methodname) - - - - ><

173

Chapter 6. Other Classes

174

Returnst (true) if the receiver object has a method namesthodnaméranslated to uppercase) or if the
target method is a private method. Otherwise, it retor(false).

Note: If you call the methodname method although it is private, you receive error 97 Object method
not found although HASMETHOD returns 1 (true).

6.8.7. INIT

>>-INIT---- -- -- -- ><

Performs any required object initialization. Subclasses of the Object class can override this method.

6.8.8. OBJECTNAME

>>-0BJECTNAME--------——-~ - ————————— - %

Returns the receiver object’s name that the OBJECTNAME= method sets. If the receiver object does not
have a name, this method returns the result of the DEFAULTNAME methodR8eeired String Values
for more information. See the OBJECTNAME= method for an example using OBJECTNAME.

6.8.9. OBJECTNAME=

>>-0BJECTNAME=(newname) —— - - - - ><

Sets the receiver object’'s name to the striegvname

Example:

points=.array~of ("N","S","E","W")

say points~objectname /* (no change yet) Says: "an Array" */
points~objectname=("compass") /* Changes obj name POINTS to "compass"*/
say points~objectname /* Shows new obj name. Says: "compass" */
say points~defaultname /* Default is still available. */
/* Says "an Array" */
say points /* Says string representation of */
/* points "compass" */
say points[3] /* Says: "E"Points is still an array */
/* of 4 items */

6.8.10. REQUEST

>>-REQUEST (classid)-——--- - - - - ><

Returns an object of theassidclass, or the NIL object if the request cannot be satisfied.

Chapter 6. Other Classes

This method first compares the identity of the object’s class (see the ID method of the Class If}gss in

to classid If they are the same, the receiver object is returned as the result. Otherwise, REQUEST tries to
obtain and return an object satisfyinassidby sending the receiver object the conversion messsie

with the stringclassidappended (converted to uppercase). For examBEQEEST ("string") message

causes a MAKESTRING message to be sent. If the object does not have the required conversion method,
REQUEST returns the NIL object.

The conversion methods cause objects to produce different representations of themselves. The presence
or absence of a conversion method defines an object’s capability to produce the corresponding
representations. For example, lists can represent themselves as arrays, because they have a
MAKEARRAY method, but they cannot represent themselves as directories, because they do not have a
MAKEDIRECTORY method. Any conversion method must return an object of the requested class. For
example, MAKEARRAY must return an array. The language processor uses the MAKESTRING method
to obtain string values in certain contexts; saxjuired String Values

6.8.11. RUN

>>-RUN (method-+----===—====—-——mmm oo e e ettt ><
| o + |
| v I
+-,Individual---+--—---———--- +—+-+
| +-,argument-+ |
+-,Array,argument----—----------- +

Runs the method objeatethod(seeThe Method Clags Themethodhas access to the object variables
of the receiver object, as if the receiver object had defined the method by using SETMETHOD.

If you specify the Individual or Array option, any remainiaggumens are arguments for the method.
(You need to specify only the first letter; the language processor ignores all characters following it.)

Individual

Passes any remaining arguments to the method as arguments in the order you specify them.

Array

Requiresargumentwhich is an array object. (S@the Array Clasg The language processor passes
the member items of the array to the method as arguments. The first argument is at index 1, the
second argument at index 2, and so on. If you omitted any indexes when creating the array, the
language processor omits their corresponding arguments when passing the arguments.

If you specify neither Individual nor Array, the method runs without arguments.

Themethodargument can be a string containing a method source line instead of a method object.
Alternatively, you can pass an array of strings containing individual method lines. In either case, RUN
creates an equivalent method object.

Notes:

1. The RUN method is a private method. See the SETPRIVATE meth&8EIFPRIVATEfor details.
2. The RUN method is a protected method.

175

Chapter 6. Other Classes

176

6.8.12. SETMETHOD

>>-SETMETHOD (methodname—+ -- -- ———+--) et ><
[+=,"FLOAT"-+ |
+-,method-+---------- +-+
+--,scope-—+

Adds a method to the receiver object’s collection of object methodsnidirodnamés the name of the

new method. (The language processor translates this name to uppercase.) If you previously defined a
method with the same name using SETMETHOD, the new method replaces the earlier one. If you omit
method SETMETHOD makes the method nammethodnamenavailable for the receiver object. In this
case, sending a message of that name to the receiver object runs the UNKNOWN method (if any).

Themethodcan be a string containing a method source line instead of a method object. Or it can be an
array of strings containing individual method lines. In either case, SETMETHOD creates an equivalent
method object.

The third parameter describes if the method that is attached to an object should have object or float
scope. "Float" scope means that it shares the same scope with methods that were defined outside of a
class. "Object" scope means it shares the scope with other, potentially statically defined, methods of the
object it is attached to.

Notes:

1. The SETMETHOD method is a private method. See the SETPRIVATE meth88 TP RIVATEfor
details.

2. The SETMETHOD method is a protected method.

6.8.13. START

>>-START (messagename———+-—-——-—————--— e e ><
+-,argument-+

Returns a message object (§¢e Message Clapand sends it a START message to start concurrent
processing. The object receiving the messagssagenam@ocesses this message concurrently with the
sender’s continued processing.

Themessagenamean be a string or an array.riessagenarrie an array object, its first item is the name
of the message and its second item is a class object to use as the starting point for the method search. For
more information, se€lasses and Inheritance of Methods

The language processor passesamgymens to the receiver as arguments foessagenama the order
you specify them.

When the receiver object has finished processing the message, the message object retains its result and
holds it until the sender requests it by sending a RESULT message. For further detsi$AsSe

Example:

world=.object " new

Chapter 6. Other Classes

msg=world~start ("HELLO") /* same as next line */

msg=.message new(world,"HELLO") ““start /* same as previous line */

6.8.14. STRING

3> S TRING === = === = = oo ><

Returns a human-readable string representation of the object. The exact form of this representation
depends on the object and might not alone be sufficient to reconstruct the object. All objects must be able
to produce a string representation of themselves in this way.

The object’s string representation is obtained from the OBJECTNAME method (which can in turn use
the DEFAULTNAME method). See also the OBJECTNAME meth@BJECTNAME) and the
DEFAULTNAME method DEFAULTNAME).

The distinction between this method, the MAKESTRING method (which obtains string values--see
MAKESTRING) and the REQUEST method (sBEQUEST) is important. All objects have a STRING
method, which returns a string representation (human-readable form) of the object. This form is useful in
tracing and debugging. Only those objects that have information with a meaningful string form have a
MAKESTRING method to return this value. For example, directory objects have a readable string
representation (a Directory), but no string value, and, therefore, no MAKESTRING method.

Of the classes that Rexx provides, only the String class has a MAKESTRING method. Any subclasses of
the String class inherit this method by default, so these subclasses also have string values. Any other
class can also provide a string value by defining a MAKESTRING method.

6.8.15. UNSETMETHOD

>>-UNSETMETHOD (methodname) -———-- - - - ><

Cancels the effect of all previous SETMETHODSs for metihoethodnamdt also removes any method
methodnamantroduced with ENHANCED when the object was created. If the object has received no
SETMETHOD method, no action is taken.

Notes:

1. The UNSETMETHOD method is a private method. See the SETPRIVATE meth8BTPRIVATE
for details.

2. The UNSETMETHOD method is a protected method.

6.9. The RegularExpression Class

This class provides support for regular expressions. A regular expression is a pattern you can use to
match strings.

Here is a description of the syntax:

177

Chapter 6. Other Classes

178

OR operator between the left and right expression

?
Matches any single character
*
Matches the previous expression zero or more times
+
Matches the previous expression one or more times
\
"Escape"” symbol: use the next character literally
0
Expression in parenthesis (use where needed)
{n}

Matches previous expression n times (n>1)

Set definition: matches any single character out of the defined set.
A "M right after the opening bracket means that none of the following characters should be matched.

A - (if not used with '\') defines a range between the last specified character and the one following
', If it is the first character in the set definition, it is used literally.

The following symbolic names (they must start and end with ":") can be used to abbreviate common sets:

:ALPHA:

Characters in the range A-Z and a-z

LOWER:

Characters in the range a-z

‘UPPER:

Characters in the range A-Z

:DIGIT:

Characters in the range 0-9

:ALNUM:
Characters in :DIGIT: and :ALPHA:

Chapter 6. Other Classes
:XDIGIT:

Characters in :DIGIT:, A-F and a-f

:BLANK:

Space and tab characters

:SPACE:

Characters "09"x to "0D"x and space

:CNTRL:
Characters "00"x to "1F"x and "7F"x

:PRINT:

Characters in the range "20"x to "7E"x

:GRAPH:

Characters in :PRINT: without space

:PUNCT:
All :PRINT: characters without space and not in :ALNUM:

Examples:

"(Hi|Hello) World" Matches "Hi World" and
"Hello World".

"file.?7?7?" Matches any file with three
characters after "."

"file.?7{3}" Same as above.

"a *xb" Matches all strings that begin with
"a" and end with "b" and have an
arbitrary number of spaces in between
both.

"a +b" Same as above, but at least one space
must be present.

"file.[bd]at" Matches "file.bat" and "file.dat".

"[A-Za-z]+" Matches any string containing only
letters.

"[:ALPHA:]+" Same as above, using symbolic names.

"[~0-9]*" Matches any string containing no
numbers, including the empty string.

"[:DIGIT::LOWER:]" A single character, either a digit or

a lower case character.

"This is (very)+nice." Matches all strings with one or more
occurrences of "very " between
"This is " and "nice.".

The RegularExpression class is not a built-in class. It is defined in the RXREGEXP.CLS file. This
means, you must use a ::requires statement to activate its functionality, as follows:

::requires "RXREGEXP.CLS"

179

Chapter 6. Other Classes

Methods available to the RegularExpression class:

+ Init

+ Match
« Parse
+ Pos

- Position

6.9.1. INIT

+-,-"MAXIMAL"--+
>>=INIT(-+- e +-) —-—=><
+-Pattern-+ +-,-"MINIMAL"--+

Instantiates a RegularExpression object. Use the optional paraRs¢temto define a pattern that is
used to match strings. See the introductory text below for a description of the syntax. If the strings
match, you can decide whether you want to apply "greedy" matching (a maximum-length match) or
"non-greedy” matching (a minimum-length match).

Examples:

myRE1 = .RegularExpression™new
myRE2 = .RegularExpression~new("Hello?*")

6.9.2. MATCH
>>-MATCH(-String-)-><

This method tries to match the given string to the regular expression that was defined on the "new"
invocation or on the "parse" invocation. It returns 0 on an unsuccessful match and 1 on a successful
match. For an example s@arse

6.9.3. PARSE
+-,-"CURRENT"--+
>>-PARSE(-Pattern—+-------------- +-m- ---><

+-,-"MAXIMAL"-—+
+-,-"MINIMAL"--+

This method creates the automation used to match a string from the regular expression specified with
Pattern The RegularExpression object uses this regular expression until a new invocation of Parse takes
place. The second (optional) parameter specifies whether to use minimal or maximal matching. The
default is to use the current matching behavior.

Return values:

180

0
Regular expression was parsed successfully.
1
An unexpected symbol was met during parsing.
2
A missing ")' was found.
3
An illegal set was defined.
4
The regular expression ended unexpectedly.
5
An illegal number was specified.
Example 1:
a.0 = "does not match regular expression"
a.l = "matches regular expression"
b = .array~of("This is a nice flower.",
"This is a yellow flower.",
"This is a blue flower.",
"Hi there!")
myRE = .RegularExpression™new

e = myRE"parse("This is a 7777 flower.")
if e == 0 then do
do i over b
j = myRE"match(i)
say i~left(24) ">>" a.j
end
end
else
say "Error" e "occurred!"
exit

::requires "rxregexp.cls"

Output:

This is a nice flower. >> Does match regular expression
This is a yellow flower. >> Does not match regular expression
This is a blue flower. >> Does match regular expression

Hi there! >> Does not match regular expression
Example 2:

a.0 = "an invalid number!"

Chapter 6. Other Classes

181

Chapter 6. Other Classes

a.1l = "a valid number."
b = .array~of("1","42","0","5436412","1a","£43g")
myRE = .RegularExpression~new("[1-9] [0-9]*")
do i over b
j = myRE"match(i)
say i "is" a.j
end
say

/* Now allow "hex" numbers and a single 0 */
if myRE"parse("0|([1-9a-f][0-9a-f]*)") == 0 then do
do i over b
j = myRE"match(i)
say i "is" a.j
end
end
else
say "invalid regular expression!"

exit

::requires '"rxregexp.cls"

Example 3:

str = "<p>Paragraph 1</p><p>Paragraph 2</p>"

myRE1 = .RegularExpression~new("<p>7*</p>","MINIMAL")
myRE1"match(str)

myRE2 = .RegularExpression~new("<p>7*</p>","MAXIMAL")
myRE2"match(str)

say "myRE1 (minimal) matched" str”substr(l,myRE1~position)
say "myRE2 (maximal) matched" str~substr(l,myRE2~position)

::requires "rxregexp.cls"
Output:

myRE1 (minimal) matched <p>Paragraph 1</p>
myRE2 (maximal) matched <p>Paragraph 1</p><p>Paragraph 2</p>

6.9.4. POS
>>-P0S-(-Haystack-)-><

This method tries to locate a string defined by the regular expression on the "new" invocation or on the
"parse" invocation in the given haystack string. It returns 0 on an unsuccessful match or the starting
position on a successful match. The end position of the match can be retrieved VRO SEION

method.

Example:

182

Chapter 6. Other Classes

str = "It is the year 2002!"
myRE = .RegularExpression~new("[1-9][0-9]%")
begin = myRE"pos(str)
if begin > O then do
year = str~substr(begin, myRE"position - begin + 1)
say "Found the number" year "in this sentence."
end

::requires "rxregexp.cls"
Output:

Found the number 2002 in this sentence.

6.9.5. POSITION

>>-POSITION - - ———><

Returns the character position at which either Parse, Pos or Match ended, depending on what was

invoked last.

Example:

myRE = .RegularExpression™new

myRE~Parse (" [abc") -- illegal set definition
say myRE"Position -- will be 4

myRE = .RegularExpression~new("[abc]12")
myRE"Match("c12")
say myRE"Position -- will be 3

myRE“Match("a13")
say myRE“Position -- will be 2 (failure to match)

::requires "rxregexp.cls"

6.10. The Stem Class

A stem object is a collection with unique indexes that are character strings.

Stems are automatically created whenever a Rexx stem variable or Rexx compound variable is used. For
example:

a.l1 =2

creates a new stem collection with the namend assigns it to the Rexx variable it also assigns the
value 2 to entry 1 in the collection.

183

Chapter 6. Other Classes

The value of an uninitialied stem index is the stem object NAME concatenated with the derived stem
index. For example

say a.[1,2] -- implcitly creates stem object with name "A."
—- displays "A.1.2"

a = .stem"new("B.")
say al1,2] -- displays "B.1.2"

In addition to the items explicitly assigned to the collection indexes, a value may be assigned to all
possible stem indexes. Th&= method (with no index argument) will assign the target value to all
possible stem indexes. Following assignment, a reference to any index will return the new value until
another value is assigned or the index is dropped.

The [1 method (with no index specified) will retrieve any globally assigned value. By default, this
returns the stem NAME value.

In addition to the methods defined in the following, the Stem class removes the methods =, ==, \=, \==
<>, and > using the DEFINE method.

Methods the Stem class defines:

NEW (Class method. Overrides Object class method.)

I

I]:

MAKEARRAY)

REQUEST (Overrides Obiject class method)

UNKNOWN

Methods inherited from the Object class:

Operator methods: =, ==, \=<5 <>, \==
CLASS

COPY
DEFAULTNAME
HASMETHOD
INIT
OBJECTNAME
OBJECTNAME=
RUN
SETMETHOD
START

STRING
UNSETMETHOD

Note: The Stem class also has available class methods that its metaclass, the Class class, defines.

6.10.1. NEW (Class Method)

>>-NEW-+-——————— o ><
+-(name) -+

Returns a new stem object. If you specify a stnvagne this value is used to create the derived name of
compound variables. The default stem name is a null string.

184

Chapter 6. Other Classes

6.10.2.]
v |
>>—[———4————- +—t=] ———— -- -- -- -- ><

+-index-+

Returns the item associated with the speciff@tes. Eachindexis an expression; use commas to

separate the expressions. The language processor concatenatdexbgpression string values,

separating them with a period (.), to create a derived index. A null string (") is used for any omitted
expressions. The resulting string references the stem item. If the stem has no item associated with the
specified finaindex the stem default value is returned. If a default value has not been set, the stem name
concatenated with the final index string is returned.

If you do not specifyindex the stem default value is returned. If no default value has been assigned, the
stem name is returned.

Note: You cannot use the [] method in a DROP or PROCEDURE instruction or in a parsing template.

6.10.3. [|=

Makes the value a member item of the stem collection and associates it with the specified index. If you
specify noindexexpressions, a new default stem value is assigned. Assigning a new default value will
re-initialize the stem and remove all existing assigned indexes.

6.10.4. MAKEARRAY

>>-MAKEARRAY------------- - e - ><

Returns an array of all stem indexes that currently have an associated value. The items appear in the
array in an unspecified order. (The program should not rely on any order.)

6.10.5. REQUEST

>>-REQUEST (classid)-—----- - - - - ><

Returns the result of the Stem class MAKEARRAY method, if the requested class is ARRAY. For all
other classes, REQUEST forwards the message to the default value of the stem and returns this result.
This method requests conversion to a specific class. All conversion requests except ARRAY are
forwarded to the current stem default value.

185

Chapter 6. Other Classes

6.10.6. UNKNOWN

>>-UNKNOWN- (messagename ,messageargs) —————-—-—-—--—-- - ><

Reissues or forwards to the current stem default value all unknown messages sent to a stem collection.
For additional information, se@efining an UNKNOWN Method

6.11. The Stream Class

A stream object allows external communication from Rexx. (8pat and Output Streanfer a
discussion of Rexx input and output.)

The Stream class is a subclass of the Object class.

Methods the Stream class defines:

ARRAYIN
ARRAYOUT
CHARIN
CHAROUT
CHARS
CLOSE
COMMAND
DESCRIPTION
FLUSH

INIT (Overrides Object class method)
LINEIN
LINEOUT
LINES
MAKEARRAY
OPEN
POSITION
QUALIFY
QUERY

SAY

SEEK

STATE
SUPPLIER

Methods inherited from the Object class:

NEW (Class method)
Operator methods: =, ==, \=<5 <>, \==
CLASS

COPY
DEFAULTNAME>
HASMETHOD
OBJECTNAME
OBJECTNAME=
REQUEST

RUN

SETMETHOD
START

STRING
UNSETMETHOD

Note: The Stream class also has available class methods that its metaclass, the Class class, defines.

186

Chapter 6. Other Classes

6.11.1. ARRAYIN

+-(LINES) -+
>>-ARRAYIN--+--——-———- +-- - - - ><
+- (CHARS) -+

Returns a fixed array that contains the data of the stream in line or character format, starting from the
current read position. The line format is the default.

If you have used the CHARIN method, the first line can be a partial line.

6.11.2. ARRAYOUT

+-,--LINES—+
>>-ARRAYOUT (array-+---------- +-) - - %
+-,-—CHARS—+

Returns a stream object that contains the data fxmany.

6.11.3. CHARIN

>>-CHARIN-+ - ——— . s<
B G S s) Rt 2
+-start-+ +-,length-+

Returns a string of up tlengthcharacters from the character input stream receiving the message. The
language processor advances the read pointer. If youlengjth it defaults tot. If you specifystart, this
positions the read pointer before reading. If the stream is not already open, the language processor tries
to open the stream for reading and writing. If that fails, the language processor opens the stream for read
only. (SeeCHARIN (Character Inputjor information about the CHARIN built-in function.)

6.11.4. CHAROUT

>>-CHARQUT-+-—-—=—=== == == m—m—m oo e ><
e G e o Bt 4

+-string-+ +-,start-+
Returns the count of characters remaining after trying to wgtiteg to the character output stream
receiving the message. The language processor advances the write pointer.

Thestring can be the null string. In this case, CHAROUT writes no characters to the stream and returns
0. If you omit string, CHAROUT writes no characters to the stream and retorii$ie language
processor closes the stream.

187

Chapter 6. Other Classes

188

If you specifystart, this positions the write pointer before writing. If the stream is not already open, the
language processor tries to open the stream for reading and writing. If that fails, the language processor
opens the stream for write only. (SE&IAROUT (Character Outpufpr information about the

CHAROUT built-in function.)

6.11.5. CHARS

>>-CHARS--- -- - -- ><

Returns the total number of characters remaining in the character input stream receiving the message.
The default input stream is STDIN. The count includes any line separator characters, if these are defined
for the stream. In the case of persistent streams, it is the count of characters from the current read
position. (Seénput and Output Streanfer a discussion of Rexx input and output.) The total number of
characters remaining cannot be determined for some streams (for example, STDIN). For these streams.
the CHARS method returnsto indicate that data is present,®if no data is present. For Windows

devices, CHARS always returns(SeeCHARS (Characters Remaininfpr information about the

CHARS built-in function.)

6.11.6. CLOSE

>>-CLOSE---—- - - - ><

Closes the stream that receives the message. CLOSE remanys if closing the stream is successful,
or an appropriate error message. If you have tried to close an unopened file, then the CLOSE method
returns a null string (").

6.11.7. COMMAND

>>-COMMAND (stream_command) -—---- ————m -= ><

Returns a string after performing the specifséigtam_command he returned string depends on the
stream_commangerformed and can be the null string. The followstgeam_commarsd

« Open a stream for reading, writing, or both

- Close a stream at the end of an operation

- Move the line read or write position within a persistent stream (for example, a file)
« Get information about a stream

If the method is unsuccessful, it returns an error message string in the same form that the
DESCRIPTION method uses.

For most error conditions, the additional information is in the form of a numeric return code. This return
code is the value crrNO that is set whenever one of the file system primitives returns with a

Chapter 6. Other Classes

6.11.7.1. Command Strings

The argumenstream_commandan be any expression that the language processor evaluates to a
command string that corresponds to the following diagram:

+-BOTH--| Write Options |-+

>>=+-0PEN-—+-——————————— +——t——- +-+ ><
| +-READ---————————————————— + +-| Options |-+ |
| +-WRITE--+--————--- tomm—m + |
| +-APPEND--+ I
| +-REPLACE-+ |
+-CLOSE- -- -- o +
+-FLUSH--- -- -- Tttt +
| +- = -+ +-CHAR-+ |
+-+-SEEK----- e +-offset-—+--- et St
| +-POSITION-+ +- < -+ +-READ--+ +-LINE-+ |
| +- + -+ +-WRITE-+ |
| - -t |
+-QUERY--+-DATETIME--- -- -- s ST +
+-EXISTS -- -- --——+
+-HANDLE----- -- -= -t
[+-CHAR-+ I
+-+-SEEK-----+--+-READ-—+---———+-—+-+
| +-POSITION-+ | +-LINE-+ | |
| | +-CHAR-+ | |
| +-WRITE--+------ +-+ |
| | +-LINE-+ | |
| +-8YS-——-——-—————— + |
+-SIZE -- -- -+
+-STREAMTYPE- - - "
+-TIMESTAMP-- - - ————t
Write Options:
| ——4———————— +-——= - - - -
+-APPEND--+
+-REPLACE-+
Options:
Fe——— - - ———t
v I
R ittt +----+-NOBUFFER- -- e
+-SHARED----- + +-BINARY-—+-————--———————-———— +-+
+-SHAREREAD--+ +-RECLENGTH--length-+

+-SHAREWRITE-+

OPEN

Opens the stream object receiving the message and regams: . (If unsuccessful, the previous
information about return codes applies.) The default for OPEN is to open the stream for both
reading and writing data, for examplePEN BOTH'. To specify that thestream_nameeceiving the
message can be only read or written to, add READ or WRITE, to the command string.

189

Chapter 6. Other Classes

The following is a description of the options for OPEN:

READ

Opens the stream only for reading.

WRITE

Opens the stream only for writing.

BOTH
Opens the stream for both reading and writing. (This is the default.) The language processor
maintains separate read and write pointers.

APPEND
Positions the write pointer at the end of the stream. The write pointer cannot be moved
anywhere within the extent of the file as it existed when the file was opened.

REPLACE
Sets the write pointer to the beginning of the stream and truncates the file. In other words, this
option deletes all data that was in the stream when opened.

SHARED

Enables another process to work with the stream in a shared mode. This mode must be
compatible with the shared mode (SHARED, SHAREREAD, or SHAREWRITE) used by the
process that opened the stream.

SHAREREAD

Enables another process to read the stream in a shared mode.

SHAREWRITE

Enables another process to write the stream in a shared mode.

NOBUFFER

Turns off buffering of the stream. All data written to the stream is flushed immediately to the
operating system for writing. This option can have a severe impact on output performance. Use
it only when data integrity is a concern, or to force interleaved output to a stream to appear in
the exact order in which it was written.

BINARY

Opens the stream in binary mode. This means that line end characters are ignored; they are
treated like any other byte of data. This is intended to force file operations that are compatible
with other Rexx language processors that run on record-based systems, or to process binary
data using the line operations.

Note: Specifying the BINARY option for a stream that does not exist but is opened for
writing also requires the RECLENGTH option to be specified. Omitting the RECLENGTH
option in this case raises an error condition.

190

Chapter 6. Other Classes

RECLENGTHIength

Allows the specification of an exact length for each line in a stream. This allows line operations
on binary-mode streams to operate on individual fixed-length records. Without this option, line
operations on binary-mode files operate on the entire file (for example, as if you specified the
RECLENGTH option with a length equal to that of the file). Tlemgthmust bet or greater.

Examples:

stream_name~Command ("open")
stream_name~Command ("open write")
stream_name~Command ("open read")
stream_name~Command ("open read shared")

CLOSE

closes the stream object receiving the message. The COMMAND method with the CLOSE option
returnsREADY : if the receiving stream object is successfully closed or an appropriate error message
otherwise. If an attempt to close an unopened file occurs, then the COMMAND method with the
CLOSE option returns a null string ("").

FLUSH

forces any data currently buffered for writing to be written to this stream.

SEEK offset

sets the read or write position to a given numlugfsg) within a persistent stream. If the stream is
open for both reading and writing and you do not specify READ or WRITE, both the read and write
positions are set.

Note: See Input and Output Streams for a discussion of read and write positions in a persistent
stream.

To use this command, you must first open the receiving stream object (with the OPEN stream
command described previously or implicitly with an input or output operation). One of the
following characters can precede thfésetnumber.

explicitly specifies theffsetfrom the beginning of the stream. This is the default if you supply
no prefix. For example, aoffsetof 1 with the LINE option means the beginning of the stream.

specifiesoffsetfrom the end of the stream.

191

Chapter 6. Other Classes

192

+

specifiewffsetforward from the current read or write position.

specifieoffsetbackward from the current read or write position.

The COMMAND method with the SEEK option returns the new position in the stream if the read or
write position is successfully located, or an appropriate error message.

The following is a description of the options for SEEK:

READ

specifies that this command sets the read position.

WRITE

specifies that this command sets the write position.

CHAR

specifies the positioning in terms of characters. This is the default.

LINE

specifies the positioning in terms of lines. For non-binary streams, this is potentially an

operation that can take a long time to complete because, in most cases, the file must be scanned

from the top to count the line-end characters. However, for binary streams with a specified
record length, the new resulting line number is simply multiplied by the record length before
character positioning. Sééne versus Character Positionifay a detailed discussion of this
issue.

Note: If you do line positioning in a file open only for writing, you receive an error message.

Examples:

stream_name~Command("seek =2 read")
stream_name~Command ("seek +15 read")
stream_name~Command("seek -7 write line")
fromend = 125

stream_name~Command ("seek <"fromend read)

POSITION

is a synonym for SEEK.

Used with thesstream_commarg] the COMMAND method returns specific information about a
stream. Except for QUERY HANDLE and QUERY POSITION, the language processor returns the
query information even if the stream is not open. The language processor returns the null string for
nonexistent streams.

Chapter 6. Other Classes

QUERY DATETIME
Returns the date and time stamps of a stream in US format. For example:

stream_name~Command ("query datetime")

A sample output might be:
11-12-95 03:29:12

QUERY EXISTS
Returns the full path specification of the stream object receiving the message, if it exists, or a null
string. For example:

stream_name~Command ("query exists")

A sample output might be:

c:\data\file.txt

QUERY HANDLE
Returns the handle associated with the open stream that is the receiving stream object. For example:

stream_name~Command ("query handle")

A sample output might bes

QUERY POSITION
Returns the current read or write position for the receiving stream object, as qualified by the
following options:

READ
Returns the current read position.

WRITE
Returns the current write position.

Note: If the stream is open for both reading and writing, this returns the read position by default.
Otherwise, this returns the appropriate position by default.

CHAR
Returns the position in terms of characters. This is the default.

193

Chapter 6. Other Classes

LINE

Returns the position in terms of lines. For non-binary streams, this operation can take a long
time to complete. This is because the language processor starts tracking the current line
number if not already doing so, and, thus, might require a scan of the stream from the top to
count the line-end characters. S8ee versus Character Positionifgy a detailed discussion

of this issue. For example:

stream_name~Command("query position write")
A sample output might be:
247

SYS
Returns the operating system stream position in terms of characters.

QUERY SEEK
Is a synonym for QUERY POSITION.

QUERY SIZE
Returns the size in bytes of a persistent stream that is the receiving stream object. For example:
stream_name~Command ("query size")
A sample output might be:
1305

QUERY STREAMTYPE

Returns a string indicating whether the receiving stream Obj@EREISTENT, TRANSIENT, Or
UNKNOWN.

QUERY TIMESTAMP

Returns the date and time stamps of the receiving stream object in an international format. This is
the preferred method of getting date and time because it provides the full 4-digit year. For example:

stream_name~Command ("query timestamp")

A sample output might be:
1995-11-12 03:29:12

6.11.8. DESCRIPTION

>>-DESCRIPTION---- - - - ><

194

Chapter 6. Other Classes

Returns any descriptive string associated with the current state of the stream or the NIL object if no
descriptive string is available. The DESCRIPTION method is identical with the STATE method except
that the string that DESCRIPTION returns is followed by a colon and, if available, additional
information about ERROR or NOTREADY states. (TREATE method describes these states.)

6.11.9. FLUSH

>>-FLUSH--- -- - -- ><

ReturnsReADY:. It forces any data currently buffered for writing to be written to the stream receiving the
message.

6.11.10. INIT

>>-INIT(name) ——==-===—============ ———m—m e - ><

Initializes a stream object for a stream nanmagne but does not open the stream. $eidalization for
more information.

6.11.11. LINEIN

>>-LINEIN-+ e +-- - - ><
B e e S g

+-line-+ +-,count—-+

Returns the nextountlines. The count must beeor 1. The language processor advances the read

pointer. If you omitcount it defaults to1. A line number may be given to set the read position to the start
of a specified line. This line number must be positive and within the bounds of the stream, and must not
be specified for a transient stream. A value of 1liioe refers to the first line in the stream. If the stream

is not already open, the language processor tries to open the stream for reading and writing. If that fails,
the language processor opens the stream for read-onlyL(S&#N (Line Input) for information about

the LINEIN built-in function.)

6.11.12. LINEOUT

>>-LINEQUT-+ - e __ S<
(=) -+

+-string-+ +-,line-+

Returnso if successful in writingstring to the character output stream receiving the messagé an

error occurs while writing the line. The language processor advances the write pointer. If yairomgijt

the language processor closes the stream. If you sp@uiythis positions the write pointer before

writing. If the stream is not already open, the language processor tries to open the stream for reading and
writing. If that fails, the language processor opens the stream for write-onlyL{S&OUT (Line

Output)for information about the LINEOUT built-in function.)

195

Chapter 6. Other Classes

6.11.13. LINES

+-Count—-+
>>-LINES (--+ ——+---) - - - ><
+-Normal-+

Returns the number of completed lines that remain in the character input stream receiving the message. If
the stream has already been read with CHARIN, this can include an initial partial line. For persistent
streams the count starts at the current read position. In effect, LINES reports whether a read action of
CHARIN (seeCHARIN) or LINEIN (seeLINEIN) will succeed. (For an explanation of input and

output, seénput and Output Streanjs

For QUEUE, LINES returns the actual number of lines. (BB¢ES (Lines Remainingjor information
about the LINES built-in function.)

Note: The CHARS method returns the number of characters in a persistent stream or the presence
of data in a transient stream. The LINES method determines the actual number of lines by scanning
the stream starting at the current position and counting the lines. For large streams, this can be a
time-consuming operation. Therefore, avoid the use of the LINES method in the condition of a loop
reading a stream. It is recommended that you use the CHARS method (see CHARS) or the LINES
built-in function for this purpose.

The ANSI Standard has extended this function to allow an option: "Count". If this option is used, LINES
returns the actual number of complete lines remaining in the stream, irrespective of how long this
operation takes.

The option "Normal” returns 1 if there is at least one complete line remaining in the file or O if no lines
remain.

The default is "Count".

The defaults of the LINES method and function are different because of compatibility reasons.

6.11.14. MAKEARRAY

+-(LINES) -+
>>-MAKEARRAY-—+--- + - - - - ><
+-(CHARS) -+

Returns a fixed array that contains the data of the stream in line or character format, starting from the
current read position. The line format is the default.

If you have used the CHARIN method, the first line can be a partial line.

6.11.15. OPEN
+-(BOTH-| Write Optioms |--+ +-SHARED----- +

>>=0PEN-—#=====m=mmmmmmm e tmmdmm e e >
+-(READ---—---————————-———— + +-SHAREREAD--+

196

Chapter 6. Other Classes

+-(WRITE-| Write Options |-+ +-SHAREWRITE-+

R e e LT L Lt e e +
v [
D - -- +—+——+ e -- ><
+-NOBUFFER-----—=====—=—==——=——= + +-) -+
+-BINARY——+-—————————————————— +—+

+-RECLENGTH--length-+

Write Options:

V +-APPEND--+ |
e e -t - - - -
+-REPLACE-+

Opens the stream to which you send the message and refuns. If the method is unsuccessful, it
returns an error message string in the same form that the DESCRIPTION method uses.

For most error conditions, the additional information is in the form of a numeric return code. This return
code is the value arrNO, which is set whenever one of the file system primitives returns with a

By default, OPEN opens the stream for both reading and writing data, for exaonate:BoTH'. To
specify that the stream receiving the message can be only read or only written to, specify READ or
WRITE.

The options for the OPEN method are:

READ

Opens the stream only for reading.

WRITE

Opens the stream only for writing.

BOTH
Opens the stream for both reading and writing. (This is the default.) The language processor
maintains separate read and write pointers.

APPEND

Positions the write pointer at the end of the stream. (This is the default.) The write pointer cannot be
moved anywhere within the extent of the file as it existed when the file was opened.

REPLACE
Sets the write pointer to the beginning of the stream and truncates the file. In other words, this
option deletes all data that was in the stream when opened.

SHARED

Enables another process to work with the stream in a shared mode. (This is the default.) This mode
must be compatible with the shared mode (SHARED, SHAREREAD, or SHAREWRITE) used by
the process that opened the stream.

197

Chapter 6. Other Classes

198

SHAREREAD

Enables another process to read the stream in a shared mode.

SHAREWRITE

Enables another process to write the stream in a shared mode.

NOBUFFER

Turns off buffering of the stream. All data written to the stream is flushed immediately to the
operating system for writing. This option can have a severe impact on output performance. Use it
only when data integrity is a concern, or to force interleaved output to a stream to appear in the
exact order in which it was written.

BINARY

Opens the stream in binary mode. This means that line-end characters are ignored; they are treated

like any other byte of data. This is intended to force file operations that are compatible with other

Rexx language processors that run on record-based systems, or to process binary data using the line

operations.

Note: Specifying the BINARY option for a stream that does not exist but is opened for writing
also requires the RECLENGTH option to be specified. Omitting the RECLENGTH option in this
case raises an error condition.

RECLENGTHIength

Allows the specification of an exact length for each line in a stream. This allows line operations on
binary-mode streams to operate on individual fixed-length records. Without this option, line
operations on binary-mode files operate on the entire file (for example, as if you specified the
RECLENGTH option with a length equal to that of the file). Tlengthmust bet or greater.

Examples:
stream_name~0PEN

stream_name~0PEN("write")
stream_name~0PEN("read")

6.11.16. POSITION

+- = -+ +-CHAR-+
>>-POSITION(—+----—+-0ffset—+-READ-—+—+--—-—- e R ><

+- < -+ +-WRITE-+ +-LINE-+

+- + -+

+- - —+

POSITION is a synonym for SEEK. (S&EEK.)

Chapter 6. Other Classes

6.11.17. QUALIFY

>>-QUALIFY-----—-—-—-—-—- -- mmmmm oo -- ><

Returns the stream’s fully qualified name. The stream need not be open.

6.11.18. QUERY

>>-QUERY (--+-DATETIME---- -- -- ——=+==) -- ><
+-EXISTS------ -- -- i
+-HANDLE -- -- i
| +-CHAR-+ |
+=+-SEEK---=-=+-—+-READ-—+-——-=—+-—+—+
| +-POSITION-+ | +-LINE-+ | |
| I +-CHAR-+ | |
I +-WRITE-—+------ +-+ |
[| +-LINE-+ | |
| +-8YS-————————————- + |
+=8IZE-——-—===———————————— +
+-STREAMTYPE-- -- -- ———+
+-TIMESTAMP--- -- -- s

Used with these options, the QUERY method returns specific information about a stream. Except for
QUERY HANDLE and QUERY POSITION, the language processor returns the query information even
if the stream is not open. The language processor returns the null string for nonexistent streams.

DATETIME
returns the date and time stamps of the receiving stream object in US format. For example:
stream_name~query("datetime")
A sample output might be:
11-12-98 03:29:12

EXISTS
returns the full path specification of the receiving stream object, if it exists, or a null string. For
example:

stream_name ~query("exists")
A sample output might be:

c:\data\file.txt

HANDLE
returns the handle associated with the open stream that is the receiving stream object. For example:

stream_name ~query("handle")

199

Chapter 6. Other Classes

A sample output might be:
3

POSITION

returns the current read or write position for the receiving stream object, as qualified by the
following options:

READ

returns the current read position.

WRITE

returns the current write position.

Note: If the stream is open for both reading and writing, this returns the read position by default.
Otherwise, this returns the appropriate position by default.

CHAR

returns the position in terms of characters. This is the default.

LINE

returns the position in terms of lines. For non-binary streams, this operation can take a long
time to complete. This is because the language processor starts tracking the current line
number if not already doing so, and, thus, might require a scan of the stream from the top to
count the line-end characters. Séee versus Character Positionifay a detailed discussion

of this issue. For example:

stream_name ~query("position write")

A sample output might be:
247

SYS

returns the operating system stream position in terms of characters.

SIZE
returns the size, in bytes, of a persistent stream that is the receiving stream object. For example:
stream_name ~query ("size")
A sample output might be:
1305

200

Chapter 6. Other Classes

STREAMTYPE
returns a string indicating whether the receiving stream objeERISISTENT, TRANSIENT, Of
UNKNOWN.

TIMESTAMP

returns the date and time stamps of the receiving stream object in an international format. This is the
preferred method of getting the date and time because it provides the full 4-digit year. For example:

stream_name ~query("timestamp")
A sample output might be:
1998-11-12 03:29:12

6.11.19. SAY
>>—SAY——+———mm e e - - - ><
= (—H——mm— =) =+

+-string-+

Returnso if successful in writingstring to the character output stream receiving the messagé an
error occurs while writing the line.

6.11.20. SEEK
+- = -+ +-CHAR-+
>>-SEEK (—+---——+-0ffset—+-—--———+—+——————+-) -- -- ><
+- < -+ +-READ--+ +-LINE-+
+- o+ o +-WRITE-+
+- - -+

Sets the read or write position to a given numludfsg) within a persistent stream. If the stream is open
for both reading and writing and you do not specify READ or WRITE, both the read and write positions
are set.

Note: See Input and Output Streams for a discussion of read and write positions in a persistent
stream.

To use this method, you must first open the receiving stream object (with the OPEN method described
previously or implicitly with an input or output operation). One of the following characters can precede
the offsethumber:

201

Chapter 6. Other Classes

202

Explicitly specifies theffsetfrom the beginning of the stream. This is the default if you supply no
prefix. For example, aoffsetof 1 means the beginning of the stream.

Specifieoffsetfrom the end of the stream.

Specifiewffsetforward from the current read or write position.

Specifieoffsetbackward from the current read or write position.

The SEEK method returns the new position in the stream if the read or write position is successfully
located, or an appropriate error message.

The following is a description of the options for SEEK:

READ

specifies that the read position be set.

WRITE

specifies that the write position be set.

CHAR

specifies that positioning be done in terms of characters. This is the default.

LINE

specifies that the positioning be done in terms of lines. For non-binary streams, this is potentially an

operation that can take a long time to complete because, in most cases, the file must be scanned
from the top to count the line-end characters. However, for binary streams with a specified record
length, the new resulting line number is simply multiplied by the record length before character
positioning. Sed.ine versus Character Positionifgy a detailed discussion of this issue.

Note: If you do line positioning in a file open only for writing, you receive an error message.

Examples:

stream_name “seek("=2 read")
stream_name “seek("+15 read")
stream_name “seek("-7 write line")
fromend = 125
stream_name ~“seek ("<"fromend read)

Chapter 6. Other Classes
6.11.21. STATE

>>=STATE---———--————-———- -- e -- ><

Returns a string that indicates the current state of the specified stream.

The returned strings are as follows:

ERROR

The stream has been subject to an erroneous operation (possibly during input, output, or through the
STREAM function). Se&rrors during Input and OutpuYou might be able to obtain additional
information about the error with the DESCRIPTION method or by calling the STREAM function

with a request for the description.

NOTREADY

The stream is known to be in such a state that the usual input or output operations attempted upon
would raise the NOTREADY condition. (Sé&arors during Input and OutpQtFor example, a

simple input stream can have a defined length. An attempt to read that stream (with CHARIN or
LINEIN, perhaps) beyond that limit can make the stream unavailable until the stream has been
closed (for example, with LINEOUh@ame) and then reopened.

READY

The stream is known to be in such a state that the usual input or output operations might be
attempted. This is the usual state for a stream, although it does not guarantee that any particular
operation will succeed.

UNKNOWN

The state of the stream is unknown. This generally means that the stream is closed or has not yet
been opened.

6.11.22. SUPPLIER

>>-SUPPLIER - - - - - ><

Returns a supplier object for the stream. When you send appropriate messages to the supplier object (see
The Supplier Clagsit enumerates all the lines in the stream object. The supplier enumerates the items in
their line order.

6.12. The String Class

String objects represent character-string data values. A character string value can have any length and
contain any characters. If you are familiar with earlier versions of Rexx you might find the notation for
functions more convenient than the notation for methods Feeetionsfor function descriptions.

The String class is a subclass of the Object class.

203

Chapter 6. Other Classes

Methods the String class defines:

NEW (Class method. Overrides Object class method)

Arithmetic methods: +, -, *, /, %, //, **

Comparison methods: =, \z;>, ><, ==, \== (Override Object class methods)
Comparison methods: x;, >=,\<, <=,\>, >> <<, >>= <<, <<=, \>>
Logical methods: &, |, &&,\

Concatenation methods: "™ (abuttal), " " (blank), ||

ABBREV

ABS

BITAND

BITOR

BITXOR

B2X

CENTER (or CENTRE)

CHANGESTR
COMPARE
COPIES
COUNTSTR

C2D

C2X

DATATYPE
DECODEBASEG64
DELSTR
DELWORD

D2C

D2X
ENCODEBASE64
FORMAT

INSERT
LASTPOS

LEFT

LENGTH
MAKEARRAY
MAKESTRING
MAX

MIN

OVERLAY

POS

REVERSE
RIGHT

SIGN

SPACE

STRING (Overrides Object class method)

STRIP
SUBSTR
SUBWORD
TRANSLATE
TRUNC
VERIFY
WORD
WORDINDEX
WORDLENGTH
WORDPOS
WORDS

X2B

X2C

X2D

Methods inherited from the Object class:

CLASS

COPY
DEFAULTNAME
HASMETHOD
INIT

204

Chapter 6. Other Classes

OBJECTNAME
OBJECTNAME=
REQUEST

RUN
SETMETHOD
START
UNSETMETHOD

Note: The String class also has available class methods that its metaclass, the Class class, defines.

6.12.1. NEW (Class Method)

>>-NEW(stringvalue) - - - ><

Returns a new string object initialized with the characterstiimgvalue

6.12.2. Arithmetic Methods

>>-arithmetic_operator (argument)———---—=---——=———--———-————————— ><

Note: For the prefix - and prefix + operators, omit the parentheses and argument.

Returns the result of performing the specified arithmetic operation on the receiver object. The receiver
object and thargumentmust be valid numbers (sé&imber3. Thearithmetic_operatorcan be:

+
Addition
Subtraction
*
Multiplication
/
Division
%
Integer division (divide and return the integer part of the result)
1

Remainder (divide and return the remainder--not modulo, because the result can be negative)

205

Chapter 6. Other Classes

*%
Exponentiation (raise a number to a whole-number power)

Prefix -

Same as the subtraction:- number

Prefix +
Same as the addition: + number

SeeNumbers and Arithmetitor details about precision, the format of valid numbers, and the operation
rules for arithmetic. Note that if an arithmetic result is shown in exponential notation, it might have been

rounded.

Examples:

5+5 -> 10

8-5 -> 3

5%2 -> 10

6/2 -> 3

9//4 -> 1

9%4 -> 2

2%%3 -> 8

+5 -> 5 /* Prefix + x*/
-5 -> -5 /* Prefix - x*/

6.12.3. Comparison Methods

>>-comparison_operator (argument) - - ><

Returnst (true) oro (false), the result of performing the specified comparison operation. The receiver
object and thergumentare the terms compared. Both must be string objects.

The comparison operators you can use in a message are:

True if the terms are equal (for example, numerically or when padded)

\=, ><, <>

True if the terms are not equal (inverse of =)

>

Greater than
<

Less than
>:

Greater than or equal to

206

Chapter 6. Other Classes

\<

Not less than
<=

Less than or equal to
\>

Not greater than
Examples:
5=5 -> 1 /* equal */
42\=41 -> 1 /* All of these are */
42><41 -> 1 /* "not equal" */
42<>41 -> 1
13>12 -> 1 /* Variations of */
12<13 -> 1 /* less than and */
13>=12 -> 1 /* greater than */
12\<13 -> 0
12<=13 -> 1
12\>13 -> 1

All strict comparison operations have one of the characters doubled that define the operateraiitie
== operators check whether two strings match exactly. The two strings must be identical (character by
character) and of the same length to be considered strictly equal.

The strict comparison operators such-a®r << carry out a simple character-by-character comparison.
There is no padding of either of the strings being compared. The comparison of the two strings is from
left to right. If one string is shorter than and a leading substring of another, then it is smaller than (less
than) the other. The strict comparison operators do not attempt to perform a numeric comparison on the
two operands.

For all the other comparison operators, if both terms are numeric, the language processor does a numeric
comparison (ignoring, for example, leading zeros-{8americ ComparisonsOtherwise, it treats both

terms as character strings, ignoring leading and trailing blanks and padding the shorter string on the right
with blanks.

Character comparison and strict comparison operations are both case-sensitive, and for both the exact
collating order can depend on the character set. In an ASCII environment, the digits are lower than the
alphabetic characters, and lowercase alphabetic characters are higher than uppercase alphabetic
characters.

The strict comparison operators you can use in a message are:

True if terms are strictly equal (identical)

True if the terms are NOT strictly equal (inverse of ==

207

Chapter 6. Other Classes

208

>>

Strictly greater than

<<
Strictly less than
>>=
Strictly greater than or equal to
\<<
Strictly NOT less than
<<=

Strictly less than or equal to

\>>

Strictly NOT greater than
Examples:
"space"=="space" -> 1 /* Strictly equal */
"space"\==" space" > 1 /* Strictly not equal */
"space'">>" space" -> 1 /* Variations of */
" space"<<"space" -> 1 /* strictly greater */
"space">>=" space" «-> 1 /* than and less than */
"space"\<<" space" > 1
" space'"<<="space" > 1
" space"\>>"space" > 1

6.12.4. Logical Methods

>>-logical_operator(argument)--- - - - ><

Note: For NOT (prefix \), omit the parentheses and argument.

Returns 1 (true) or o (false), the result of performing the specified logical operation. The receiver
object and the argument are character strings that evaluate to 1 or o.

Thelogical_operatorcan be:

&

AND (Returnst if both terms are true.)

Chapter 6. Other Classes

Inclusive OR (Returns if either term or both terms are true.)

&&
Exclusive OR (Returns if either term, but not both terms, is true.)
Prefix \
Logical NOT (Negatest become®, ando becomes.)
Examples:
1&0 -> 0
110 -> 1
1&&0 -> 1
\1 -> 0

6.12.5. Concatenation Methods

>>-concatenation_operator (argument)---- - - ><

Concatenates the receiver object vatigument (SeeString ConcatenationThe
concatenation_operataran be:

concatenates without an intervening blank. The abuttal operator " is the null string. The language
processor uses the abuttal to concatenate two terms that another operator does not separate.

concatenates without an intervening blank.

concatenates with one blank between the receiver object armighment (The operator " " is a

blank.)

Examples:

5+5 -> 10

8-5 -> 3

5%2 -> 10

6/2 -> 3

9//4 -> 1

9%4 -> 2

2%%3 -> 8

+5 -> 5 /* Prefix + x*/
-5 -> -5 /* Prefix - x*/

209

Chapter 6. Other Classes
6.12.6. ABBREV

>>-ABBREV (info-+-- +=)-——- - - ><
+-,length-+

Returnst if info is equal to the leading characters of the receiving string and the lengtfod$ not less
thanlength Returng if either of these conditions is not met.

If you specifylength it must be a positive whole number or zero. The defaultdogthis the number of
characters imnfo.

Examples:

"Print"~ABBREV("Pri") -> 1
"PRINT"~ABBREV ("Pri") -> 0
"PRINT"~ABBREV ("PRI",4) -> 0
"PRINT"~ABBREV ("PRY") -> 0
"PRINT"~ABBREV("") -> 1
"PRINT"~ABBREV("",1) -> 0

Note: A null string always matches if a length of o, or the default, is used. This allows a default
keyword to be selected automatically if desired.

Example:

say "Enter option:"; pull option .

select /* keywordl is to be the default */
when "keywordl"~abbrev(option) then ...
when "keyword2"~abbrev(option) then ...

otherwise nop;
end;

(SeeABBREYV (Abbreviation)for information about the ABBREYV built-in function.)

6.12.7. ABS

>>-ABS -- -- -- -- -- ><

Returns the absolute value of the receiving string. The result has no sign and is formatted according to
the current NUMERIC settings.

Examples:
12.37abs -> 12.3
"-0.307"~abs -> 0.307

(SeeABS (Absolute Valuefor information about the ABS built-in function.)

210

Chapter 6. Other Classes
6.12.8. B2X

>>-B2X - -- -- - ><

Returns a string, in character format, that represents the receiving binary string converted to hexadecimal.

The receiving string is a string of binary ¢r 1) digits. It can be of any length. It can optionally include
blanks (at 4-digit boundaries only, not leading or trailing). These are to improve readability; the language
processor ignores them.

The returned string uses uppercase alphabetic characters for theasglaad does not include blanks.

If the receiving binary string is a null string, B2X returns a null string. If the number of binary digits in
the receiving string is not a multiple of four, the language processor adds up t@ tihigits on the left
before the conversion to make a total that is a multiple of four.

Examples:

"11000011"~B2X -> c3"
"10111"~B2X -> 7
"101"~B2X -> ngn

"1 1111 0000""B2X -> "1FO"

You can combine B2X with the methods X2D and X2C to convert a binary number into other forms.

Example:
"10111"~"B2X~X2D -> "23" /% decimal 23 */

(SeeB2X (Binary to Hexadecimalfor information about the B2X built-in function.)

6.12.9. BITAND
>>-BITAND-+-——-———————————————— +-—————= - ><
+-(string-+------+-) -+
+-,pad-+

Returns a string composed of the receiver string and the argwstreng logically ANDed together, bit

by bit. (The encodings of the strings are used in the logical operation.) The length of the result is the
length of the longer of the two strings. If you omit thad character, the AND operation stops when the
shorter of the two strings is exhausted, and the unprocessed portion of the longer string is appended to
the partial result. If you providpad, it extends the shorter of the two strings on the right before the
logical operation. The default fa@tringis the zero-length (null) string.

Examples:

"12"x~BITAND -> "12'x

"73"x~BITAND("27"x) -> "23"x
"13"x~BITAND("5555"x) -> "1155"x
"13"x"BITAND("5555"x, "74"x) -> "1154"x

"pQrS" ~“BITAND(, "DF"x) -> "PQRS" /% ASCII */

(SeeBITAND (Bit by Bit AND) for information about the BITAND built-in function.)

211

Chapter 6. Other Classes

212

6.12.10. BITOR
>>-BITOR-+-——-————————-—- + e - ><
+-(string-—+------+-)-+
+-,pad-+

Returns a string composed of the receiver string and the argustianglogically inclusive-ORed, bit by

bit. The encodings of the strings are used in the logical operation. The length of the result is the length of
the longer of the two strings. If you omit thpad character, the OR operation stops when the shorter of

the two strings is exhausted, and the unprocessed portion of the longer string is appended to the partial
result. If you providepad, it extends the shorter of the two strings on the right before the logical

operation. The default fastring is the zero-length (null) string.

Examples:

"12"x~BITOR -> "12"x
"15"x~BITOR("24"x) -> "35"x
"15"x"BITOR("2456"x) -> "3556"x
"15"x~“BITOR("2456"x,"F0"x) -> "35F6"x
"1111"x~BITOR(,"4D"x) -> "5D5D"x
"pQrS"~BITOR(, "20"x) -> "pars" /x ASCII */

(SeeBITOR (Bit by Bit OR) for information about the BITOR built-in function.)

6.12.11. BITXOR

>>-BITXOR-+ e N g
+-(string—+-—————+-) -+
+-,pad-+

Returns a string composed of the receiver string and the argwstiang logically eXclusive-ORed, bit

by bit. The encodings of the strings are used in the logical operation. The length of the result is the length
of the longer of the two strings. If you omit thpad character, the XOR operation stops when the shorter

of the two strings is exhausted, and the unprocessed portion of the longer string is appended to the partial
result. If you providepad, it extends the shorter of the two strings on the right before carrying out the

logical operation. The default f@tringis the zero-length (null) string.

Examples:

"12"x~BITXOR -> "12"x
"12"x~BITXOR("22"x) -> "30"x
"1211"x"BITXOR("22"x) -> "3011"x
"1111"x"BITXOR("444444"x) -> "555544'"x
"1111"x~BITXOR("444444"x,"40"x) -> "555504"x
"1111"x"BITXOR(,"4D"x) -> "5C5C"x
"C711"x"BITXOR("222222"x," ") -> "EB3302"x /* ASCII */

(SeeBITXOR (Bit by Bit Exclusive OR)for information about the BITXOR built-in function.)

Chapter 6. Other Classes

6.12.12. C2D
>>-C2D-+---—- e -- e -- ><
+-(n)-+

Returns the decimal value of the binary representation of the receiving string. If the result cannot be
expressed as a whole number, an error results. That is, the result must not have more digits than the
current setting of NUMERIC DIGITS. If you specify, it is the length of the returned result. If you do
not specifyn, the receiving string is processed as an unsigned binary number. If the receiving string is
null, C2D returns.

Examples:

"09"X~C2D -> 9

"81"X~C2D -> 129

"FF81"X~C2D -> 65409

" ~C2D -> 0

"a"~C2D -> 97 /% ASCII %/

If you specifyn, the receiving string is taken as a signed number expressecharacters. The number

is positive if the leftmost bit is off, and negative if the leftmost bit is on. In both cases, it is converted to a
whole number, which can therefore be negative. The receiving string is padded on the left with "00"x
characters (not "sign-extended"), or truncated on the leftdioaracters. This padding or truncation is as
thoughreceiving_string RIGHT (n,'00'x) had been processed.ris 0, C2D always returns.

Examples:

"81"X~C2D(1) -> -127
"81"X~C2D(2) -> 129
"FF81"X~C2D(2) -> -127
"FF81"X~C2D(1) -> -127
"FF7F"X~C2D(1) -> 127
"FO81"X~C2D(2) -> -3967
"F081"X~C2D(1) -> -127
"0031"X~C2D(0) -> 0

(SeeC2D (Character to Decimatpr information about the C2D built-in function.)

6.12.13. C2X

>>-C2X - -- - ><

Returns a string, in character format, that represents the receiving string converted to hexadecimal. The
returned string contains twice as many bytes as the receiving string. On an ASCII system, sending a C2X
message to the receiving stringeturnsst because "31"X is the ASCII representationtof

The returned string has uppercase alphabetic characters for the #alaesl does not include blanks.
The receiving string can be of any length. If the receiving string is null, C2X returns a null string.

Examples:
"0123"X~C2X -> "0123" /% "30313233"X in ASCII */
"ZD8"~C2X -> "5A4438" /+ "354134343338"X in ASCII */

213

Chapter 6. Other Classes

214

(SeeC2X (Character to Hexadecimdfr information about the C2X built-in function.)

6.12.14. CENTER/CENTRE

>>-+-CENTER (-+-length-+-------- =) === -- ><
+-CENTRE (-+ +-,--pad-+

Returns a string of lengtiengthwith the receiving string centered in it. The language processor adds
padcharacters as necessary to make up lengthl@figthmust be a positive whole number or zero. The
defaultpad character is blank. If the receiving string is longer themgth it is truncated at both ends to

fit. If an odd number of characters are truncated or added, the right-hand end loses or gains one more
character than the left-hand end.

Note: To avoid errors because of the difference between British and American spellings, this method
can be called either CENTRE or CENTER.

Examples:

abc~CENTER(7) -> " ABC "
abc~CENTER(8,"-") -> "--ABC-——-"
"The blue sky"~“CENTRE(8) -> "e blue s"
"The blue sky" CENTRE(7) -> "e blue "

(SeeCENTER (or CENTREJor information about the CENTER built-in function.)

6.12.15. CHANGESTR

>>-CHANGESTR (needle,newneedle) - - - ><

Returns a copy of the receiver object in whizkwneedleeplaces all occurrences éedle

Here are some examples:

101100~ CHANGESTR("1","") -> "000"
101100~ CHANGESTR("1","X") -> "X0XX00"

(SeeCHANGESTRfor information about the CHANGESTR built-in function.)

6.12.16. COMPARE

>>-COMPARE (string-+-----—+-)---- - - ><
+-,pad-+

Returnso if the argumenstringis identical to the receiving string. Otherwise, returns the position of the
first character that does not match. The shorter string is padded on the rigipagifimecessary. The
defaultpad character is a blank.

Chapter 6. Other Classes

Examples:

"abc"~COMPARE("abc") -> 0
"abc"~COMPARE("ak") -> 2
"ab "~COMPARE("ab") -> 0
"ab "~COMPARE("ab"," ") -> 0
"ab "~COMPARE("ab","x") -> 3
"ab-- "~COMPARE("ab","-") -> 5

(SeeCOMPAREfor information about the COMPARE built-in function.)

6.12.17. COPIES

>>-COPIES (n) ------ - - - - - ><

Returnan concatenated copies of the receiving string. Mimeust be a positive whole number or zero.

Examples:
"abc"~“COPIES(3) -> "abcabcabc"
"abc"~“COPIES(0) -> "

(SeeCOPIESfor information about the COPIES built-in function.)

6.12.18. COUNTSTR

>>-COUNTSTR (needle) - - - - ><

Returns a count of the occurrencesekdlen the receiving string that do not overlap.

Here are some examples:

"101101"~COUNTSTR("1") -> 4
" JOKKKO" “COUNTSTR ("KK") => 1

(SeeCOUNTSTRfor information about the COUNTSTR built-in function.)

6.12.19. D2C
>>-D2C—+----~ - -- -- -- ><
+-(n)-+

Returns a string, in character format, that is the ASCII representation of the receiving string, a decimal
number. If you specify, it is the length of the final result in characters; leading blanks are added to the
returned string. Tha must be a positive whole number or zero.

The receiving string must not have more digits than the current setting of NUMERIC DIGITS.

If you omit n, the receiving string must be a positive whole number or zero, and the result length is as
needed. Therefore, the returned result has no leading "00"x characters.

215

Chapter 6. Other Classes

Examples:

"65"~D2C -> A /* "41"x is an ASCII "A" */
"65"~D2C(1) -> v

"65"~D2C(2) -> mopn

"65"~D2C(5) -> " A"

"109"~D2C -> " /* "6D"x is an ASCII "m" %/
"-109"~D2C(1) -> "&" /* "93"x is an ASCII "&" x/
"76"~D2C(2) -> nLe /* "4C"x is an ASCII " L" x/
"-180"~D2C(2) -> " L"

Implementation maximum: The returned string must not have more than 250 significant characters,
although a longer result is possible if it has additional leading sign characters ("00"x and "FF"x).

(SeeD2C (Decimal to Charactefpr information about the D2C built-in function.)

6.12.20. D2X
>>-D2X—+-————t———m—— - —————————— - ><
+-(n)-+

Returns a string, in character format, that represents the receiving string, a decimal number converted to
hexadecimal. The returned string uses uppercase alphabetic characters for the-vandsioes not
include blanks.

The receiving string must not have more digits than the current setting of NUMERIC DIGITS.

If you specifyn, it is the length of the final result in characters. After conversion the returned string is
sign-extended to the required length. If the number is too big to fitirtlearacters, it is truncated on the
left. If you specifyn, it must be a positive whole number or zero.

If you omit n, the receiving string must be a positive whole number or zero, and the returned result has
no leading zeros.

Examples:

"g"~D2X -> ngn
"129"~D2X -> ng1n
"129"~D2X(1) > npn
"129""D2X(2) > ng1n
"129"~D2X(4) > "0081"
"257""D2X(2) > "o1"
"-127"~D2X(2) -> ng1n
"-127"~D2X(4) -> "FF81"
"12"~D2X(0) -> "o

Implementation maximum: The returned string must not have more than 500 significant hexadecimal
characters, although a longer result is possible if it has additional leading sign characters (0 and F).

(SeeD2X (Decimal to Hexadecimafpr information about the D2X built-in function.)

216

Chapter 6. Other Classes
6.12.21. DATATYPE

>>-DATATYPE-+-——----- +--- -- -- -- ><
+-(type) -+

ReturnaiuM if you specify no argument and the receiving string is a valid Rexx number that can be added
to O without error. It returnsHAR if the receiving string is not a valid number.

If you specifytype it returnst if the receiving string matches the type. Otherwise, it retorristhe
receiving string is null, the method returagexcept when théypeis x or B, for which DATATYPE
returnsi for a null string). The following are valitypes. You need to specify only the capitalized letter,
or the number of the last type listed. The language processor ignores all characters following it.

Alphanumeric

returnst if the receiving string contains only characters from the rangesi-z, ando-9.

Binary
returnsi if the receiving string contains only the characteis 1, or a blank. Blanks can appear
only between groups of 4 binary characters. It also returns 1 if string is a null string, which is a valid
binary string.

Lowercase

returnsi if the receiving string contains only characters from the rasnge

Mixed case

returnst if the receiving string contains only characters from the ranrgeanda-z.

Number

returnst if receiving_string DATATYPE returnsNuM.

Symbol
returnsi if the receiving string is a valid symbol, that is, if SYMBOL(string) does not reBam
(SeeSymbols) Note that both uppercase and lowercase alphabetic characters are permitted.
Uppercase

returnst if the receiving string contains only characters from the range

Variable

returnsi if the receiving string could appear on the left-hand side of an assignment without causing
a SYNTAX condition.

Whole number

returnsi if the receiving string is a whole number under the current setting of NUMERIC DIGITS.

217

Chapter 6. Other Classes

heXadecimal

returnsi if the receiving string contains only characters from the ranges-F, 0-9, and blank (as
long as blanks appear only between pairs of hexadecimal characters). Also tdfuhgsreceiving
string is a null string.

9 Digits

returnst if receiving_string DATATYPE("W") returnst when NUMERIC DIGITS is set to 9.
Examples:
" 12 "~DATATYPE -> "NUM"
“"~DATATYPE -> "CHAR"
"123%" “DATATYPE -> "CHAR"
"12.3"~DATATYPE("N") -> 1
"12.3"“DATATYPE("W") -> 0
"Fred"~DATATYPE("M") -> 1
" ~DATATYPE("M") -> 0
"Fred"~DATATYPE("L") -> 0
"?20K" “DATATYPE("s") -> 1
"BCd3""DATATYPE("X") -> 1
"BC d3"~“DATATYPE("X") -> 1

Note: The DATATYPE method tests the meaning or type of characters in a string, independent of the
encoding of those characters (for example, ASCIl or EBCDIC).

(SeeDATATYPE for information about the DATATYPE built-in function.)

6.12.22. DECODEBASEG4

>>-DECODEBASE64--- - - - - _ ><

Returns the decoded version of the base64 encoded recieving string. If the recieving string is not in
base64 format then the returned result is undefined.

Examples:
"YWJjZGVm" ~DECODEBASE64 -> "abcdef"

Please note that there is no corresponding DECODEBASE®64 builtin function for this method in coRexx.

6.12.23. DELSTR

>>-DELSTR (n-—+--------- +-=)————- -- -- ><
+-,length-+

Returns a copy of the receiving string after deleting the substring that beginsrgh ttigaracter and is of
lengthcharacters. If you omiength or if lengthis greater than the number of characters frota the

218

Chapter 6. Other Classes

end ofstring, the method deletes the restatfing (including thenth character). Théengthmust be a
positive whole number or zero. Timmust be a positive whole number.ris greater than the length of
the receiving string, the method returns the receiving string unchanged.

Examples:

"abcd" “DELSTR(3) -> "ab"
"abcde"“DELSTR(3,2) -> "abe"
"abcde" “DELSTR(6) -> "abcde"

(SeeDELSTR (Delete Stringjor information about the DELSTR built-in function.)

6.12.24. DELWORD

>>-DELWORD (n--+--------- +--)---- - - - ><
+-,length-+

Returns a copy of the receiving string after deleting the substring that startsrih tiverd and is of
lengthblank-delimited words. If you omiength or if lengthis greater than the number of words from

to the end of the receiving string, the method deletes the remaining words in the receiving string
(including thenth word). Thelengthmust be a positive whole number or zero. Thaust be a positive

whole number. Ifis greater than the number of words in the receiving string, the method returns the
receiving string unchanged. The string deleted includes any blanks following the final word involved but
none of the blanks preceding the first word involved.

Examples:

"Now is the time"~DELWORD(2,2) -> "Now time"

"Now is the time "~“DELWORD(3) -> "Now is "

"Now is the time"~DELWORD(5) -> "Now is the time"
"Now is the time"~DELWORD(3,1) -> "Now is time"

(SeeDELWORD (Delete Word¥or information about the DELWORD built-in function.)

6.12.25. ENCODEBASEG4

>>-ENCODEBASE64--- - - - <

Returns the base64 encoded version of the recieving string.

Examples:
"abcdef " ~ENCODEBASE64 -> "YWJZGVm"

Please note that there is no corresponding ENCODEBASE®64 builtin function for this method in ooRexx.

6.12.26. FORMAT

>>-FORMAT-+ - - —————————— +-><

219

Chapter 6. Other Classes

+-(-before—+--- —- - - - —+-) -+
et S ————t—+

+-after-+ +-,—-—+-—- +——+ ————t—+

+-expp-+ +-,expt-+

Returns the receiving string, a number, rounded and formatted.

The number is first rounded according to standard Rexx rules, as though the operation
receiving_string+0 had been carried out. If you specify no arguments the result of the method is the
same as the result of this operation. If you specify any options, the number is formatted as described in
the following.

Thebeforeandafter options describe how many characters are to be used for the integer and decimal
parts of the result. If you omit either or both of them, the number of characters for that part is as needed.

If beforeis not large enough to contain the integer part of the number (plus the sign for a negative
number), an error results. bieforeis larger than needed for that part, the number is padded on the left
with blanks. Ifafteris not the same size as the decimal part of the number, the number is rounded (or
extended with zeros) to fit. Specifyingcauses the number to be rounded to an integer.

Examples:

"3"~FORMAT (4) -> "3
"1.73"~FORMAT(4,0) -> wooon
"1.73"~FORMAT(4,3) -> " 1.730"
"-.76"~FORMAT(4,1) -> " -0.8"
"3.03"~FORMAT (4) -> " 3.03"
" - 12.73"~FORMAT(,4) -> "-12.7300"
" - 12.73"~FORMAT -> "-12.73"
"0.000"~FORMAT -> non

exppandexptcontrol the exponent part of the result, which, by default, is formatted according to the
current NUMERIC settings of DIGITS and FORMXxppsets the number of places for the exponent part;
the default is to use as many as needed (which can be espispecifies when the exponential
expression is used. The default is the current setting of NUMERIC DIGITS.

If exppis 0, the number is not an exponential expressioex[pis not large enough to contain the
exponent, an error results.

If the number of places needed for the integer or decimal part exesgdtsr twice expt respectively,
exponential notation is used.@dkptis 0, exponential notation is always used unless the exponent would
beo. (If exppis o, this overrides a value ofexpt) If the exponent would be when a nonzerexppis
specified, themxppt2 blanks are supplied for the exponent part of the result. If the exponent woald be
andexppis not specified, the number is not an exponential expression.

Examples:

"12345.73"~FORMAT(, ,2,2) -> "1.234573E+04"
"12345.73""FORMAT(,3, ,0) -> "1.235E+4"
"1.234573"~FORMAT(,3, ,0) -> "1.235"
"12345.73"~FORMAT(, ,3,6) —> "12345.73"
"1234567e5" "FORMAT(,3,0) -> 123456700000 .000"

(SeeFORMAT for information about the FORMAT built-in function.)

220

Chapter 6. Other Classes

6.12.27. INSERT

>>-INSERT (new—+---------- -- it +=)—————- ><
+— - —+=+

+-N-+ -, o4+
+-length-+ +-,pad-+

Inserts the stringew, padded or truncated to lengtdngth into the receiving string. after théh
character. The default value foiis 0, which means insertion at the beginning of the string. If specified,
andlengthmust be positive whole numbers or zeronli§ greater than the length of the receiving string,
the stringnewis padded at the beginning. The default valuelémgthis the length ofhew If lengthis

less than the length of the strimgw, then INSERT truncatesewto lengthlength The defaulpad
character is a blank.

Examples:

"abc"~INSERT("123") -> "123abc"
"abcdef"~INSERT(" ",3) -> "abc def"
"abc"~INSERT("123",5,6) -> "abc 123 "
"abc"~INSERT("123",5,6,"+") -> "abc++123+++"
"abc"~INSERT("123", ,5,"-") -> "123--abc"

(SeelNSERTfor information about the INSERT built-in function.)

6.12.28. LASTPOS

>>-LASTPOS (needle—+------=-—+-) —- - - ><
+-,start-+

Returns the position of the last occurrence of a stnragdle in the receiving string. (See al®DS) It
returnso if needles the null string or not found. By default, the search starts at the last character of the
receiving string and scans backward. You can override this by spec#angthe point at which the
backward scan starts. Tetart must be a positive whole number and defaults to
receiving_string~length if larger than that value or omitted.

Examples:

"abc def ghi"~LASTPOS(" ") -> 8
"abcdefghi" “LASTPOS(" ") -> 0
"efgxyz" “LASTPOS ("xy") -> 4
"abc def ghi"~LASTPOS(" ",7) -> 4

(SeeLASTPOS (Last Positionfpr information about the LASTPOS built-in function.)

6.12.29. LEFT
>>-LEFT(length—+------+-) -= -= -= -= ><
+-,pad-+

221

Chapter 6. Other Classes

222

Returns a string of lengtiength containing the leftmodengthcharacters of the receiving string. The
string returned is padded witkad characters (or truncated) on the right as needed. The defzalilt
character is a blank. THengthmust be a positive whole number or zero. The LEFT method is exactly
equivalent to:

>>-SUBSTR(string,1,length-+-—————+-)-—- - ><
+-,pad-+

Examples:

"abc d"~LEFT(8) -> "abc d "

"abc 4"“LEFT(8,".") -> "abc d..."

"abc def""LEFT(7) -> "abc de"

(SeeLEFT for information about the LEFT built-in function.)

6.12.30. LENGTH

>>-LENGTH-- - - - ><

Returns the length of the receiving string.

Examples:

"abcdefgh" “LENGTH -> 8
"abc defg"“LENGTH -> 8
" ~LENGTH -> 0

(SeeLENGTH for information about the LENGTH built-in function.)

6.12.31. MAKEARRAY

>>-MAKEARRAY (—+-—---=--———= +=)——-=><
+-Separator-+

This method returns an array of strings containing the single lines that were separated using the separator
character. The default separator is the newline character.

Example:

nl = "0dOa"x

string = "hello"nl"world"nl"this is an array."
array = string“makearray

say "the second line is:" array[2]

string = "hello*world*this is an array."
array = string~“makearray("*")
say "the third line is:" arrayl[3]

Chapter 6. Other Classes
6.12.32. MAKESTRING

>>-MAKESTRING------------ -- mmmmm oo -- ><

Returns a string with the same string value as the receiver object. If the receiver is an instance of a
subclass of the String class, this method returns an equivalent string object. If the receiver is a string
object (not an instance of a subclass of the String class), this method returns the receiver object. See
Required String Values

6.12.33. MAX

Returns the largest number from among the receiver and any arguments. The number that MAX returns
is formatted according to the current NUMERIC settings. You can specify any numhantfes.

Examples:

127MAX(6,7,9) -> 12
17.3"MAX(19,17.03) -> 19
II_7Il“’MAX(II_3II,II_4.3II) -> -3

1~MAX(2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21) -> 21

(SeeMAX (Maximum) for information about the MAX built-in function.)

6.12.34. MIN

Returns the smallest number from among the receiver and any arguments. The number that MIN returns
is formatted according to the current NUMERIC settings. You can specify any numhantfes.

Examples:

127MIN(6,7,9) -> 6
17.3"MIN(19,17.03) -> 17.03
||_7||~MIN(I|_3||,||_4.3||) -> -7
21°MIN(20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1) -> 1

(SeeMIN (Minimum) for information about the MIN built-in function.)

223

Chapter 6. Other Classes

6.12.35. OVERLAY

>>-0VERLAY (new—+--------- -- —mmmmmmm o +-) ><
+- - ——+-+

+-n-+ -, ————t—+
+-length-+ +-,pad-+

Returns the receiving string, which, starting at titte character, is overlaid with the strimgw padded or
truncated to lengtlength The overlay can extend beyond the end of the receiving string. If you specify
length it must be a positive whole number or zero. The default valuéefagthis the length ohew If n

is greater than the length of the receiving string, padding is added befanewrstring. The defaulpad
character is a blank, and the default valuerfs 1. If you specifyn, it must be a positive whole number.

Examples:

"abcdef"~OVERLAY (" ",3) -> "ab def"
"abcdef"~OVERLAY(".",3,2) -> "ab. ef"
"abcd"~OVERLAY("qq") -> "qqcd"
"abcd" ~OVERLAY("qq",4) -> "abcqq"
"abc"~OVERLAY("123",5,6,"+") -> "abc+123+++"

(SeeOVERLAY for information about the OVERLAY built-in function.)

6.12.36. POS

>>-P0S (needle—+-------- e - - ><
+-,start-+

Returns the position in the receiving string of another stnregdle (See alse. ASTPOS) It returnso if
needles the null string or is not found or Htartis greater than the length of the receiving string. By
default, the search starts at the first character of the receiving string (that is, the vstia isf1). You
can override this by specifyingtart (which must be a positive whole number), the point at which the
search starts.

Examples:

"Saturday"~P0OS("day") -> 6
"abc def ghi"~“P0OS("x") -> 0
"abc def ghi"“POS(" ") -> 4
"abc def ghi"~“POS(" ",5) => 8

(SeePOS (Positionjor information about the POS built-in function.)

6.12.37. REVERSE

>>-REVERSE- - - - - - ><

Returns the receiving string reversed.

Examples:

224

Chapter 6. Other Classes

"ABc."“REVERSE -> ".cBA"
"XYZ "“REVERSE -> " ZYX"

(SeeREVERSEfor information about the REVERSE built-in function.)

6.12.38. RIGHT

>>-RIGHT (length-+------ +=)—————= - - ><
+-,pad-+

Returns a string of lengtiengthcontaining the rightmogéengthcharacters of the receiving string. The
string returned is padded wiffad characters, or truncated, on the left as needed. The detailt
character is a blank. THengthmust be a positive whole number or zero.

Examples:

"abc d"“RIGHT(8) -> " abc 4"
"abc def"~“RIGHT(5) -> "c def"
"12"~“RIGHT(5,"0") -> "00012"

(SeeRIGHT for information about the RIGHT built-in function.)

6.12.39. SIGN

>>=8IGN--———————————m == - e -- ><

Returns a number that indicates the sign of the receiving string, which is a number. The receiving string
is first rounded according to standard Rexx rules, as though the opefatiiving_string+0 had been
carried out. It returnst if the receiving string is less than o if it is 0, and1 if it is greater tharo.

Examples:

"12.3"~SIGN -> 1
" -0.307"~SIGN -> -1
0.0"SIGN -> 0

(SeeSIGN for information about the SIGN built-in function.)

6.12.40. SPACE

>>-SPACE-+--- + -- -- -- ><
+-(n-+-——————+-) -+

+-,pad-+

Returns the blank-delimited words in the receiving string, wittadcharacters between each word. If
you specifyn, it must be a positive whole number or zero. If ibisall blanks are removed. Leading and
trailing blanks are always removed. The defaultrias 1, and the defaulpad character is a blank.

Examples:

225

Chapter 6. Other Classes

"abc def "“SPACE -> "abc def"
" abc def""SPACE(3) -> "abc def"
"abc def "“SPACE(1) -> "abc def"
"abc def "“SPACE(O) -> "abcdef"
"abc def "“SPACE(2,"+") -> "abc++def"

(SeeSPACEfor information about the SPACE built-in function.)

6.12.41. STRING

>>-STRING-- - - - ><

Returns a string with the same string value as the receiver object. If the receiver is an instance of a
subclass of the String class, this method returns a string having an equivalent value. If the receiver is a
string (but is not an instance of a subclass of the String class), this method returns the receiver object. See
also the STRING method of the Object clasSIiNRING.

6.12.42. STRIP
>>-STRIP-+--- —tmmmm -- ><
+-(option—+-—————-—+-) -+

+-,char—-+

Returns the receiving string with leading characters, trailing characters, or both, removed, based on the
optionyou specify. The following are validptiors. (You need to specify only the first capitalized letter;
the language processor ignores all characters following it.)

Both

Removes both leading and trailing characters. This is the default.

Leading

Removes leading characters.

Trailing
Removes trailing characters.

Thechar specifies the character to be removed, and the default is a blank. If you sgeaifyt must be
exactly one character long.

Examples:

" ab c "7STRIP -> "ab c"
" ab ¢ "“STRIP("L") -> "ab ¢ "
" ab ¢ "“STRIP("t") -> " ab c"
"12.7000"~STRIP(,0) -> "12.7"
"0012.700"~STRIP(,0) -> "12.7"

(SeeSTRIPfor information about the STRIP built-in function.)

226

Chapter 6. Other Classes
6.12.43. SUBSTR

>>-SUBSTR (n—+--——==——==————=—————————— D ><
+= b+

+-length-+ +-,pad-+

Returns the substring of the receiving string that begins atttheharacter and is of lengtength
padded withpadif necessary. Tha must be a positive whole number.rfs greater than
receiving_string~LENGTH, only pad characters are returned.

If you omit length the rest of the string is returned. The defqdt character is a blank.

Examples:

"abc"“SUBSTR(2) -> "be"
"abc"“SUBSTR(2,4) -> "bc "
"abc"~SUBSTR(2,6,".") -> "be...."

Note: In some situations the positional (numeric) patterns of parsing templates are more convenient
for selecting substrings, in particular if you need to extract more than one substring from a string.
See also LEFT and RIGHT.

(SeeSUBSTR (Substringfor information about the SUBSTR built-in function.)

6.12.44. SUBWORD

>>-SUBWORD (n—+--------- =)= —m—m————— - ><
+-,length-+

Returns the substring of the receiving string that starts atttihevord and is up téengthblank-delimited
words. Then must be a positive whole number. If you orf@ihgth it defaults to the number of remaining
words in the receiving string. The returned string never has leading or trailing blanks, but includes all
blanks between the selected words.

Examples:

"Now is the time"~SUBWORD(2,2) -> "is the"
"Now is the time"~SUBWORD(3) -> "the time"
"Now is the time"~SUBWORD(5) -> "

(SeeSUBWORDfor information about the SUBWORD built-in function.)

6.12.45. TRANSLATE

>>-TRANSLATE-+---- -= - - —————————— o +-><
+-(——+ - - -) -4

T i s St e

+-tablei-+ +-,pad-+

227

Chapter 6. Other Classes

228

Returns the receiving string with each character translated to another character or unchanged. You can
also use this method to reorder the characters in the receiving string.

The output table isableoand the input translation tablet@blei. TRANSLATE searchetableifor each
character in the receiving string. If the character is found, the corresponding chardat#@eais used in

the result string. If there are duplicategablei, the first (leftmost) occurrence is used. If the character is
not found, the original character in the receiving string is used. The result string is always of the same
length as the receiving string.

The tables can be of any length. If you specify translation table andpgadithe receiving string is
translated to uppercase (that is, lowercaseo uppercase-z), but if you includepadthe language
processor translates the entire stringpéal characterstablei defaults toxRANGE ("00"x, "FF"x), and
tableodefaults to the null string and is padded wjithd or truncated as necessary. The defpallis a
blank.

Examples:

"abcdef"~TRANSLATE -> " ABCDEF"
"abcdef " ~TRANSLATE("12","ec") -> "ab2dif"
"abcdef"~TRANSLATE("12","abcd",".") -> "12..ef"
"APQRV"~TRANSLATE(, "PR") -> "AQ V"
"APQRV"~TRANSLATE (XRANGE("00"X,"Q")) -> "APQ "
"4123"~TRANSLATE("abcd","1234") -> "dabc"

Note: The last example shows how to use the TRANSLATE method to reorder the characters in a
string. In the example, the last character of any 4-character string specified as the first argument
would be moved to the beginning of the string.

(SeeTRANSLATE for information about the TRANSLATE built-in function.)

6.12.46. TRUNC

>>-TRUNC—+-————+-- - - - ><
+-(n) -+

Returns the integer part the receiving string, which is a numbemaiedimal places. The defaultis 0

and returns an integer with no decimal point. If you spenifit must be a positive whole number or

zero. The receiving string is first rounded according to standard Rexx rules, as though the operation
receiving_string+0 had been carried out. This number is then truncateddecimal places or trailing

zeros are added if needed to reach the specified length. The result is never in exponential form. If there
are no nonzero digits in the result, any minus sign is removed.

Examples:

12.3~TRUNC -> 12
127.09782~TRUNC(3) -> 127.097
127.1~TRUNC(3) -> 127.100
127~TRUNC(2) -> 127.00

Chapter 6. Other Classes

Note: The number is rounded according to the current setting of NUMERIC DIGITS if necessary,
before the method processes it.

(SeeTRUNC (Truncate¥or information about the TRUNC built-in function.)

6.12.47. VERIFY

>>-VERIFY (reference—+---- - - ———=+-) - ><

+-option-+ +-,start-+

Returns a number that, by default, indicates whether the receiving string is composed only of characters
from referencelt returnso if all characters in the receiving string areraferenceor returns the position
of the first character in the receiving string notr@ference

Theoptioncan be eitheromatch (the default) oMatch. (You need to specify only the first capitalized
and highlighted letter; the language processor ignores all characters following the first character, which
can be in uppercase or lowercase.)

If you specifyMatch, the method returns the position of the first character in the receiving string that is in
referenceor returns if none of the characters are found.

The default forstartis 1. Thus, the search starts at the first character of the receiving string. You can
override this by specifying a differestart point, which must be a positive whole number.

If the receiving string is null, the method retuhgregardless of the value of tlption Similarly, if
startis greater thameceiving_string~LENGTH, the method returns. If referenceds null, the method
returnso if you specifyMatch. Otherwise, the method returns tsart value.

Examples:

"123"~VERIFY("1234567890") -> 0
"1Z3"~VERIFY("1234567890") -> 2
"ABAT"~VERIFY("1234567890") -> 1
"ABAT"~VERIFY("1234567890","M") -> 3
"ABAT"~VERIFY ("1234567890","N") -> 1
"1P3Q4" “VERIFY("1234567890", ,3) -> 4
"123"~VERIFY("",N,2) -> 2
"ABCDE" “VERIFY("", ,3) -> 3
"AB3CD5" “VERIFY("1234567890","M",4) -> 6

(SeeVERIFY for information about the VERIFY built-in function.)

6.12.48. WORD

>>-WORD (n) - - - - ><

Returns theath blank-delimited word in the receiving string or the null string if the receiving string has
fewer tham words. Then must be a positive whole number. This method is exactly equivalent to
receiving_string”SUBWORD(n,1).

229

Chapter 6. Other Classes

Examples:
"Now is the time"~WORD(3) -> "the"
"Now is the time"~WORD(5) -> "

(SeeWORD for information about the WORD built-in function.)

6.12.49. WORDINDEX

>>-WORDINDEX (n) ----- - - - - ><

Returns the position of the first character in title blank-delimited word in the receiving string. It
returnso if the receiving string has fewer thanwords. Then must be a positive whole number.

Examples:
"Now is the time"~WORDINDEX(3) -> 8
"Now is the time"~WORDINDEX(6) -> 0

(SeeWORDINDEX for information about the WORDINDEX built-in function.)

6.12.50. WORDLENGTH

>>-WORDLENGTH (n) --------- -- oo -- ><

Returns the length of theth blank-delimited word in the receiving string oif the receiving string has
fewer tham words. Then must be a positive whole number.

Examples:

"Now is the time"~WORDLENGTH(2) -> 2
"Now comes the time"~WORDLENGTH(2) -> 5
"Now is the time" ~WORDLENGTH(6) -> 0

(SeeWORDLENGTHfor information about the WORDLENGTH built-in function.)

6.12.51. WORDPOS

>>-WORDPOS (phrase-+------——+-) —- - - ><
+-,start-+

Returns the word number of the first wordmfrasefound in the receiving string, arif phrasecontains
no words or ifphraseis not found. Several blanks between words in eififeaseor the receiving string
are treated as a single blank for the comparison, but, otherwise, the words must match exactly.

By default the search starts at the first word in the receiving string. You can override this by specifying
start (which must be positive), the word at which the search is to be started.

Examples:

230

Chapter 6. Other Classes

"now is the time"~WORDPOS("the") -> 3
"now is the time"~WORDPOS("The") -> 0
"now is the time"~WORDPOS("is the") -> 2
"now is the time"~WORDPOS("is the") -> 2
"now is the time"“WORDPOS("is time ") -> 0
"To be or not to be"~WORDPOS("be") -> 2
"To be or not to be" WORDPOS("be",3) -> 6

(SeeWORDPOS (Word Positiorfpr information about the WORDPOS built-in function.)

6.12.52. WORDS

>>-WORDS--- -- - -- ><

Returns the number of blank-delimited words in the receiving string.

Examples:
"Now is the time"~WORDS -> 4
" "“WORDS -> 0

(SeeWORDSfor information about the WORDS built-in function.)

6.12.53. X2B

>>-X2B - -- -- -- ><

Returns a string, in character format, that represents the receiving string, which is a string of hexadecimal
characters converted to binary. The receiving string can be of any length. Each hexadecimal character is
converted to a string of 4 binary digits. The receiving string can optionally include blanks (at byte
boundaries only, not leading or trailing) to improve readability; they are ignored.

The returned string has a length that is a multiple of four, and does not include any blanks.

If the receiving string is null, the method returns a null string.

Examples:

"C3"~X2B -> "11000011"
"7"~X2B -> "0111"

"1 C1"~X2B -> "000111000001"

You can combine X2B with the methods D2X and C2X to convert numbers or character strings into
binary form.

Examples:

"C3"x~C2X~X2B -> "11000011"
"129"~D2X~X2B -> "10000001"
“12"~D2X"X2B -> "1100"

(SeeX2B (Hexadecimal to Binaryfor information about the X2B built-in function.)

231

Chapter 6. Other Classes

6.12.54. X2C

——————— -- ><

Returns a string, in character format, that represents the receiving string, which is a hexadecimal string
converted to character. The returned string is half as many bytes as the receiving string. The receiving
string can be any length. If necessary, it is padded with a leading 0 to make an even number of
hexadecimal digits.

You can optionally include blanks in the receiving string (at byte boundaries only, not leading or trailing)
to improve readability; they are ignored.

If the receiving string is null, the method returns a null string.

Examples:
"4865 6c6c B£"“X2C -> "Hello" /* ASCII */
3732 73"~X2C -> "72s" /* ASCII */

(SeeX2C (Hexadecimal to Charactdgr information about the X2C built-in function.)

6.12.55. X2D
>>-X2D—+--——— = - - - ><
+-(n)-+

Returns the decimal representation of the receiving string, which is a string of hexadecimal characters. If
the result cannot be expressed as a whole number, an error results. That is, the result must not have more
digits than the current setting of NUMERIC DIGITS.

You can optionally include blanks in the receiving string (at byte boundaries only, not leading or trailing)
to improve readability; they are ignored.

If the receiving string is null, the method returms

If you do not specifyn, the receiving string is processed as an unsigned binary number.

232

Examples:

"OE"“X2D -> 14

"81"~X2D -> 129

"F81"~X2D -> 3969

"FF81"~X2D -> 65409

"46 30"X~X2D -> 240 /* ASCII x/
"66 30"X~X2D -> 240 /* ASCII */

If you specifyn, the receiving string is taken as a signed number expresseldéradecimal digits. If the
leftmost bit is off, then the number is positive; otherwise, it is a negative number. In both cases it is
converted to a whole number, which can be negativeidfo, the method returns

If necessary, the receiving string is padded on the left witharacters (note, not "sign-extended"), or
truncated on the left to characters.

Examples:

Chapter 6. Other Classes

"81"~X2D(2) -> -127
"81"~X2D(4) -> 129
"FO81"~X2D(4) -> -3967
"FO81"~X2D(3) -> 129
"FO81"~X2D(2) -> -127
"FO81"~X2D(1) -> 1
"0031"~X2D(0) -> 0

(SeeX2D (Hexadecimal to Decimafpr information about the X2D built-in function.)

6.13. The Supplier Class

You can use a supplier object to enumerate the items a collection contained at the time of the supplier’s
creation. The following methods return a supplier object:

« The SUPPLIER methods of the Array, Bag, Directory, List, Queue, Relation, Set, Table, and Stream
classes

+ The METHODS method of the Class class
The Supplier class is a subclass of the Object class.

Methods the Supplier class defines:

NEW (Class method. Overrides Object class method.)
AVAILABLE

INDEX

ITEM

NEXT

Methods inherited from the Object class:

Operator methods: =, ==, \=5 <>, \==
CLASS

COPY
DEFAULTNAME
HASMETHOD
INIT
OBJECTNAME
OBJECTNAME=
REQUEST

RUN
SETMETHOD
START

STRING
UNSETMETHOD

Note: The Supplier class also has available class methods that its metaclass, the Class class,
defines.

233

Chapter 6. Other Classes
6.13.1. NEW (Class Method)

>>-NEW(values,indexes)--- -— ———————— e -— ><

Returns a new supplier object. Thaluesargument must be an array of values over which the supplier
iterates. Thendexesargument is an array of index values with a one-to-one correspondence to the

objects contained in the values array. The created supplier iterates over the arrays, returning elements of
the values array in response to ITEM messages, and elements of the indexes array in response to INDEX
messages. The supplier iterates for the number of items contained in the values array, returning the NIL
object for any nonexistent items in either array.

6.13.2. AVAILABLE

>>-AVAILABLE - - - - - ><

Returnst (true) if an item is available from the supplier (that is, if the ITEM method would return a
value). It return® (false) if the collection is empty or the supplier has already enumerated the entire
collection.

6.13.3. INDEX

>>-INDEX--- -- - -- ><

Returns the index of the current item in the collection. If no item is available, that is, if AVAILABLE
would return false, the language processor raises an error.

6.13.4. ITEM

>>-ITEM----—- - - - ><

Returns the current item in the collection. If no item is available, that is, if AVAILABLE would return
false, the language processor raises an error.

6.13.5. NEXT

>>-NEXT----—----—- - - - - - ><

Moves to the next item in the collection. By repeatedly sending NEXT to the supplier (as long as
AVAILABLE returns true), you can enumerate all items in the collection. If no item is available, that is,
if AVAILABLE would return false, the language processor raises an error.

6.13.6. Examples

desserts=.array”of (apples, peaches, pumpkins, 3.14159) /* Creates array */

234

Chapter 6. Other Classes

say "The desserts we have are:"
baker=desserts”supplier /* Creates supplier object named BAKER */
do while baker~available /* Array suppliers are sequenced */
if baker~index=4
then say baker“item "is pi, not pie!!!"
else say baker~item
baker“next
end

/* Produces: */
/* The desserts we have are: */

/* APPLES */
/* PEACHES */
/* PUMPKINS */

/* 3.14159 is pi, not pie!!! x/

This method is used by INIT to set the attribute USERS to HKEY_USERS. Do not modify this attribute.

6.14. The WindowsClipboard Class

The WindowsClipboard class provides methods to access the data in the Windows clipboard.

The WindowsClipboard class is not a built-in class. It is defined in the WINSYSTM.CLS file. This
means, you must use a ::requires statement to activate its functionality, as follows:

::requires "WINSYSTM.CLS"

Methods the WindowsClipboard Class Defines

« COPY

- MAKEARRAY

+ PASTE

« EMPTY

- ISDATAAVAILABLE

6.14.1. COPY

>>-COPY--(--text--) - - - ><

Empties the clipboard and copies the specified text to it.

6.14.2. MAKEARRAY

>>-MAKEARRAY-——---- ><

235

Chapter 6. Other Classes

If the content of the clipboard is a string with newline characters in it, MAKEARRAY can be used to
split up the string into individual lines. An array is returned containing those lines.

6.14.3. PASTE

>>-PASTE----- -- -- -- ><

Retrieves the text data stored on the clipboard.

6.14.4. EMPTY

> B P TY o o ><

Empties the clipboard.

6.14.5. ISDATAAVAILABLE

>>-ISDATAAVAILABLE - - - ><

Returns 1 if the text data is available on the clipboard. If no data is available, O is returned.

6.15. The WindowsEventLog Class

236

Object Rexx provides a class for interaction with the Windows NT event log. You can use this class to
read, write, and clear event-log records. This class is specifically for Windows NT systems and might not
be available on other systems.

The WindowsEventLog class is not a built-in class; it is defined in therfileysti.cLS. Use a
: :requires Statement to activate its function:

::requires "winsystm.cls"

A sample prograniventLog.REX iS provided in theoRexx\SAMPLES directory.

Methods the WindowsEventLog Class Defines

< INIT

- OPEN
+ CLOSE
+ READ
« WRITE
- CLEAR

Chapter 6. Other Classes

+ GETNUMBER

6.15.1. INIT

3> = TN T Tm === = == e e ><

Creates an instance of the WindowsEventLog class and loads the required function package.

6.15.2. OPEN
>>-0PEN-+-- —————— +- - - ><
+= (e +-=) -+
+-server-—+----------- +=—+

+-,--source-+

Opens the specified event log.

Arguments:

The arguments are:

server

The UNC (universal naming convention) name of the server on which the event log is to be
opened. If this argument is not specified, the log is opened at the local machine.

source

The name of the source of the event log. It must be a subkey of a log file entry under the
EventLog key in the registry. If, for example, the registry looks as follows:

HKEY_LOCAL_MACHINE
System
CurrentControlSet
Services
EventLog
Application
WinApp1l
Security
WinApp2
System

"Application”, "Security", "System", "WinApp1", and "WinApp2" are valid sources. If the
source is not found, the "Application Log" is used.

Example:
The following example opens the Application log on the local machine:

rc = event_logl~OPEN
rc = event_log~OPEN(,"Application")

The following example opens the System log on SERVERO01.:

237

Chapter 6. Other Classes

rc = event_log~OPEN("\\SERVERO1","System")

6.15.3. CLOSE

>>-CLOSE--- -

Closes an open event log.

6.15.4. READ

>>-READ-—+--- -

| +-FORWARDS--+

+=(——t——mmmm—— et S B +-—, -+

>

+-BACKWARDS-+

> +-

e R Sttt S Bt

+-start-+ +-num-+

+-server—-+

H

>

+-source-+

Reads event log records. If the event log was not opened with the OPEN method, the event log specified
by theserverandsourceis opened and closed after processing.

Arguments:

The arguments are:

server

The UNC (universal naming convention) name of the server on which the event log is to be
opened. If this argument is not specified, the log is opened at the local machine.

This argument is only used if the event log was not opened before.

source

The name of the source of the event log. It must be a subkey of a log file entry under the
EventLog key in the registry. If, for example, the registry looks as follows:

HKEY_LOCAL_MACHINE
System
CurrentControlSet
Services
EventLog
Application
WinApp1l
Security
WinApp2
System

238

Chapter 6. Other Classes

"Application”, "Security", "System", "WinAppl", and "WinApp2" are valid sources. If the
source is not found, the "Application Log" is used.

This argument is only used if the event log was not opened before.

start

The record number of the event log record to be started. The oldest record is always the first
record regardless of the direction specified.

num

The number of the event log record to be read.

Example:

evl = .WindowsEventLog™new
if evl“InitCode \= O then exit
say " reading complete System log forwards without opening it before "
events = evl~Read("FORWARDS", ,"System")
if events \= .nil then
call DisplayRecords
else
say "==> Error reading complete System event log"
evl~deinstall
exit 0 /* leave program */
DisplayRecords:

say evl“Events~items "records read"

do i=1 to evl“Events”items

say n n
temp = evl~Events[i]

parse var temp type date time "'" sourcename"'" id,

userid computer "'" string "'" "'" data "'"

say "Type : "type

say "Date : "date

say "Time : "time

say "Source : "sourcename
say "ID : "id

say "UserId : "userid

say "Computer : "computer
say "Detail : "string

say "Data : "data

239

Chapter 6. Other Classes

end
return

::requires "winsystm.cls"

6.15.5. WRITE
>>-WRITE--+ - - - - - - ——4->
| +-1-—+ +-0-——————- + |
T e i e I e R e e L L Tt S r e
+-server—-+ +-source-+ +-0--+ +-category-+
+-2-—+
+-4-—+
+-8-—+
+-10-+
P - - + - - ><
| +-0--. |
B e i e e e e e e e
+-id-+ +-data-+ +-string-+

Reads event log records. If the event log was not opened with the Open method, the event log specified
by theserverandsourceis opened and closed after processing.

Arguments:

The arguments are:

server

The UNC (universal naming convention) name of the server on which the event log is to be
opened. If this argument is not specified, the log is opened at the local machine.

source

The name of the source of the event log. It must be a subkey of a log file entry under the
EventLog key in the registry. If, for example, the registry looks as follows:

HKEY_LOCAL_MACHINE
System
CurrentControlSet
Services
EventLog
Application
WinApp1l
Security
WinApp2
System

"Application”, "Security", "System", "WinAppl", and "WinApp2" are valid sources. If the
source is not found, the "Application Log" is used.

240

Chapter 6. Other Classes

type
The type of the events to be logged. It can be one of the numbers listed in the syntax diagram:

0
SUCCESS

ERROR, which is the default

WARNING

INFORMATION

AUDIT SUCCESS

10
AUDIT FAILURE

category

The event category. This is source-specific information that can have any value. The default is
0.

The event identifier specifying the message that, together with the event, is an entry in the
message file associated with the event source. The default is 0.

data

The binary data. This is source-specific information and can be omitted.

string

The strings merged into the message.

Example:

The following example writes the strings and the data to the system log. "MyApplication" must be a
subkey of a log file entry under the EventLog key in the registry. If the source name cannot be
found, event logging uses the Application log file.

HKEY_LOCAL_MACHINE
System
CurrentControlSet
Services
EventLog
Application

241

Chapter 6. Other Classes

Security
System
MyApplication

evl~Write(,"MyApplication", , , ,"1A 1B 1C 0000 00"x, ,
"First String", "Second String")

See the&ventLog.REX for more examples.

6.15.6. CLEAR
>>-CLEAR-+--- - - ——————————— +-><
+—(——+-——- - - - - ——+--) -+
+-server—--+------- - Nt +-+
+- e +—+
+-source-+ +-,--backupFileName-+

Clears the specified event log and, optionally, saves a copy of the current log file as a backup file. If the
event log was not opened with the Open method, the event log specified $grtle@andsourceis
opened. The event log is closed after it is cleared.

Arguments:

The arguments are:

server

The UNC (universal naming convention) name of the server on which the event log is to be
opened. If this argument is not specified, the log is opened at the local machine.

This argument is only used if the event log was not opened before.

source

The name of the source of the event log. It must be a subkey of a log file entry under the
EventLog key in the registry. If, for example, the registry looks as follows:

HKEY_LOCAL_MACHINE
System
CurrentControlSet
Services
EventLog
Application
WinAppl
Security
WinApp2
System

"Application”, "Security", "System", "WinAppl", and "WinApp2" are valid sources. If the
source is not found, the "Application Log" is used.

242

Chapter 6. Other Classes

This argument is only used if the event log was not opened before.

backupFileName

The name of a file to which the copy of the current event log file is to be written. If this file
already exists, the function fails. The file can reside on a remote server.

If you omit this argument, the current event log file is not backed up but cleared.

Example:

The following example creates a backup of the Application event log of the local machine and
clears it:

event_log“CLEAR(, ,"e:\evlbackup\application.evt")

The following example creates a backup of the System event log on the server \SERVERO01 and
clears it:

event_log~CLEAR("\\SERVERO1","System","e:\evlbackup\system_serverOl.evt")

The following example clears the Application log on the local machine without a backup:
event_log”CLEAR

6.15.7. GETNUMBER

>>=GETNUMBER—+-— === === = m—mm oo oo e ><
+-(-—+ - —————t) -+

+-server--+----------- +-+
+-,--source-+

Retrieves the number of records in the specified event log. If the event log was not opened with the Open
method, the event log specified by therverandsourceis opened and closed after processing.

Arguments:

The arguments are:

server

The UNC (universal naming convention) name of the server on which the event log is to be
opened. If this argument is not specified, the log is opened at the local machine.

This argument is only used if the event log was not opened before.

243

Chapter 6. Other Classes

source

The name of the source of the event log. It must be a subkey of a log file entry under the
EventLog key in the registry. If, for example, the registry looks as follows:

HKEY_LOCAL_MACHINE
System
CurrentControlSet
Services
EventLog
Application
WinApp1l
Security
WinApp2
System

"Application”, "Security", "System", "WinApp1", and "WinApp2" are valid sources. If the
source is not found, the "Application Log" is used.

This argument is only used if the event log was not opened before.

Example:

The following example returns the number of event log records in the Application log of the local
machine:

num = event_log”GETNUMBER

6.16. The WindowsManager Class

The WindowsManager class provides methods to query, manipulate, and interact with windows on your
desktop. This class is specifically for Windows NT and Windows 2000 systems and might not be
available on other systems.

The WindowsManager class is not a built-in class; it is defined in tha@fileyst™. cLs. Use a
: :requires Statement to activate its function:

::requires "winsystm.cls"

Methods the WindowsManager Class Defines

- FIND

+ FOREGROUNDWINDOW
+ WINDOWATPOSITION

« CONSOLETITLE

+ CONSOLETITLE=

+ SENDTEXTTOWINDOW

244

Chapter 6. Other Classes

+ PUSHBUTTONINWINDOW
+ PROCESSWINDOWCOMMAND

6.16.1. FIND

>>-FIND--(--title--) - - - ><

Searches for a top-level window (not a child window) on your desktop with the spetiiféed

If this window already exists, an instance of the WindowObject class is returned. Otherwise, .NIL is
returned.

6.16.2. FOREGROUNDWINDOW

>>-FOREGROUNDWINDOW - - — ><

Returns an instance of the WindowObject class that is associated with the current foreground window.

6.16.3. WINDOWATPOSITION

>>-WINDOWATPOSITION--(--x--,--y—=)-=--= - -- ><

Returns an instance of the WindowObject class that is associated with the window at the specified
position &,y). The coordinates are specified in screen pixels. This method does not retrieve hidden or
disabled windows. If you are interested in a particular child window, use m&kddDATPOSITION.

6.16.4. CONSOLETITLE

>>-CONSOLETITLE--- - - - - ><

Returns the title of the current console.

6.16.5. CONSOLETITLE=

>>-CONSOLETITLE=--title-- - - - ><

Sets the title of the current console.

6.16.6. SENDTEXTTOWINDOW

>>-SENDTEXTTOWINDOW--(--title--,--text--)--- - - ><

Sends a case-sensititextto the window with the specifietitle..

245

Chapter 6. Other Classes

6.16.7. PUSHBUTTONINWINDOW

>>-PUSHBUTTONINWINDOW--(--title--,--text--)-———————————————————— ><

Selects the button with lab#xtin the window with the specifietitle. If the button’s label contains a
mnemonic (underscored letter), you must specify an ampersand (&) in front of it. You can also use this
method to select radio buttons and to check or uncheck check boxes.

Example:

winmgr~“PushButtonInWindow("Testwindow","List &Employees")

6.16.8. PROCESSMENUCOMMAND

>>-PROCESSMENUCOMMAND-- (==+--=-=-— R +om o >
+-title-+ +-popup-+
+-, - +
v [
>----submenu-+--,--menultem--)-- - - ><

Selects an item of the menu or submenu of the specified wittitlewYou can specify as many
submenus as necessary to get to the required item.

6.17. The WindowObiject Class

The WindowObiject class provides methods to query, manipulate, and interact with a particular window
or one of its child windows.

Methods the WindowObject Class Defines

+ ASSOCWINDOW

« CHILDATPOSITION
« COORDINATES

- DISABLE

« ENABLE

« ENUMERATECHILDREN
+ FINDCHILD

« FIRST

+ FIRSTCHILD

« FOCUSITEM

+ FOCUSNEXTITEM

246

FOCUSPREVIOUSITEM
HANDLE

HIDE

ID

ISMENU

LAST

MAXIMIZE

MENU

MINIMIZE

MOVETO

NEXT

OWNER

PREVIOUS
PROCESSMENUCOMMAND
PUSHBUTTON
RESIZE

RESTORE
SENDCHAR
SENDCOMMAND
SENDKEY
SENDKEYDOWN
SENDKEYUP
SENDMENUCOMMAND
SENDMESSAGE
SENDMOUSECLICK
SENDSYSCOMMAND
SENDTEXT

STATE
SYSTEMMENU
TITLE

TITLE=
TOFOREGROUND
WCLASS

Chapter 6. Other Classes

247

Chapter 6. Other Classes

248

6.17.1. ASSOCWINDOW

>>-ASSOCWINDOW--(--handle--)---- —mmmmm - -- ><

Assigns a new windowandleto the WindowObject instance.

6.17.2. HANDLE

>>-HANDLE-- - - - ><

Returns the handle of the associated window.

6.17.3. TITLE

>>-TITLE----- - - - ><

Returns the title of the window.

6.17.4. TITLE=

>>-TITLE=--newTitle - - - - - ><

Sets a new title for the window.

6.17.5. WCLASS

>>-WCLASS-- - - - ><

Returns the class of the window associated with the WindowObject instance.

6.17.6. 1D

>>-1D- - -- -- - ><

Returns the numeric ID of the window.

6.17.7. COORDINATES

>>-COORDINATES---- - - - - — ><

Returns the upper left and the lower right corner positions of the window in the format
"left,top,right,bottom".

Chapter 6. Other Classes

6.17.8. STATE

>>=STATE---———--————-———- -- e -- ><

Returns information about the window state. The returned state can contain one or more of the following
constants:

- "Enables" or "Disabled"
- "Visible" or "Invisible"
« "Zoomed" or "Minimized"

- "Foreground"

6.17.9. RESTORE

>>-RESTORE--- - - - ><

Activates and displays the associated window. If the window is minimized or maximized, it is restored to
its original size and position.

6.17.10. HIDE

>>HIDE === === === m o ><

Hides the associated window and activates another window.

6.17.11. MINIMIZE

>>-MINIMIZE - - - ><

Minimizes the associated window and activates the next higher-level window.

6.17.12. MAXIMIZE

>>-MAXIMIZE-- - - __ S<

Maximizes the associated window.

6.17.13. RESIZE

>>-RESIZE--(--width--,--height--)------ - - ><

Resizes the associated window to the specified width and height. The width and height are specified in
screen coordinates.

249

Chapter 6. Other Classes

250

6.17.14. ENABLE

>>-ENABLE---- - - -- ><

Enables the associated window if it was disabled.

6.17.15. DISABLE

>>-DISABLE--——----- - - - - -_— ><

Disables the associated window.

6.17.16. MOVETO

>>-MOVETO-- (--x--,--y--) - -- - -- ><

Moves the associated window to the specified positigy).(Specify the new position in screen pixels.

6.17.17. TOFOREGROUND

>>-TOFOREGROUND--- - - - ><

Makes the associated window the foreground window.

6.17.18. FOCUSNEXTITEM

>>-FOCUSNEXTITEM-- -- - - - - ><

Sets the input focus to the next child window of the associated window.

6.17.19. FOCUSPREVIOUSITEM

>>-FOCUSPREVIOUSITEM - - - ><

Sets the input focus to the previous child window of the associated window.

6.17.20. FOCUSITEM

>>-FOCUSITEM--(--wndObject--)--- e - ><

Sets the input focus to the child window associated with the specified WindowObject instance
wndObject

Example:

Chapter 6. Other Classes

The following example sets the input focus to the last child window:

dlg = wndmgr Find("TestDialog")
if dlg \= .Nil then do
fChild = dlg"FirstChild
1Child = fChild"Last
dlg~FocusItem(1Child)
end

6.17.21. FINDCHILD

>>-FINDCHILD--(--label--) - - - ><

Returns an instance of the WindowObiject class associated with the child window with the specified
label. If the associated window does not own such a window, the .NIL object is returned.

6.17.22. CHILDATPOSITION

>>-CHILDATPOSITION--(--x--,--y-=)--—-—- - ><

Returns an instance of the WindowObiject class associated with the child window at the specified client
position &,y). The coordinates that are relative to the upper left corner of the associated window must be
specified in screen pixels. To retrieve top-level windows, use matfiddDOWATPOSITION

6.17.23. NEXT

>>-NEXT----——---——===——-- -- o -- ><

Returns an instance of the WindowObiject class associated with the next window of the same level as the
associated window. If the associated window is the last window of a level, the .NIL object is returned.

6.17.24. PREVIOUS

>>-PREVIOQUS - - - - ><

Returns an instance of the WindowObiject class associated with the previous window of the same level as
the associated window. If the associated window is the first window of a level, the .NIL object is returned.

6.17.25. FIRST

>>-FIRST--- -- - -- ><

Returns an instance of the WindowObiject class associated with the first window of the same level as the
associated window.

251

Chapter 6. Other Classes

252

6.17.26. LAST

>>-LAST——————————mmmm o e -- ><

Returns an instance of the WindowObject class associated with the last window of the same level as the
associated window.

6.17.27. OWNER

>>-0WNER--- -- -- -- -- -- ><

Returns an instance of the WindowObject class associated with the window that owns the associated
window (parent). If the associated window is a top-level window, the .NIL object is returned.

6.17.28. FIRSTCHILD

>>-FIRSTCHILD - -- - ><

Returns an instance of the WindowObject class associated with the first child window of the associated
window. If no child window exists, the .NIL object is returned.

6.17.29. ENUMERATECHILDREN
>>~ENUMERATECHTLDREN === === === === — oo ><

Returns a stem that stores information about the child windows of the associated window. "Stem.Q"
contains the number of child windows. The returned stem contains as many records as child windows.
The first record is stored at "Stem.1" continued by increments of 1. Each record contains the following
entries, where each entry starts with an exclamation mark (!):

IHandle

The handle of the window.

ITitle
IClass
The window class.

IState

ICoordinates

Chapter 6. Other Classes

IChildren

1 if the window has child windows, O if is has none.

Iid

Example:

wo = winmgr~Find("TestDialog")

enum. = wo EnumerateChildren

do i =1 to enum.0 /* number of children */

say "---"

say "Handle:" enum.i.'!Handle

say "Title:" enum.i.!Title

say "Class:" enum.i.!Class

say "Id:" enum.i.!Id

say "Children:" enum.i.!Children

say "State:" enum.i.!State

say "Rect:" enum.i.!Coordinates
end

6.17.30. SENDMESSAGE

>>-SENDMESSAGE-- (--message--,--wParam--,--1Param--)-——-----—---- ><

Sends a message to the associated window.

6.17.31. SENDCOMMAND

>>-SENDCOMMAND-- (--command--) --- - - ><

Sends a WM_COMMAND message to the associated window. WM_COMMAND is sent, for example,
when a button is pressed, whe@mmmands the button ID.

6.17.32. SENDMENUCOMMAND

>>-SENDMENUCOMMAND-- (--id--)---- - - - ><

Selects the menu iterd of the associated window. MethddOF returns the ID of a menu item.

6.17.33. SENDMOUSECLICK

+-"LEFT"--—+ +-"DBLCLK"—+
>>-SENDMOUSECLICK-- (——+="RIGHT"=—+-=, =—+="UP"=——=—4--== ——x——, ——y-->
+-"MIDDLE" -+ +-"DOWN"--—+

253

Chapter 6. Other Classes

+=,=="————+-LEFTDOWN--—+—+-="-+
+-RIGHTDOWN-—+
+-MIDDLEDOWN-+

+-CONTROL----+

Simulates a mouse click event in the associated window.
Arguments:

The arguments are:

which

Specifies which mouse button is simulated. LEFT is the default.
kind

Selects the simulated mouse action. DBLCLK is the default.

X,y

Specifies the coordinates of the mouse click event, in screen coordinates, relative to the upper left
corner of the window.

ext

Can be one or more of the following strings:

LEFTDOWN

Simulates the pressed left mouse button.

RIGHTDOWN

Simulates the pressed right mouse button.

MIDDLEDOWN

Simulates the pressed middle mouse button.

SHIFT
Simulates the pressed Shift key.

CONTROL

Simulates the pressed Control key.

254

Chapter 6. Other Classes
6.17.34. SENDSYSCOMMAND

>>-SENDSYSCOMMAND-- (-="--+-SIZE--------) L ><

+-MINIMIZE-——-+
+-MAXIMIZE----+
+-NEXTWINDOW--+
+-PREVWINDOW--+

+-CLOSE-—----- +
+-VSCROLL----- +
+-HSCROLL----- +
+-ARRANGE----- +
+-RESTORE----- +

+-TASKLIST-——-+
+-SCREENSAVE--+
+-CONTEXTHELP-+

Sends a WM_SYSCOMMAND message to the associated window. These messages are normally sent
when the user selects a command in the Window menu.

Argument:

The only argument is:

command

One of the commands listed in the syntax diagram:

SIZE

Puts the window in size mode.

MOVE

Puts the window in move mode.

MINIMIZE

Minimizes the window.

MAXIMIZE

Maximizes the window.

NEXTWINDOW

Moves to the next window.

PREVWINDOW

Moves to the previous window.

CLOSE

Closes the window.

255

Chapter 6. Other Classes

256

VSCROLL

Scrolls vertically.

HSCROLL

Scrolls horizontally.

ARRANGE

Arranges the window.

RESTORE

Restores the window to its normal position and size.

TASKLIST

Activates the Start menu.

SCREENSAVE

Executes the screen-saver application specified in the [boot] section of the SYSTEM.INI file.

CONTEXTHELP

Changes the cursor to a question mark with a pointer. If the user then clicks on a control in the
dialog box, the control receives a WM_HELP message.

6.17.35. PUSHBUTTON

>>-PUSHBUTTON--(--label--)-----— == == == ><

Selects the button with the specifikdbel within the associated window and sends the corresponding
WM_COMMAND message. If the button’s label contains a mnemonic (underscored letter), you must
specify an ampersand (&) in front of it. You can also use this method to select radio buttons and check or
uncheck check boxes.

6.17.36. SENDKEY

>>-SENDKEY-- (--keyName-—+ - e #m=)mmmmmmmmmo ><
B T S et e e S

+-alt-+ +-,--ext—+

Sends all messages (CHAR, KEYDOWN, and KEYUP) that would be sent by pressing a specific key on
the keyboard. Character keys (a to z) are not case-sensitive.

If the alt argument is 1, the Alt key flag is set, which is equal to pressing the specified key together with
the Alt key.

The Extargument must be 1 if the key is an extended key, such as a right Ctrl or a right Shift.

For a list of key names, refer ®ymbolic Names for Virtual Keys

Chapter 6. Other Classes

6.17.37. SENDCHAR

>>-SENDCHAR--(--character—-—-+-----—--- Fo=) ><
+-,—-alt—+

Sends a WM_CHAR message to the associated window. Hitreegument is 1, a pressed Alt key is
simulated.

6.17.38. SENDKEYDOWN

>>-SENDKEYDOWN-- (--keyName--+--------) I ><
+-,——ext—+

Sends a WM_KEYDOWN message to the associated windoweXtergument must be 1 if the key is
an extended key, such as a right Ctrl or a right Shift.

For a list of key names, refer ®ymbolic Names for Virtual Keys

6.17.39. SENDKEYUP

>>-SENDKEYUP-- (--keyName——+------—— +-=) -- ><
+-,--ext-+

Sends a WM_KEYUP message to the associated windoweXtergument must be 1 if the key is an
extended key, such as a right Ctrl or a right Shift.

For a list of key names, refer ®ymbolic Names for Virtual Keys

6.17.40. SENDTEXT

>>-SENDTEXT-- (--text--)--— - - - - ><

Sends a (case-sensitive) text to the associated window by sending a sequence of WM_CHAR,
WM_KEYDOWN, and WM_KEYUP messages.

6.17.41. MENU

>>-MENU - - -- ><

Returns an instance of the MenuObject class that refers to the menu of the associated window.

6.17.42. SYSTEMMENU

>>-SYSTEMMENU - - - ><

257

Chapter 6. Other Classes

Returns an instance of the MenuObject class that refers to the system menu of the associated window.

6.17.43. ISMENU

>>-TSMENU-- - - ><

Returns 1 if the associated window is a menu, otherwise 0.

6.17.44. PROCESSMENUCOMMAND

v |
>>-PROCESSMENUCOMMAND-- (-=+------+--, -———submenu-+--,--menultem--) -><
+-menu-+

Selects an item of the menu or submenu of the associated window. You can specify as many submenus as
necessary to get to the required item.

6.18. The WindowsProgramManager Class

Object Rexx provides a class for interaction with the Windows Program Manager. You can use this class
to create program groups and shortcuts to access your programs. This class is specifically for Windows
systems and may not be available on other systems.

The WindowsProgramManager class is defined in the file WINSYSTM.CLS. Usgeguires
statement to activate its function:

::requires "winsystm.cls"
A sample prograrDESKTOP .REX is provided in theoRexx\SAMPLES directory.

Methods of the WindowsProgramManager class are:

Table 6-1. Methods Available to the WindowsProgramManager Class

258

Method... ...on page
AddDeskToplcon AddDesktoplcon
AddGroup AddGroup
Addltem Addltem
AddShortCut AddShortCut

DeleteDesktoplcon

DeleteDesktoplcon

DeleteGroup

DeleteGroup

Deleteltem

Deleteltem

Init

Init

Chapter 6. Other Classes

Method... ...on page
ShowGroup ShowGroup

6.18.1. ADDDESKTOPICON

>>-AddDesktopIcon--(--name--,--program--+--- - - ———t-=>
| +-0-—-=-- + |
e e et +-+
+-iconfile-+ +-iconnr-+
>S——t—- - - —+-)-><
I +-"PERSONAL"-+ +-"NORMAL"----+ |
e +-,—+——— e e s e e R et St

+-workdir-+ +-"COMMON"---+ +-args-+ +-hotkey-+ +-"MAXIMIZED"-+
+-"MINIMIZED"-+

Adds a shortcut to the Windows desktop. A sample progvB$RICON.REX is provided in the
ooRexx\SAMPLES directory.

Arguments:

The arguments are:
name
The name of the shortcut, displayed below the icon.

program

The program file launched by the shortcut.

iconfile

The name of the icon used for the shortcut. If not specified, the icpmogfamis used.

iconnr

The number of the icon within theonfile The default is O.

workdir

The working directory of the shortcut.
location
Either of the following locations:
"PERSONAL"
The shortcut is personal and displayed only on the desktop of the user.

"COMMON"

The shortcut is common to all users and displayed on the desktop of all users.

259

Chapter 6. Other Classes
args
The arguments passed to the program that the shortcut refers to.

hotkey

The virtual key to be used as a hotkey to open the shortcut. For a list of the key names, see
Symbolic Names for Virtual Keys

run

Specifies one of the options listed in the syntax diagram. The default is "NORMAL".

6.18.2. ADDSHORTCUT

>>-AddShortCut--(--name--,--program---- -- -- >
>o—t—— - - - - ——=>
| +-0-————- +
T et i e e et e R s L

+-iconfile-+ +-iconnr-+ +-workdir-+ +-args-+ +-hotkey-+

>————= —-—+-=)- - - - - -—-><
+-"NORMAL"----+ |

D e +-+
+-"MAXIMIZED"-+
+-"MINIMIZED"-+

Creates a shortcut within the specified folder.

Arguments:

The arguments are:
name
The full name of the shortcut.

program

The program file launched by the shortcut.

iconfile

The name of the icon used for the shortcut. If not specified, the icprogfamis used.

iconnr

The number of the icon within theonfile The default is O.

workdir

The working directory of the shortcut.

260

Chapter 6. Other Classes

args

The arguments passed to the program that the shortcut refers to.

hotkey
The virtual key to be used as a hotkey to open the shortcut. For a list of the key names, see
Symbolic Names for Virtual Keys

run

Specifies one of the options listed in the syntax diagram. The default is "NORMAL".

Example:

The following example creates a shortcut named "My NotePad" to the Notepad editor wihin the
directory c:\temp:

pm = .WindowsProgramManager " new

if pm~“InitCode \= O then exit

pm~AddShortCut ("c:\temp\My Notepad","’SystemRoot}\system32\notepad.exe")
::requires "winsystm.cls"

6.18.3. ADDGROUP

>>-AddGroup (-group-) - - - ><

Adds a program group to the Programs group of the desktop. If the group already exists, it is opened.
Thegroupargument specifies the name of the program group to be added. Example:

AddGroup("Object Rexx Redbook")

Note: The name that you specify for the group argument must not contain any brackets or
parenthesis. Otherwise, this method fails.

Return value:

The method was successful.

The method failed.

6.18.4. ADDITEM

>>-AddItem--(--shortcut,program- - - ->

>——t—— - - -t >

261

Chapter 6. Other Classes

+=, —————— B - - - +—+

+-iconfile-+ +-,-—4-——————————- e +-+

+-iconnumber-+ +-,workdir-+

>o=)mmmm - - - - - ><

Adds a shortcut to a program group. The shortcut is placed into the last group used with either
AddGroup or ShowGroup. Example:

AddItem("0O0Dialog Samples", ,
"rexx oodialog\samples\sample.rex", ,
"oodialog\samples\oodialog.ico")

Note: The name that you specify for the group argument must not contain characters that are not
valid, such as brackets or parenthesis. Otherwise, this method fails. Some characters are changed,
for example / to _.

Return value:

The method was successful.

The method failed.

6.18.5. DELETEDESKTOPICON

+-"PERSONAL"-+
DeleteDesktopIcon--(--name--,-——+--—————————- +-)
+-"COMMON" -+

Deletes a shortcut from the Windows desktop that was previously created with AddDesktoplcon.
The arguments are:
name
The name of the shortcut to be deleted.
location

Either of the following locations:

"PERSONAL"

The shortcut was previously created with AddDektoplcon and the location option
"PERSONAL". This is the default.

262

Chapter 6. Other Classes

"COMMON"

The shortcut was previously created with AddDektoplcon and the location option
"COMMON".

Return codes:

Shortcut deleted successfully.

Shortcut not found.

Path to shortcut not found.

Access denied or busy.

26
Not a DOS disk.

32

Sharing violation.

36

Sharing buffer exceeded.

87

Does not exist.

206

Shortcut name exceeds range error.

Note:: Return code 2 is also returned when a "PERSONAL" should be deleted that was previously
created with "COMMON" and vice versa.

Example:

pm = .WindowsProgramManager ™" new
if pm~“InitCode \= O then exit

rc = pm~DeleteDesktopIcon("MyNotepadl", ,
"%SystemRoot%\system32\notepad.exe")
if rc \= 0 then do
say "Error deleting shortcut: My Notepad 1"

263

Chapter 6. Other Classes

264

exit
end

exit

::requires "winsystm.cls"

6.18.6. DELETEGROUP

>>-DeleteGroup (-group-)-- - - - - ><

Deletes a program group from the desktop. gr@upargument specifies the name of the program group
to be deleted.

Return value:

The method was successful.

The method failed.

6.18.7. DELETEITEM

>>-Deleteltem(shortcut)-- - - - ><

Deletes a shortcut from a program group.

Return value:

The method was successful.

The method failed.

6.18.8. INIT

>>-Init------ -- -- -- ><

Creates an instance of the WindowsProgramManager class and loads the required function package.

Chapter 6. Other Classes
6.18.9. SHOWGROUP

>>-ShowGroup (-group, —+---——+-) -- - - - ><
+-MIN-+
+-MAX—+

Opens a program group. Tlaeoup argument specifies the name of the program group to be opened. If
MIN or MAX is specified, the program group is opened minimized or maximized.

Return value:

The method was successful.

The method failed.

6.18.10. Symbolic Names for Virtual Keys

Table 3shows the symbolic names and the keyboard equivalents for the virtual keys used by Object
Rexx.

Table 6-2. Symbolic Names for Virtual Keys

Symbolic Name Mouse or Keyboard Equivalent
LBUTTON Left mouse button

RBUTTON Right mouse button

CANCEL Control-break processing
MBUTTON Middle mouse button (three-button mouse)
BACK BACKSPACE key

TAB TAB key

CLEAR CLEAR key

RETURN ENTER key

SHIFT SHIFT key

CONTROL CRTL key

MENU ALT key

PAUSE PAUSE key

CAPITAL CAPS LOCK key

ESCAPE ESC key

SPACE SPACEBAR

PRIOR PAGE UP key

NEXT PAGE DOWN key

END END key

265

Chapter 6. Other Classes

Symbolic Name

Mouse or Keyboard Equivalent

HOME

HOME key

LEFT

LEFT ARROW key

upbP

UP ARROW key

RIGHT

RIGHT ARROW key

DOWN

DOWN ARROW key

SELECT

SELECT key

EXECUTE

EXECUTE key

SNAPSHOT

PRINT SCREEN key

INSERT

INS key

DELETE

DEL key

HELP

HELP key

0 key

1 key

2 key

3 key

4 key

5 key

6 key

7 key

8 key

9 key

A key

B key

C key

D key

E key

F key

G key

H key

| key

J key

K key

L key

M key

N key

O key

Q key

DOOIZIZTITM IR« |7|IT||MM|O(O|TW|(>|© |0 |0 (0|~ [W]|N (- |O

R key

266

Chapter 6. Other Classes

Symbolic Name

Mouse or Keyboard Equivalent

S S key

T T key

U U key

\% V key

W W key

X X key

Y Y key

Z Z key

NUMPADO Numeric keypad 0 key
NUMPAD1 Numeric keypad 1 key
NUMPAD2 Numeric keypad 2 key
NUMPAD3 Numeric keypad 3 key
NUMPADA4 Numeric keypad 4 key
NUMPAD5 Numeric keypad 5 key
NUMPADG6 Numeric keypad 6 key
NUMPAD7 Numeric keypad 7 key
NUMPADS Numeric keypad 8 key
NUMPAD9 Numeric keypad 9 key
MULTIPLY Multiply key

ADD Add key
SEPARATOR Separator key
SUBTRACT Subtract key
DECIMAL Decimal key

DIVIDE Divide key

F1 F1 key

F2 F2 key

F3 F3 key

F4 F4 key

F5 F5 key

F6 F6 key

F7 F7 key

F8 F8 key

F9 F9 key

F10 F10 key

F11 F11 key

F12 F12 key

F13 F13 key

Fl14 F14 key

267

Chapter 6. Other Classes

Symbolic Name Mouse or Keyboard Equivalent
F15 F15 key

F16 F16 key

F17 F17 key

F18 F18 key

F19 F19 key

F20 F20 key

F21 F21 key

F22 F22 key

F23 F23 key

F24 F24 key
NUMLOCK NUM LOCK key
SCROLL SCROLL LOCK key

6.19. The WindowsRegistry Class

Object Rexx provides a class for interaction with the WindowsRegistry. You can use this class to query
the registry and modify, add, and delete entries. This class is specifically for Windows systems and may
not be available on other systems.

The WindowsRegistry class is not a built-in class; it is defined in the file WINSYSTM.CLS.

Use a: :requires Statement to activate its function:
::requires "winsystm.cls"

A sample progranBEGISTRY .REX, is provided in theoRexx\SAMPLES directory

Methods the WindowsRegistry Class Defines

. CLASSES_ROOT
. CLASSES_ROOT=
. CLOSE

. CREATE

. CURRENT_KEY

. CURRENT_KEY=
. CURRENT_USER
. CURRENT_USER=
. DELETE

. DELETEVALUE

. FLUSH

268

Chapter 6. Other Classes

. GETVALUE
. INIT

. LIST

. LISTVALUES

. LOAD

. LOCAL_MACHINE
. LOCAL_MACHINE=
. OPEN

. QUERY

. REPLACE

. RESTORE

. SAVE

. SETVALUE

. UNLOAD

. USERS

. USERS=

6.19.1. CLASSES_ROOT

>>-CLASSES_ROOT--- -- - - ><

Returns the handle of the root key HKEY_CLASSES_ ROOT.

6.19.2. CLASSES_ROOQOT=

>>—CLASSES_ROUT=-- - - - - -_— ><

This method is used by INIT to set the attribute CLASSES_ROOT to HKEY_CLASSES ROOT. Do not
modify this attribute.

6.19.3. CLOSE

>>-CLOSE (-+----—----—-- +=)—————- - - ><
+-key_handle-+

Closes a previously opened key specified by its handle. Example:

rg~close(objectrexxkey)

It can take several seconds before all data is written to disk. You can use FLUSH to empty the cache.

269

Chapter 6. Other Classes

If key_handlés omitted, CURRENT_KEY is closed.

6.19.4. CONNECT

>>-CONNECT (-key, computer-)-—----- - - ><

Opens a key on a remote computer. This is supported only for HKEY_LOCAL_MACHINE and
HKEY_USERS.

6.19.5. CREATE

>>-CREATE (-+-------- +-,subkey) ———---—-------——————————— oo ><
+-parent-+

Adds a new named subkey to the registry and returns its handle. The parent keygaadtean be a
root key or a key retrieved using OPEN. If tharentkey is omitted, CURRENT_KEY is used. Example:

newkey = rg-create(rg~local_machine, "MyOwnKey")

6.19.6. CURRENT_KEY

>>-CURRENT_KEY---- - — — 5<

Returns the handle of the current key. The current key is set by INIT, CREATE, and OPEN. Itis used as
a default value if the key is omitted in other methods.

6.19.7. CURRENT_KEY=

>>—CURRENT_KEY=--- - - - -_ - ><

Sets the handle of the current key.

6.19.8. CURRENT_USER

>>-CURRENT_USER--- -— - - ><

Returns the handle of the root key HKEY_CURRENT_USER.

6.19.9. CURRENT_USER=

>>-CURRENT_USER=-- -- - - - <

270

Chapter 6. Other Classes

This method is used by INIT to set the attribute CURRENT_USER to HKEY_CURRENT_USER. Do
not modify this attribute.

6.19.10. DELETE

>>-DELETE (—+---——-—————- +-,subkeyname) - -- ><
+-key_handle-+

Deletes a given named subkey of an open key specified by its handle and all its subkeys and values. If
key_handlés omitted, CURRENT_KEY is used.

6.19.11. DELETEVALUE

>>-DELETEVALUE (—+---=-=====-= i +-)- -- ><
+-key_handle-+ +-,value-+

Deletes the named value for a given keykef/ handlés omitted, CURRENT_KEY is used. {falueis
blank or omitted, the default value is deleted.

6.19.12. FLUSH

>>-FLUSH(-+----—-—----- +=)—————- - - ><
+-key_handle-+

Forces the system to write the cache buffer of a given key to digleyifhandlés omitted,
CURRENT _KEY is flushed.

6.19.13. GETVALUE

>>-GETVALUE (- +------—----—— i +=)-——- - ><
+-key_handle-+ +-,value-+

Retrieves the data and type for a named value of a given key. The result is a compound variable with
suffixes data and type. Key_handlés omitted, CURRENT_KEY is used. If namedlueis blank or
omitted, the default value is retrieved. Example:

myval. = rg”GETVALUE(,"filesystem") /* current key */
say "Type is" myval.type

if myval.type = "NORMAL" then say "Value is" myval.data
myval. = rg”~GETVALUE(mykey)

say "my default value is:" myval.data

myval. = rg~GETVALUE(mykey,"")

say "my default value is:" myval.data

Possible types: NORMAL, EXPAND, MULTI, NUMBER, BINARY, NONE, OTHER.

271

Chapter 6. Other Classes
6.19.14. INIT

>>-INIT----—- - - - ><

Creates an instance of the WindowsRegistry class and loads the required external function package. The
current key is setto HKEY_LOCAL_MACHINE.

6.19.15. LIST

>>-LIST(-+--—————----- +-,stem.) ——--——————--- -- -- ><
+-key_handle-+

Retrieves the list of subkeys for a given key in a stem variable. The name of the stem variable must
include the period. The keys are returned as stem.1, stem.2, and so on. Example:

rg”LIST(objectrexxkey,orexxkeys.)
do i over orexxkeys.

say orexxkeys.i

end

6.19.16. LISTVALUES

>>-LISTVALUES (-+------—--—--—— +-,variable.)--- - ><
+-key_handle-+

Retrieves all value entries of a given key into a compound variable. The name of the variable must
include the period. The suffixes of the compound variable are numbered starting with 1, and for each
number the three values are the name (var.i.name), the data (var.i.data), and the type (var.i.type). The
type is NORMAL for alphabetic values, EXPAND for expandable strings such as a path, NONE for no
specified type, MULTI for multiple strings, NUMBER for a 4-byte value, and BINARY for any data
format.

If key_handlés omitted, the values of CURRENT_KEY are listed.

Example:

gstem. = rg”QUERY (objectrexxkey)

rg~LISTVALUES (objectrexxkey,lv.)

do i=1 to gstem.values

say "name of value:" lv.i.name "(type="lv.i.type")"
if 1lv.i.type = "NORMAL" then

say "data of value:" lv.i.data

end

6.19.17. LOAD

>>-LOAD (—+---—=——=———= +-,subkeyname, filename)-----------—---——- ><
+-key_handle-+

272

Chapter 6. Other Classes
Load creates a named subkey under the open key key handle and loads registry data from the file
filename (created b8AVE) and stores the data under the newly created subkey.

key handle can only be HKEY_USERS or HKEY_LOCAL_MACHINE. Registry information is stored
in the form of a hive - a discrete body of keys, subkeys, and values that is rooted at the top of the registry
hierarchy. A hive is backed by a single file.

If key _handlés omitted, the subkey is created under HKEY_LOCAL_MACHINE.
UseUNLOAD to delete the subkey and to unlock the registry data file filename.

6.19.18. LOCAL_MACHINE

>>-LOCAL_MACHINE-- - - - ><

Returns the handle of the root key HKEY_LOCAL_MACHINE.

6.19.19. LOCAL_MACHINE=

>>—LOCAL_MACHINE=- - - - - - ><

This method is used by INIT to set the attribute LOCAL_MACHINE to HKEY_LOCAL_MACHINE.
Do not modify this attribute.

6.19.20. OPEN

>>-0PEN (-+- +-,subkey-+--—-——-—=-—--- =) mmmm ><
+-parent_handle-+ +-,-| access |-+

access:

L et - —————— e ———— - —-——t
v |

P P —
+-+ +-+ +-+

+-WRITE-+ +-READ-+ +-QUERY-+ +-EXECUTE-+ +-NOTIFY-+ +-LINK-+

Opens a named subkey and return its handle CFEATE for more information aboyparent_handle
Possible values faaccessre:

ALL
Default

WRITE

Create subkeys, set values

273

Chapter 6. Other Classes

274

READ

Query subkeys and values

QUERY

Values

EXECUTE

Key access, no subkey access

NOTIFY

Change notification

LINK
Create symbolic links
More than one value can be specified separated by blanks.

Notice that on Windows NT some keys require certain access rights and do not allow to open the key
with all but only with certain access values.

6.19.21. QUERY

>>-QUERY--(——+-——-—-—————— +-=)-- - - ><
+-key_handle-+

Retrieves information about a given key in a compound variable. The values returretaiss(elass
name) subkeygnumber of subkeysj)alues(number of value entriesjlateandtime of last modification.
If key handlés omitted, CURRENT_KEY is queried. Example:

myquery. = rg~QUERY (objectrexxkey)

say "class="myquery.class "at" myquery.date
say "subkeys="myquery.subkeys "values="myquery.values

6.19.22. REPLACE

>>-REPLACE (—+----- +o, e +-,newfilename,oldfilename-)-><
+-key_handle-+ +-subkeyname-+

Replaces the backup file of a key or subkey with a new file. Key must be an immediate descendant of
HKEY_LOCAL_MACHINE or HKEY_USERS. Ifkey handles omitted, the backup file of
CURRENT_KEY is replaced. The values in the new file become active when the system is restarted. If
subkeynames omitted, the key and all its subkeys will be replaced.

Chapter 6. Other Classes

6.19.23. RESTORE

>>-RESTORE (—+----—--——-—- +-,filename-+----——-——--—- +=)———————= ><
+-key_handle-+ +-,"VOLATILE"-+

Restores a key from a file. Key handlés omitted, CURRENT_KEY is restored. Example:
rg”"RESTORE (objectrexxkey, "\objrexx\orexx")

The VOLATILE keyword creates a new memory-only set of registry information that is valid only until
the system is restarted.

6.19.24. SAVE

>>=SAVE (-+---—=——=—=—- +-,filename)----- -- ><
+-key_handle-+

Saves the entries of a given key into a filekéfy _handlés omitted, CURRENT_KEY is saved. Example:
rg~SAVE (objectrexxkey, "\objrexx\orexx")

On a FAT system, do not use a file extensiofilename

6.19.25. SETVALUE

>>=SETVALUE (-+-----—-—----- +=, =t +-,value—+--------- $=)———=><
+-key_handle-+ +-name-+ +- ,NORMAL-+
+-,EXPAND-+
+- ,MULTI--+
+-,NUMBER-+
+-,BINARY-+
+-,NONE---+

Sets a named value of a given keyndmeis blank or omitted, the default value is set. Examples:

rg~SETVALUE (objectrexxkey, ,"My default","NORMAL")
rg~SETVALUE (objectrexxkey, "Product_Name","Object Rexx")
rg~SETVALUE (objectrexxkey, "VERSION","1.0")

6.19.26. UNLOAD

>>-UNLOAD (-+ +-,subkey) -—---- - ><
+-key_handle-+

Removes a named subkey (created Wi®AD) and its dependents from the registry, but does not
modify the file containing the registry information.Kéy_handlés omitted, the subkey under
CURRENT_KEY is unloaded. Unload also unlocks the registry information file.

275

Chapter 6. Other Classes

6.19.27. USERS

>>-USERS—--——-—===—===—————————- - - ><

Returns the handle of the root key HKEY_USERS.

6.19.28. USERS=

>>-USERS=-- - - - - ><

6.20. The Windows OLEODbiject Class

276

This class provides support for OLE automation. OLE (Object Linking and Embedding) is an
implementation of COM (Component Object Model). OLE automation makes it possible for one
application to manipulate objects implemented in another application, or to expose objects so they can be
manipulated.

An automation client is an application that can manipulate exposed objects belonging to another
application. An automation server is an application that exposes the objects. The OLEObject class
enables Rexx to be an OLE automation client. Note that the OLE acronym has now been replaced by
ActiveX.

Applications can provide OLE objects, and OLE objects that support automation can be used by a Rexx
script to remotely control the object through the supplied methods. This lets you write a Rexx script that,
for example, starts a Web browser, navigates to a certain page, and changes the display mode of the
browser.

Every application that supports OLE places a unique identifier in the registry. This identifier is called the
class ID (CLSID) of the OLE object. It consists of several hexadecimal numbers separated by the minus
symbol.

Example: CLSID of Microsoft® Internet Explorer (Version 5.00.2014.0216):
" {0002DF01-0000-0000-C000-000000000046} "

The CLSID number can prove inconvenient when you want to create or access a certain object, so a
corresponding easy-to-remember entry is provided in the registry, and this entry is mapped to the CLSID.
This entry is called the ProgID (the program ID), and is a string containing words separated by periods.

Example: ProglID of Microsoft Internet Explorer:InternetExplorer.Application"

To find the ProgID of an application, you can use the sample sTHINF0 . REX or the Microsoft
OLEViewer, or you can consult the documentation of the application or search the registry manually.

The OLEODbiject class is a built-in class.

Several sample programs are provided in the Object Rexx installation directory under Samples\OLE.

« The APPS directory contains 13 examples of how to use Rexx to remote-control other applications.

Chapter 6. Other Classes

« The OLEINFO directory is a sample Rexx application that can be used to browse through the
information an OLE object provides.

- In the ADSI directory there are eight examples of how to use the Active Directory Services Interface
with the Rexx OLE interface.

- The METHINFO directory contains a very basic example of how to access the information an OLE
object provides.

« Finally, the WMI directory contains five examples of how to work with the Windows Management
Instrumentation.

Methods available to the OLEODbiject class:

DISPATCH

INIT

GETCONSTANT
GETKNOWNEVENTS
GETKNOWNMETHODS
GETOBJECT(Class method)

GETOUTPARAMETERS
UNKNOWN

Note: The Rexx OLE object acts as a proxy to the real OLE object. The OLE object has its own
methods, depending on its individual implementation; its methods are accessed transparently
through the method mechanism UNKNOWN.

6.20.1. DISPATCH

>>-DISPATCH (methodname——+-----—=-—=-- =)= -- -- ><

| v (.
+-———,arg-+-—+

Dispatches a method with the optionally supplied arguments.

6.20.2. INIT

+-, "NOEVENTS"---+
>>-INIT(-+-ProgID-+-+-—-—=-—=——=——-—- e ><
+-CLSID--+ +-, "WITHEVENTS"-+

Instantiates an OLE object of the given ProgID or CLSID. If the creation fails, an error will be raised
(see list of OLE specific errors on page).

The optional parameter "events" defines whether events are to be used or not. Allowed values for events
are'NOEVENTS' (the default) andWITHEVENTS'.

Example:

myOLEObject = .0OLEObject new("InternetExplorer.Application")

277

Chapter 6. Other Classes

6.20.3. GETCONSTANT

>>-GETCONSTANT (—+-----==-—-—-—-) -- ><
+-ConstantName-+

Retrieves the value of a constant that is associated with this OLE object. If no constant of that name
exists, the .NIL object will be returned. You can also omit the name of the constant; this returns a stem
with all known constants and their values. In this case the constant names will be prefixed with a "!"
symbol.

Example 1:

myExcel = .0LEObject™new("Excel.Application")

say "xlCenter has the value" myExcel~GetConstant("x1lCenter")
myExcel™quit

exit

Possible output:

x1Center has the value -4108

Example 2:

myExcel = .0LEObject“new("Excel.Application")
constants. = myExcel”GetConstant
myExcel™quit

do i over constants.
say i"="constants.i
end

Possible output:

! XLFORMULA=5
' XLMOVE=2
' XLTEXTMAC=19

6.20.4. GETKNOWNEVENTS

>>-GETKNOWNEVENTS--- - - - - ><

Returns a stem with information on the events that the OLE object can create. It collects this information
from the type library of the object. A type library provides the names, types, and arguments of the
provided methods.

The stem provides the following information:

278

Chapter 6. Other Classes

Table 6-3. Stem Information

stem.0 The number of events.

stem.n.NAME Name of n-th event.

stem.n.!DOC Description of n-th event (if available).

stem.n.!PARAMS.O Number of parameters for n-th event.

stem.n.!PARAMS.i..NAME Name of i-th parameter of n-th event.

stem.n.!PARAMS.i.'TYPE Type of i-th parameter of n-th event.

stem.n.!PARAMS.i.!IFLAGS Flags of i-th parameter of n-th event; can be "inf,
"out", "opt", or any combination of these.

If no information is available, the .NIL object is returned and this OLE object does not have any events.

Example script:

myIE = .0LEObject new("InternetExplorer.Application","NOEVENTS")
events. = myIE"GetKnownEvents

if events. == .nil then

say "Sorry, this object does not have any events."
else do

say "The following events may occur:"

do i =1 to events.O

say events.i.!NAME

end

end

exit

Sample output:

The following events may occur:
ONTHEATERMODE

ONFULLSCREEN
ONSTATUSBAR

For an example of how to use events, see examples OLE\APPS\SAMP12.REX and
OLE\APPS\SAMP13.REX in the SAMPLES directory.

6.20.5. GETKNOWNMETHODS

>>-GETKNOWNMETHODS - - ><

Returns a stem with information on the methods that the OLE object supplies. It collects this information
from the type library of the object. A type library provides the names, types, and arguments of the
provided methods. Parts of the supplied information have only informational character as you cannot use
them directly.

279

Chapter 6. Other Classes

280

The stem provides the following information:

Table 6-4. Stem Information

—

stem.0 The number of methods.

stem.!LIBNAME Name of the type library that describes this object.

stem.!LIBDOC A help string describing the type library. Only se
when the string is available.

stem.n.NAME The name of the n-th method.

stem.n.!DOC A help string for the n-th method. If this

information is not supplied in the type library thi
value will not be set.

W

stem.n.!INVKIND

A number that represents the invocation kind of
the method: 1 = normal method call, Z2ozoperty
get, 4 =property put. A normal method call is
used with brackets; for groperty get only the
name is to be specified; angfoperty set USES
the "=" symbol, as in these examples:
object“methodCall(a,b,c)
object“propertyPut="Hello" say
object“propertyGet

stem.n.!RETTYPE

The return type of the n-th method. The return
type will be automatically converted to a Rexx
object (sedlype Conversiorin the description of

the UNKNOWN method of the OLEObject class).

stem.n.MEMID

The MemberID of the n-th method. This is only
used internally to call the method.

stem.n.!PARAMS.0

The number of parameters of the n-th method.

stem.n.!PARAMS.i.INAME

The name of the i-th parameter of the n-th meth

od.

stem.n.!PARAMS.i.'TYPE

The type of the i-th parameter of the n-th methad.

stem.n.!PARAMS.i.IFLAGS

The flags of the i-th parameter of the n-th methg

can be "in", "out", "opt", or any combination of
these (for example: "[in, opt]").

nd;

If no information is available, the .NIL object is returned.

Note: An object might provide additional methods that cannot be retrieved for display but that can be
invoked. In these cases, consult the documentation of those objects.

There are mechanisms to 'hide’ methods from the user, because these methods can only be used
internally. It might happen that these are not hidden properly and will get displayed. Be careful with

methods like:

AddRef
GetTypelnfoCount

Chapter 6. Other Classes

GetTypelnfo

GetIDsOfNames
Querylnterface

Release

Example script:

myOLEObject = .0OLEObject new("InternetExplorer.Application")
methods. = myOLEObject”GetKnownMethods

if methods. == .nil then
say "Sorry, no information on the methods available!"
else do
say "The following methods are available to this OLE object:"
do i = 1 to methods.O
say methods.i.!NAME
end
end

exit
Sample output:

The following methods are available to this OLE object:
GoBack

GoForward

GoHome

6.20.6. GETOBJECT

>>-GETOBJECT (Moniker—+-------- +=)=————e - ><
+-,class—-+

This is a class method that allows you to obtain an OLE object through the use of a so-called moniker or
nickname (a string). A moniker is used to find out which object has to be created or, if it is already
running, addressed. The moniker itself tells OLE which type of object is required. The optional
parameter class can be used to specify a subclass of OLEObject, and can be used to obtain an OLE
object that supports events (theTHEVENTS' option will be used in this case). This method is similar to
theInit method where you have to specify a ProgID or CLSID.

Example:

/* create a Word.Document by opening a certain file */
myOLEObject = .OLEObject~GetObject ("C:\DOCS\HELLOWORLD.DOC")

6.20.7. GETOUTPARAMETERS

>>-GETOUTPARAMETERS - - - ><

281

Chapter 6. Other Classes

282

Returns an array containing the results of the singleparameters of the OLE object, or the .NIL object
if it does not have anyiut parameters are arguments to the OLE object that are filled in by the OLE
object. As this is not possible in Rexx due to data encapsulation, the results are placed in the array
mentioned above.

Example:

Consider an OLE object method with the following signature:
aMethod([in] A, [in] B, [out] sumAB)

The resultingut parameter of the method invocation will be placed indhearray at position one; the
"normal” return value gets processed as usual. In this case the method will return the .NIL object:

resultTest = myOLEObject~aMethod(1, 2, .NIL)
say "Invocation result :" resultTest
say "Result in out array:" myOLEObject~GetOutParameters~at(1)

The output of this sample script will be:

The NIL object
3

Out parameters are placed in thee array in order from left to right. If the above OLE method looked
like this:

aMethod([in] A, [in] B, [out] sumAB, [out] productAB),

then theout array would contain the sum of A and B at position one, and the product at position two.

6.20.8. UNKNOWN

>>-UNKNOWN (messagename——+------- -t m) - -- ><
+--,messageargs-—+

Theunknown message is the central mechanism through which methods of the OLE object are called.
For further information, seBefining an UNKNOWN Method

You can invoke the methods of the real OLE object by simply stating their names to the Rexx (proxy)
OLE object like this:

myOLEObject“0LEMethodName

This calls the methotloLEMethodName" Of the real OLE object for any message that does not exist for
the Rexx OLE object by dispatching the call to the real OLE object.

If an OLE object offers a method with a name that is identical to one that is definetdsamject, you
must callunknown directly, like this:

msgs = .array of ("Hello","World")
val = myOLEObject ~Unknown ("Unknown",msgs)

This invokes the methodunknown" of the OLE object with two argumentsiello” and"wWorld".

Chapter 6. Other Classes

Parameters for the OLE object are used in the usual way, with the exception of sovealied
parametersut parameters will be filled in by the OLE object itself. As this is not possible in Rexx due
to data encapsulation, a special methe@&, TOUTPARAMETERS has to be used. Specify the .NIL
object for anyout parameters when invoking this method.

6.20.9. Type Conversion

Unlike Rexx, OLE uses strict typing of data. Conversion to and from these types is done automatically, if
conversion is possible. OLE types are called variants, because they are stored in one structure that gets
flagged with the type it represents. The following is a list of common types that OLE uses and the Rexx
objects that they are converted into.

Table 6-5. OLE/Rexx Types

VARIANT type Rexx object

VT_EMPTY .NIL

VT_NULL .NIL

VT_VOID .NIL

VT 11 Rexx string (a whole number)

VT 12 Rexx string (a whole number)

VT 14 Rexx string (a whole number)

VT_I8 Rexx string (a whole number)

VT _Ull Rexx string (a whole, positive number)

VT_UI2 Rexx string (a whole, positive number)

VT _Ul4 Rexx string (a whole, positive number)

VT _UI8 Rexx string (a whole, positive number)

VT_R4 Rexx string (a real number)

VT_R8 Rexx string (a real number)

VT_CY Rexx string (a fixed-point number with 15 digits|to
the left of the decimal point and 4 digits to the
right)

VT_DATE Rexx string

VT _BSTR Rexx string

VT_DISPATCH Rexx OLEODbject

VT_BOOL .TRUE or .FALSE *

VT _VARIANT Any Rexx object that can be represented as a
VARIANT

VT_PTR see VT_VARIANT

VT_SAFEARRAY Rexx Array

* When you pass .TRUE or .FALSE to an OLE object, these get passed as 1 or 0, respectively.

283

Chapter 6. Other Classes

284

Chapter 7. Other Objects

In addition to the class objects described in the previous chapter, Rexx also provides the following
objects:

« The Environment object

« The NIL object

« The Local environment object
« The Error object

« The Input object

« The Output object

7.1. The Environment Object ((ENVIRONMENT)

The Environment object is a directory of public objects that are always accessible. To access the entries
of the Environment object, you can use environment symbols. An environment symbol starts with a
period and has at least one other character, which cannot be a digit. For example, the term:

.method /* Same as .METHOD */

refers to the Method class.

Note: All environment objects that Rexx provides are single symbols. Users are recommended to
use compound symbols when creating environment objects.

(SeeEnvironment Symbol$or details about environment symbols.) Rexx provides the following public
objects:

ALARM

The Alarm class. Se€he Alarm Class

ARRAY
The Array class. Se€he Array Class

.BAG
The Bag class. Seehe Bag Class

.CLASS

The Class class. Sd@ée Class Class

.DIRECTORY

The Directory class. Seehe Directory Class

285

Chapter 7. Other Objects
.ENVIRONMENT

The Environment directory.

.ERROR
The Error object

.FALSE
The FALSE object (the value).

INPUT
The INPUT object

.LIST
The List class. Seg&he List Class

.LOCAL
The Local environment directory. Sé&ée Local Environment Object (.LOCAL)

.MESSAGE

The Message class. SEbe Message Class

.METHOD
The Method class. Seene Method Class

.METHODS
The Methods object.

.MONITOR

The Monitor class. Seéhe Monitor Class

.NIL
The NIL object. Sedhe NIL Object

.OBJECT
The Object class. Séehe Object Class

.OLEOBJECT
The OLEODbject class. S@he OLEObject Class

.OUTPUT
The OUTPUT class.

.QUEUE

The Queue class. Sé&ke Queue Class

286

.RELATION

The Relation class. S&éhe Relation Class

RS

The Rs class.

SET
The Set class. Sekhe Set Class

.STEM
The Stem class. S&the Stem Class

.STREAM

The Stream class. S@&ée Stream Class

.STRING
The String class. Seghe String Class

.SUPPLIER
The Supplier class. S&éhe Supplier Class

.TABLE
The Table class. Sekhe Table Class

.TRUE
The TRUE object (the valug).

7.2. The Local Environment Object (.LOCAL)

The Local environment object is a directory of process-specific objects that are always accessible. You
can access objects in the Local environment object in the same way as objects in the Environment object.

Rexx provides the following objects in the Local environment object:

.ERROR

Chapter 7. Other Objects

The Error object (default error stream). Seee Error ObjectThis is the object to which Rexx error

messages and trace output are written.

INPUT
The Input object (default input stream). SHEee Input Object

.OUTPUT
The Output object (default output stream). Sée Output Object

287

Chapter 7. Other Objects

288

.STDERR
The Error object (default error stream). Seee Error ObjectThis is the object to which Rexx error
messages and trace output are written.

.STDIN
The Input object (default input stream). SEee Input Object

.STDOUT
The Output object (default output stream). Sée Output Object

.STDQUE
The current default Rexx Queue.

Objects in the Environment object and objects in the Local environment object are available only to
programs running within the same process.

Because both of these environment objects are directory objects, you can place objects into, or retrieve
objects from, these environments by using any of the directory messages ([],[]=, PUT, AT, SETENTRY,
ENTRY, or SETMETHOD). To avoid potential name clashes with built-in objects and public objects that
Rexx provides, each object that your programs add to these environments should have a period in its
index.

Examples:

/* .LOCAL example--places something in the Local environment directory */
.local™my.alarm = theAlarm

/* To retrieve it */
say .local"my.alarm

/* Another .LOCAL example */
.environment ["MYAPP.PASSWORD"] = "topsecret"
.environment ["MYAPP.UID"] = 200
/* Create a local directory for */

/* my stuff. x/
.local ["MYAPP.LOCAL"] = .directory new
/* Add log file for my local directory x/
.myapp.local["LOG"] = .stream™new("C:\MYAPP.LOG")
say .myapp.password /* Displays "topsecret" x/
say .myapp.uid /* Displays "200" */

/* Write a line to the log file */
.myapp.local”log~lineout("Logon at "time()" on "date())

/* Redirect SAY lines into a file: */
.local ["OUTPUT"] = .stream™new("C:\SAY_REDIRECT.TXT")
say "This goes into a file, and not onto the screen!"

7.2.1. The Error Object ((ERROR)

This monitor object (se&he Monitor Classholds the trace stream object. You can redirect the trace
output in the same way as with the output object in the Monitor class example.

Chapter 7. Other Objects

7.2.2. The Input Object (.INPUT)

This monitor object (se&he Monitor Classholds the default input stream object (3eput and Output
Streami This input stream is the source for the PARSE LINEIN instruction, the LINEIN method of the
Stream class, and, if you specify no stream name, the LINEIN built-in function. It is also the source for
the PULL and PARSE PULL instructions if the external data queue is empty.

7.2.3. The Output Object ((OUTPUT)

This monitor object (se€he Monitor Claskholds the default output stream object (§sut and Output
Stream} This is the destination for output from the SAY instruction, the LINEOUT method
(.OUTPUT~LINEOUT), and, if you specify no stream name, the LINEOUT built-in function. You can
replace this object in the environment to direct such output elsewhere (for example, to a transcript
window).

7.3. METHODS

The .METHODS environment symbol identifies a directory (§be Directory Clagsof methods that
::METHOD directives in the currently running program define. The directory indexes are the method
names. The directory values are the method objectsTBe&/ethod Class

Only methods that are not preceded by a ::CLASS directive are in the .METHODS directory. If there are
no such methods, the .METHODS symbol has the default valugasfiops.

Example:

use arg class, methname
class~define(methname, .methods["a"])
::method a

use arg text

say text

7.4. The NIL Object (.NIL)

The NIL object is a special object that does not contain data. It usually represents the absence of an
object, as a null string represents a string with no characters. It has only the methods of the Object class.
Note that you use the .NIL object (rather than the null string (")) to test for the absence of data in an
array entry:

if .nil = board[row,coll /% .NIL rather than "" */
then ...

289

Chapter 7. Other Objects

7.5. .RS

.RS is set to the return status from any executed command (including those submitted with the
ADDRESS instruction). The .RS environment symbol has a value afhen a command returns a
FAILURE condition, a value of when a command returns an ERROR condition, and a valaewsen

a command indicates successful completion. The value of .RS is also available after trapping the ERROR
or FAILURE condition.

Note: Commands executed manually during interactive tracing do not change the value of .RS. The
initial value of .RS is .RS.

290

Chapter 8. Functions

A function is an internal, built-in, or external routine that returns a single result object. (A subroutine is a
function that is an internal, built-in, or external routine that might return a result and is called with the
CALL instruction.)

8.1. Syntax

A function call is a term in an expression calling a routine that carries out some procedures and returns
an object. This object replaces the function call in the continuing evaluation of the expression. You can
include function calls to internal and external routines in an expression anywhere that a data term (such
as a string) would be valid, using the following notation:

>>-function_name (----+--- e e e At -- -- ><
+-expression-+

Thefunction_names a literal string or a single symbol, which is taken to be a constant.

There can be any number of expressions, separated by commas, between the parentheses. These
expressions are called the arguments to the function. Each argument expression can include further
function calls.

Note that the left parenthesis must be adjacent to the name of the function, with no blank in between. (A
blank operator would be assumed at this point instead.) Only a comment can appear between the name
and the left parenthesis.

The arguments are evaluated in turn from left to right and the resulting objects are then all passed to the
function. This function then runs some operation (usually dependent on the argument objects passed,
though arguments are not mandatory) and eventually returns a single object. This object is then included
in the original expression as though the entire function reference had been replaced by the name of a
variable whose value is the returned object.

For example, the function SUBSTR is built into the language processor and could be used as:

N1="abcdefghi jk"
Z1="Part of N1 is: "substr(N1,2,7)
/* Sets Z1 to "Part of N1 is: bcdefgh" */

A function can have a variable number of arguments.You need to specify only those required. For
example SUBSTR ("ABCDEF" ,4) would returnpgr.

8.2. Functions and Subroutines

Functions and subroutines are called in the same way. The only difference between functions and
subroutines is that functions must return data, whereas subroutines need not.

The following types of routines can be called as functions:

201

Chapter 8. Functions

Internal

If the routine name exists as a label in the program, the current processing status is saved for a later
return to the point of invocation to resume execution. Control is then passed to the first label in the
program that matches the name. As with a routine called by the CALL instruction, status
information, such as TRACE and NUMERIC settings, is saved too. See the CALL instruction
(CALL) for details.

If you call an internal routine as a function, you must specify an expression in any RETURN
instruction so that the routine can return. This is not necessary if it is called as a subroutine.

Example:

/* Recursive internal function execution... */

arg x

say x"! =" factorial(x)

exit

factorial: procedure /* Calculate factorial by x/
arg n /* recursive invocation. x/

if n=0 then return 1
return factorial(n-1) * n

FACTORIAL is unusual in that it calls itself (this is recursive invocation). The PROCEDURE
instruction ensures that a new variahles created for each invocation.

Built-in

These functions are always available and are defin&dilt-in Functions

External

You can write or use functions that are external to your program and to the language processor. An
external routine can be written in any language, including Rexx, that supports the system-dependent
interfaces the language processor uses to call it. You can call a Rexx program as a function and, in
this case, pass more than one argument string. The ARG, PARSE ARG, or USE ARG instruction or
the ARG built-in function can retrieve these argument strings. When called as a function, a program
must return data to the caller.

Notes:

1. Calling an external Rexx program as a function is similar to calling an internal routine. For an
external routine, however, the caller’s variables are hidden. To leave the called Rexx program,
you can use either EXIT or RETURN. In either case, you must specify an expression.

2.You can use the INTERPRET instruction to process a function with a variable function name.
However, avoid this if possible because it reduces the clarity of the program.

8.2.1. Search Order

Functions are searched in the following sequence: internal routines, built-in functions, external functions.

292

Chapter 8. Functions

The name of internal routines must not be specified as a literal string, that is, in quotation marks, whereas
the name of built-in functions or external routines must be specified in quotation marks. Be aware of this
when you want to extend the capabilities of an existing internal function, for example, and call it as a
built-in function or external routine under the same name as the existing internal function. In this case,
you must specify the name in quotation marks.

Example:

/* This internal DATE function modifies the */
/* default for the DATE function to standard date. */
date: procedure

arg in

if in="" then in="Standard"

return "DATE" (in)

Built-in functions have uppercase names, and so the name in the literal string must be in uppercase for the
search to succeed. File names can be in uppercase, lowercase, or mixed case. The operating system uses
a case-insensitive search for files. When calling a Rexx subroutine, the case of the name does not matter.

External functions and subroutines have a system-defined search order.

The search order for external functions is as follows:

1. Functions defined on ::ROUTINE directives within the program.
2. Public functions defined on ::ROUTINE directives of programs referenced with ::REQUIRES.

3. Functions that have been loaded into the macrospace for preorder execution. (Sperit@bject
Rexx: Programming Guidir details.)

4. Functions that are part of a function package. (Se®pen Object Rexx: Programming Guifie
details.)

5. Rexx functions in the current directory, with the current extension.

6. Rexx functions along environment PATH, with the current extension.

7. Rexx functions in the current directory, with the default extension (.REX or .CMD).
8. Rexx functions along environment PATH, with the default extension (.REX or .CMD).
9. Functions that have been loaded into the macrospace for postorder execution.

The full search pattern for functions and routines is showuinction and Routine Resolution and
Execution

8.2.2. Errors during Execution

If an external or built-in function detects an error, the language processor is informed, and a syntax error
results. Execution of the clause that included the function call is, therefore, ended. Similarly, if an
external function fails to return data correctly, the language processor detects this and reports it as an
error.

If a syntax error occurs during the execution of an internal function, it can be trapped (using SIGNAL
ON SYNTAX) and recovery might then be possible. If the error is not trapped, the program is ended.

293

Chapter 8. Functions

Figure 8-1.

YES

Function and Routine Resolution and Execution
Start
¥
Is name in guaotatio n marks ? i
no
k2
: : L
Aninternal fun ction (3 label? 8y
¥ no
F
A builtin fun ction? Iy
no
b
; : Yes
Function defined on R OUTIN E? e
no
L 4
Puhlic fun ction de fined o n :ROUTINE yebL
in pragram refere nced with: RE QUIRE S? i
no
b 4
Bs
Macrospace pre-o rder? / P
no
v
; Bs
Fart o f exter nal function package? Y B
no
_ _ _ yes
External functionwith current extension? -
no
h
; ; : CE
E sternal function with d efault e xtension £ oy
no
L J
yes
la crospace post-order? .
no
¥ b
Errar Execute

294

Chapter 8. Functions

8.3. Return Values

A function usually returns a value that is substituted for the function call when the expression is
evaluated.

How the value returned by a function (or any Rexx routine) is handled depends on whether it is called by
a function call or as a subroutine with the CALL instruction.

« Aroutine called as a subroutine: If the routine returns a value, that value is stored in the special
variable named RESULT. Otherwise, the RESULT variable is dropped, and its value is the string
RESULT.

« Aroutine called as a function: If the function returns a value, that value is substituted in the expression
at the position where the function was called. Otherwise, the language processor stops with an error
message.

Here are some examples of how to call a Rexx procedure:
call Beep 500, 100 /* Example 1: a subroutine call */

The built-in function BEEP is called as a Rexx subroutine. The return value from BEEP is placed in the
Rexx special variablgesuLT.

bc = Beep(500, 100) /* Example 2: a function call %/

BEEP is called as a Rexx function. The return value from the function is substituted for the function call.
The clause itself is an assignment instruction; the return value from the BEEP function is placed in the
variablebc.

Beep (500, 100) /* Example 3: result passed as */
/* a command x/

The BEEP function is processed and its return value is substituted in the expression for the function call,
like in the preceding example. In this case, however, the clause as a whole evaluates to a single
expression. Therefore, the evaluated expression is passed to the current default environment as a
command.

Note: Many other languages, such as C, throw away the return value of a function if it is not assigned
to a variable. In Rexx, however, a value returned like in the third example is passed on to the current
environment or subcommand handler. If that environment is the default, the operating system
performs a disk search for what seems to be a command.

8.4. Built-in Functions

Rexx provides a set of built-in functions, including character manipulation, conversion, and information
functions. The following are general notes on the built-in functions:

295

Chapter 8. Functions

- The parentheses in a function are always needed, even if no arguments are required. The first
parenthesis must follow the name of the function with no space in between.

« The built-in functions internally work with NUMERIC DIGITS 9 and NUMERIC FUZZ 0 and are
unaffected by changes to the NUMERIC settings, except where stated. Any argument named as a
numberis rounded, if necessary, according to the current setting of NUMERIC DIGITS (as though the
number had been added to 0) and checked for validity before use. This occurs in the following
functions: ABS, FORMAT, MAX, MIN, SIGN, and TRUNC, and for certain options of DATATYPE.

- Any argument named ass#ring can be a null string.

- If an argument specifieslangth it must be a positive whole number or zero. If it specifietaat
character or word in a string, it must be a positive whole number, unless otherwise stated.

- If the last argument is optional, you can always include a comma to indicate that you have omitted it.
For exampleDATATYPE(1,), like DATATYPE(1), would returniuM. You can include any number of
trailing commas; they are ignored. If there are actual parameters, the default values apply.

- If you specify apad character, it must be exactly one character long. A pad character extends a string,
usually on the right. For an example, see the LEFT built-in fundtigR T.

- If a function has amptionthat you can select by specifying the first character of a string, that
character can be in uppercase or lowercase.

« Many of the built-in functions send messages the String class definesh{sesgtring Class For the
functions ABBREV, ABS, BITAND, BITOR, BITXOR, B2X, CENTER, CENTRE, CHANGESTR,
COMPARE, COPIES, COUNTSTR, C2D, C2X, DATATYPE, DELSTR, DELWORD, D2C, D2X,
FORMAT, LEFT, LENGTH, MAX, MIN, REVERSE, RIGHT, SIGN, SPACE, STRIP, SUBSTR,
SUBWORD, TRANSLATE, TRUNC, VERIFY, WORD, WORDINDEX, WORDLENGTH,

WORDS, X2B, X2C, and X2D, the first argument to the built-in function is used as the receiver object
for the message sent, and the remaining arguments are used in the same order as the message
arguments. For example, SUBSTR("abcde",3,2) is equivalent to "abcde"~SUBSTR(3,2).

For the functions INSERT, LASTPOS, OVERLAY, POS, and WORDPOS, the second argument to the
built-in functions is used as the receiver object for the message sent, and the other arguments are used
in the same order as the message arguments. For exammg{ea" , "Haystack",3) iS equivalent to
"Haystack"~P0S("a",3).

- The language processor evaluates all built-in function arguments to produce character strings.

8.4.1. ABBREV (Abbreviation)

>>-ABBREV (information,info--+---—-----—- +-=)—- - ><
+-,length-+

Returnst if info is equal to the leading charactersimfiormationand the length oinfo is not less than
length It returnso if either of these conditions is not met.

If you specifylength it must be a positive whole number or zero. The defaultdogthis the number of
characters imnfo.

Here are some examples:

296

Chapter 8. Functions

ABBREV ("Print","Pri") -> 1
ABBREV ("PRINT","Pri") -> 0
ABBREV ("PRINT","PRI",4) -> 0
ABBREV ("PRINT","PRY") -> 0
ABBREV ("PRINT","") -> 1
ABBREV ("PRINT","",1) -> 0

Note: A null string always matches if a length of o, or the default, is used. This allows a default
keyword to be selected automatically if desired; for example:
say "Enter optiomn:"; pull option .
select /* keywordl is to be the default */
when abbrev("keywordl",option) then ...

when abbrev("keyword2",option) then ...

otherwise nop;
end;

8.4.2. ABS (Absolute Value)

>>-ABS (number) ---- - - - ><

Returns the absolute value mimber The result has no sign and is formatted according to the current
NUMERIC settings.

Here are some examples:

ABS("12.3") -> 12.3
ABS(" -0.307") -> 0.307

8.4.3. ADDRESS

>>—ADDRESS()— - - _ ><

Returns the name of the environment to which commands are currently submitted. Trailing blanks are
removed from the result.

Here is an example:

ADDRESS () -> "CMD" /* default under Windows */

ADDRESS () -> "bash" /* default under Linux */

297

Chapter 8. Functions

2908

8.4.4. ARG (Argument)

>>=ARG (~=#=mmmmmmmm e =)= e -- ><
+-n-—+-———————— +-+

+-,option-+
Returns one or more arguments, or information about the arguments to a program, internal routine, or
method.
If you do not specifyn, the number of arguments passed to the program or internal routine is returned.

If you specify onlyn, thenth argument object is returned. If the argument object does not exist, the null
string is returnedn must be a positive whole number.

If you specifyoption the value returned depends on the valuegifon The following are valicbptiors.
(Only the capitalized letter is needed; all characters following it are ignored.)

Array

returns a single-index array containing the arguments, starting withthhergument. The array
indexes correspond to the argument positions, so thattthargument is at index 1, the following
argument at index 2, and so on. If any arguments are omitted, their corresponding indexes are
absent.

Exists
returnsi if the nth argument exists; that is, if it was explicitly specified when the routine was called.
Otherwise, it returns.

Normal

returns thenth argument, if it exists, or a null string.

Omitted

returnsi if the nth argument was omitted; that is, if it was not explicitly specified when the routine
was called. Otherwise, it returios

Here are some examples:

/* following "Call name;" (no arguments) */

ARGQ) -> 0
ARG(1) -> "
ARG(2) -> "
ARG(1,"e") -> 0
ARG(1,"0") -> 1
ARG(1,"a") -> .array~of ()

/* following "Call name 'a', ,'b';" */

ARGQ) -> 3

ARG (1) -> "a"

ARG(2) -> nn

ARG (3) -> "b"

ARG(n) -> " /* for n>=4 x/
ARG(1,"e") -> 1

Chapter 8. Functions

ARG(2,"E") -> 0

ARG(2,"0") -> 1

ARG(3,"0") -> 0

ARG(4,"0o") -> 1

ARG(1,"A"™) -> .array~of(a, ,b)
ARG(3,"a" -> .array~of (b)
Notes:

1. The number of argument strings is the largest nunnfer which ARG (n, "e") returnsi or o if there
are no explicit argument strings. That is, it is the position of the last explicitly specified argument
string.

2. Programs called as commands can have only 0 or 1 argument strings. The program has 0 argument
strings if it is called with the name only and has 1 argument string if anything else (including blanks)
is included in the command.

3. Programs called by the RexxStart entry point can have several argument strings. (Sperthe
Object Rexx: Programming Guider information about RexxStart.)

4. You can access the argument objects of a program with the USE instructiod Skfer more
information.

5. You can retrieve and directly parse the argument strings of a program or internal routine with the
ARG or PARSE ARG instructions.

8.4.5. B2X (Binary to Hexadecimal)

>>-B2X (binary_string)---- - ————m - ><

Returns a string, in character format, that represeintgry _stringconverted to hexadecimal.

Thebinary_stringis a string of binary or 1) digits. It can be of any length. You can optionally include
blanks inbinary_string(at 4-digit boundaries only, not leading or trailing) to improve readability; they
are ignored.

The returned string uses uppercase alphabetical characters for theavajuexl does not include
blanks.

If binary_stringis the null string, B2X returns a null string. If the number of binary digits in
binary_stringis not a multiple of 4, then up to threedigits are added on the left before the conversion
to make a total that is a multiple of 4.

Here are some examples:

B2X("11000011") -> "C3"
B2X("10111") > uqpm
B2X("101") > ugn

B2X("1 1111 0000") -> "1FO"

You can combine B2X with the functions X2D and X2C to convert a binary number into other forms. For
example:

X2D(B2X("10111")) > "23" /* decimal 23 */

299

Chapter 8. Functions

300

8.4.6. BEEP

>>-BEEP (frequency,duration)----- - - ><

Sounds the speaker at frequency (Hertz) for duration (milliseconds). The frequency can be any whole
number in the range 37 to 32767 Hertz. The duration can be any number in the range 1 to 60000
milliseconds.

This routine is most useful when called as a subroutine. A null string is returned.

Note: Both parameters (frequency, duration) are ignored on Windows 95 and Linux. On computers
with multimedia support the function plays the default sound event. On computers without
soundcard, the function plays the standard system beep (if activated).

Here is an example for Windows NT:

/* C scale x/

note.1 = 262 /* middle C */
note.2 = 294 /* D */
note.3 = 330 /* E */
note.4 = 349 /* F */
note.5 = 392 /* G */
note.6 = 440 /* A */
note.7 = 494 /* B */
note.8 = 523 /* C */
do i=1 to 8

call beep note.i,250 /* hold each note for */
/* one-quarter second */
end

8.4.7. BITAND (Bit by Bit AND)

>>-BITAND (stringl-—+----- -- -- +--)- -- ><
o e e -+

H

+-string2-+ +-,pad-+

Returns a string composed of the two input strings logically ANDed, bit by bit. (The encodings of the
strings are used in the logical operation.) The length of the result is the length of the longer of the two
strings. If nopad character is provided, the AND operation stops when the shorter of the two strings is
exhausted, and the unprocessed portion of the longer string is appended to the partial pegiik. If
provided, it extends the shorter of the two strings on the right before carrying out the logical operation.
The default forstring2is the zero-length (null) string.

Here are some examples:

BITAND("12"x) -> "12"x
BITAND("73"x,"27"x) -> "23"x
BITAND("13"x,"5555"x) -> "1155"x
BITAND("13"x,"5555"x,"74"x) -> "1154"x

Chapter 8. Functions

BITAND("pQrS", ,"DF"x) -> "PQRS" /* ASCII */

8.4.8. BITOR (Bit by Bit OR)

>>-BITOR(stringl--+ -- --
——mm e St +—+

+-,pad-+

—+—=)-- - ><
+-,

+-string2-+

Returns a string composed of the two input strings logically inclusive-ORed, bit by bit. (The encodings
of the strings are used in the logical operation.) The length of the result is the length of the longer of the
two strings. If nopad character is provided, the OR operation stops when the shorter of the two strings is

exhausted, and the unprocessed portion of the longer string is appended to the partial pslit. If
provided, it extends the shorter of the two strings on the right before carrying out the logical operation.

The default forstring2is the zero-length

Here are some examples:

(null) string.

BITOR("12"x) -> monx
BITOR("15"x,"24"x) -> "3B"x

BITOR("15"x, "2456"x) -> "3556"x
BITOR("15"x,"2456"x,"FO"x) -> "35F6"x
BITOR("1111"x, ,"4D"x) -> "5D5D"x
BITOR("pQrS", ,"20"x) -> "pqrs" /* ASCII */

8.4.9. BITXOR (Bit by Bit Exclusive OR)

>>-BITXOR(stringl-—+----- -
o, m e +-

3

+-string2-+

+--)-

—t—————- +-+

+-,pad-+

><

Returns a string composed of the two input strings logically eXclusive-ORed, bit by bit. (The encodings
of the strings are used in the logical operation.) The length of the result is the length of the longer of the
two strings. If nopad character is provided, the XOR operation stops when the shorter of the two strings

is exhausted, and the unprocessed portion of the longer string is appended to the partial peslLil. If
provided, it extends the shorter of the two strings on the right before carrying out the logical operation.

The default forstring2is the zero-length

Here are some examples:

(null) string.

BITXOR("12"x) -> "12"x
BITXOR("12"x,"22"x) -> "30"x
BITXOR("1211"x,"22"x) -> "3011"x
BITXOR("1111"x,"444444"%) -> "b555544"x
BITXOR("1111"x,"444444"x,"40"x) -> "b55504"x
BITXOR("1111"x, ,"4D"x) -> "bBCbC"x
BITXOR("C711"x,"222222"x," ") -> "EBb3302"x /* ASCII */

301

Chapter 8. Functions

8.4.10. C2D (Character to Decimal)

>>-C2D(string——+ +==)= - —————m— - ><
+-,n-+

Returns the decimal value of the binary representatiastrofg. If the result cannot be expressed as a
whole number, an error results. That is, the result must not have more digits than the current setting of
NUMERIC DIGITS. If you specifyn, it is the length of the returned result. If you do not speaifgtring

is processed as an unsigned binary number.

If stringis null, 0 is returned.

Here are some examples:

C2D("09"X) -> 9
Cc2D("81"X) -> 129
C2D("FF81"X) -> 65409
c2D("") -> 0
ca2n("a" -> 97 /* ASCII %/

If you specifyn, the string is taken as a signed number expressadiaracters. The number is positive
if the leftmost bit is off, and negative if the leftmost bit is on. In both cases, it is converted to a whole
number, which can be negative. Téteing is padded on the left with "00"x characters (not
"sign-extended"), or truncated on the leftrteharacters. This padding or truncation is as though
RIGHT (string, n,"00"x) had been processed.nfs o0, C2D always returns.

Here are some examples:

Cc2D("81"X,1) -> -127
C2D("81"X,2) -> 129
C2D("FF81"X,2) -> -127
C2D("FF81"X,1) -> -127
C2D("FF7F"X,1) -> 127
C2D("F081"X,2) -> -3967
C2D("F081"X,1) -> -127
C2D("0031"X,0) -> 0

8.4.11. C2X (Character to Hexadecimal)

>>-C2X(string)---- - - __ ><

Returns a string, in character format, that represstnitsg converted to hexadecimal. The returned string
contains twice as many bytes as the input string. On an ASCII system, C2X(1) returasause the
ASCII representation of the character 1 is "31"X.

The string returned uses uppercase alphabetical characters for theavalard does not include blanks.
Thestring can be of any length. Ktring is null, a null string is returned.

Here are some examples:

C2X("0123"X) -> "0123" /* "30313233"X in ASCII =/
€c2X("zD8") -> "5A4438" /x "354134343338"X in ASCII */

302

Chapter 8. Functions

8.4.12. CENTER (or CENTRE)

>>-+-CENTER (-+--string,length-—+------ e R ><
+-CENTRE (-+ +-,pad-+

Returns a string of lengtlengthwith string centered in it and witlpad characters added as necessary to
make up length. Theengthmust be a positive whole number or zero. The defpattcharacter is blank.
If the string is longer thatength it is truncated at both ends to fit. If an odd number of characters is
truncated or added, the right-hand end loses or gains one more character than the left-hand end.

Here are some examples:

CENTER (abc,7) -> " ABC "
CENTER (abc,8,"-") -> "--ABC---"
CENTRE("The blue sky",8) -> "e blue s"
CENTRE("The blue sky",7) -> "e blue "

Note: To avoid errors because of the difference between British and American spellings, this function
can be called either CENTRE or CENTER.

8.4.13. CHANGESTR

>>-CHANGESTR (needle,haystack,newneedle) - - ><

Returns a copy dfiaystackin which newneedleeplaces all occurrences néedle The following defines
the effect:

result = ""
$tempx = 1
do forever
$tempy = pos(needle, haystack, $tempx)
if $tempy = O then leave
result = result || substr(haystack, $tempx, $tempy - $tempx) || newneedle
$tempx = $tempy + length(needle)
end
result = result || substr(haystack, $tempx)

Here are some examples:

CHANGESTR("1","101100","") -> "000"
CHANGESTR("1","101100","X") -> "X0XX00"

8.4.14. CHARIN (Character Input)

>>-CHARIN (——+-—————+-—+-- - - R P ><
+-name-+ +-,-—+-—————— i +-+
+-start-+ +-,length-+

303

Chapter 8. Functions

304

Returns a string of up tengthcharacters read from the character input streame (To understand the
input and output functions, séeput and Output Strean)df you omit name characters are read from
STDIN, which is the default input stream. The defdahgthis 1.

For persistent streams, a read position is maintained for each stream. Any read from the stream starts at
the current read position by default. When the language processor completes reading, the read position is
increased by the number of characters read. You can gitertvalue to specify an explicit read

position. This read position must be positive and within the bounds of the stream, and must not be
specified for a transient stream. A valueidbr startrefers to the first character in the stream.

If you specify alengthof o, then the read position is set to the valuestafrt, but no characters are read
and the null string is returned.

In a transient stream, if there are fewer thamgthcharacters available, the execution of the program
generally stops until sufficient characters become available. If, however, it is impossible for those
characters to become available because of an error or another problem, the NOTREADY condition is
raised (se&rrors during Input and Outpuand CHARIN returns with fewer than the requested number
of characters.

Here are some examples:

CHARIN (myfile,1,3) -> "MFC" /* the first 3 */

/* characters */
CHARIN (myfile,1,0) -> " /* now at start */
CHARIN (myfile) -> "M /* after last call */
CHARIN (myfile, ,2) -> "FC" /* after last call */

/* Reading from the default input (here, the keyboard) */

/* User types "abcd efg" x/

CHARIN() -> "a" /* default is */
/* 1 character */

CHARIN(, ,5) -> "bcd e"

Notes:

1. CHARIN returns all characters that appear in the stream, including control characters such as line
feed, carriage return, and end of file.

2.When CHARIN reads from the keyboard, program execution stops until you press the Enter key.

8.4.15. CHAROUT (Character Output)

>>—CHAROUT(-—+——————+——+— - - ——+__) ________ ><
+-name-+ +-,-—+--———--—- +o—t——————— +-+

+-string-+ +-,start-+

Returns the count of characters remaining after attempting to striteg to the character output stream
name (To understand the input and output functions, Isgeit and Output Streamdf you omitname
characters irstring are written to STDOUT (generally the display), which is the default output stream.
Thestring can be a null string, in which case no characters are written to the streamjsaldvays
returned.

Chapter 8. Functions

For persistent streams, a write position is maintained for each stream. Any write to the stream starts at
the current write position by default. When the language processor completes writing, the write position
is increased by the number of characters written. When the stream is first opened, the write position is at
the end of the stream so that calls to CHAROUT append characters to the end of the stream.

You can give astart value to specify an explicit write position for a persistent stream. This write position
must be a positive whole number. A valueidbr startrefers to the first character in the stream.

You can omit thestring for persistent streams. In this case, the write position is set to the vatterbf
that was given, no characters are written to the streamg @éceturned. If you do not specifstart or
string, the stream is closed ands returned.

Execution of the program usually stops until the output operation is complete.

For example, when data is sent to a printer, the system accepts the data and returns control to Rexx, even
though the output data might not have been printed. Rexx considers this to be complete, even though the
data has not been printed. If, however, it is impossible for all the characters to be written, the

NOTREADY condition is raised (sderrors during Input and Outpuand CHAROUT returns with the

number of characters that could not be written (the residual count).

Here are some examples:

CHAROUT (myfile, "Hi") -> 0 /* typically */
CHAROUT (myfile,"Hi",56) -> 0 /* typically */
CHAROUT (myfile, ,6) -> 0 /* now at char 6 */
CHAROUT (myfile) -> 0 /* at end of stream */
CHAROUT(, "Hi") -> 0 /* typically */
CHAROUT(, "Hello") -> 2 /% maybe */

Note: This routine is often best called as a subroutine. The residual count is then available in the
variable RESULT.

For example:

Call CHAROUT myfile,"Hello"
Call CHAROUT myfile,"Hi",6
Call CHAROUT myfile

8.4.16. CHARS (Characters Remaining)

>>-CHARS (-—+------ SH - -- - - - <
+-name-+

Returns the total number of characters remaining in the character input ste@aeiThe count includes

any line separator characters, if these are defined for the stream. In the case of persistent streams, it is the
count of characters from the current read position. (8pat and Output Streanfer a discussion of

Rexx input and output.) If you omitame the number of characters available in the default input stream
(STDIN) is returned.

305

Chapter 8. Functions

The total number of characters remaining cannot be determined for some streams (for example, STDIN).
For these streams, the CHARS function returns indicate that data is present,oif no data is present.
For windows devices, CHARS always retums

Here are some examples:

CHARS (myfile) -> 42 /% perhaps */
CHARS(nonfile) -> 0
CHARS () -> 1 /* perhaps */

8.4.17. COMPARE

>>-COMPARE (stringl,string2--+------ +--) -= ><
+-,pad-+

Returnso if the stringsstringlandstring2are identical. Otherwise, it returns the position of the first
character that does not match. The shorter string is padded on the riglpiadiifftnecessary. The default
padcharacter is a blank.

Here are some examples:

COMPARE ("abc", "abc") -> 0
COMPARE("abc","ak") -> 2
COMPARE("ab ","ab") -> 0
COMPARE("ab ","ab"," ") -> 0
COMPARE("ab ","ab","x") -> 3
COMPARE ("ab-- ","ab","-") -> 5

8.4.18. CONDITION

>>-CONDITION (-—+--) - _ S<
+-option-+

Returns the condition information associated with the current trapped conditiorC¢®eéions and
Condition Trapdor a description of condition traps.) You can request the following pieces of
information:

« The name of the current trapped condition

« Any descriptive string associated with that condition

- Any condition-specific information associated with the current trapped condition

- The instruction processed as a result of the condition trap (CALL or SIGNAL)

« The status of the trapped condition

In addition, you can request a condition object containing all of the preceding information.

To select the information to be returned, use the followoptors. (Only the capitalized letter is needed;
all characters following it are ignored.)

306

Chapter 8. Functions

Additional
returns any additional object information associated with the current trapped condition. See
Additional Object Informatiorfor a list of possible values. If no additional object information is
available or no condition has been trapped, the language processor returns the NIL object.

Condition name
returns the name of the current trapped condition. For user conditions, the returned string is a
concatenation of the worgsER and the user condition name, separated by a blank.

Description
returns any descriptive string associated with the current trapped conditioBeSegptive Strings
for the list of possible values. If no description is available or no condition has been trapped, it
returns a null string.

Instruction
returns eithecALL or SIGNAL, the keyword for the instruction processed when the current condition
was trapped. This is the default if you orojption If no condition has been trapped, it returns a null
string.

Object
returns an object that contains all the information about the current trapped condition. See
Conditions and Condition Trager more information. If no condition has been trapped, it returns
the NIL object.

Status

returns the status of the current trapped condition. This can change during processing, and is one of
the following:

+ 0N - the condition is enabled
« OFF - the condition is disabled
- DELAY - any new occurrence of the condition is delayed or ignored

If no condition has been trapped, a null string is returned.

Here are some examples:

CONDITIONQ) -> "CALL" /* perhaps */
CONDITION("C") -> "FAILURE"

CONDITION("I") -> "CALL"

CONDITION("D") -> "FailureTest"
CONDITION("S") -> "OFF" /* perhaps */

Note: The CONDITION function returns condition information that is saved and restored across
subroutine calls (including those a CALL ON condition trap causes). Therefore, after a subroutine
called with CALL ON trapname has returned, the current trapped condition reverts to the condition
that was current before the CALL took place (which can be none). CONDITION returns the values it
returned before the condition was trapped.

307

Chapter 8. Functions

308

8.4.19. COPIES

>>-COPIES(string,n) - - - ><

Returnsn concatenated copies sfring. Then must be a positive whole number or zero.

Here are some examples:

COPIES("abc",3) -> "abcabcabc"
COPIES("abc",0) -> "o

8.4.20. COUNTSTR
>>-COUNTSTR (needle,haystack) ——--———=———==———=—————————————————m ><

Returns a count of the occurrencesetdlein haystackhat do not overlap. The following defines the
effect:

result=0

$tempx=pos (needle,haystack)

do while $temp > O

result=result+1

$temp=pos (needle,haystack,$temp+length(needle))
end

Here are some examples:

COUNTSTR("1","101101") -> 4
COUNTSTR("KK", "JOKKKO") -> 1

8.4.21. D2C (Decimal to Character)

>>-D2C(wholenumber--+----+--)--- - - - ><
+-,n-+

Returns a string, in character format, that is the ASCII representation of the decimal number. If you
specifyn, it is the length of the final result in characters; leading "00"x (for a positivelenumbeéyxor
"FF"x (for a negativevholenumbeércharacters are added to the result string as necessayst be a
positive whole number or zero.

Wholenumbemust not have more digits than the current setting of NUMERIC DIGITS.

If you omit n, wholenumbemust be a positive whole number or zero, and the result length is as needed.
Therefore, the returned result has no leading "00"x characters.

Here are some examples:

Chapter 8. Functions

D2C(65) -> "A" /* "41"x is an ASCII "A" */
D2C(65,1) -> "A"

D2C(65,2) -> A" /* the leading character is a "00"x */
D2C(65,5) - " A" /% the leading characters are "00"x */
D2C(109) -> "m" /* "6D"x is an ASCII "m" x/
D2C(-109,1) -> "o" /* "93"x is an ASCII "&" */

D2C(76,2) -> "L /* "4C"x is an ASCII "L" */
D2C(-180,2) -> " L" /* the leading character is a "FF"x */

Implementation maximum: The output string must not have more than 250 significant characters,
although it can be longer if it contains leading sign characters ("00"x and "FF"x).

8.4.22. D2X (Decimal to Hexadecimal)

>>-D2X (wholenumber--+----+--)--- - - - ><
+-,n-+

Returns a string, in character format, that represehtslenumbera decimal number, converted to
hexadecimal. The returned string uses uppercase alphabetics for theavalaed does not include
blanks.

Wholenumbemust not have more digits than the current setting of NUMERIC DIGITS.

If you specifyn, it is the length of the final result in characters. After conversion the input string is
sign-extended to the required length. If the number is too big toditaracters, it is truncated on the left.
n must be a positive whole number or zero.

If you omit n, wholenumbemust be a positive whole number or zero, and the returned result has no
leading zeros.

Here are some examples:

D2X(9) -> "on
D2X(129) -> "g1"
D2X(129,1) -> "
D2X(129,2) -> "81"
D2X(129,4) -> "0081"
D2X(257,2) -> "o1"
D2X(-127,2) -> "81"
D2X(-127,4) -> "FF81"
D2X(12,0) -> n

Implementation maximum: The output string must not have more than 500 significant hexadecimal
characters, although it can be longer if it contains leading sign characters (0 and F).

8.4.23. DATATYPE

>>-DATATYPE (string-—+------- +--) -~ - - ><
+-,type-+

309

Chapter 8. Functions

310

ReturnaiuM if you specify onlystring and if stringis a valid Rexx number that can be added to 0 without
error; returncHAR if stringis not a valid number.

If you specifytype it returnst if stringmatches the type. Otherwise, it retumsf stringis null, the
function return® (except when théypeis x or B, for which DATATYPE returna for a null string). The
following are validtypes. (Only the capitalized letter, or the number of the last type listed, is needed; all
characters following it are ignored. Note that for th&adecimal option, you must start your string
specifying the name of the option witrather tham.)

Alphanumeric

returnsti if string contains only characters from the ranges A-z, ando-9.

Binary
returnst if string contains only the characteror 1, or a blank. Blanks can appear only between
groups of 4 binary characters. It also retutri§ string is a null string, which is a valid binary string.
Lowercase

returnst if string contains only characters from the range.

Mixed case

returnsi if string contains only characters from the rangesanda-z.

Number

returnst if DATATYPE(string) returnsnuM.

Symbol
returnsi if stringis a valid symbol, that is, i§YMBOL (string) does not returBaD. (SeeSymbols)
Note that both uppercase and lowercase alphabetics are permitted.

Uppercase

returnsti if string contains only characters from the range.

Variable
returnsi if string could appear on the left-hand side of an assignment without causing a SYNTAX
condition.

Whole number

returnst if stringis a Rexx whole number under the current setting of NUMERIC DIGITS.

heXadecimal
returnsi if string contains only characters from the ranges A-F, 0-9, and blank (as long as
blanks appear only between pairs of hexadecimal characters). It also rettistsngis a null
string, which is a valid hexadecimal string.

9 digits

returnst if DATATYPE (string,"W") returnst when NUMERIC DIGITS is set to.

Here are some examples:

DATATYPE(" 12 ") -> "NUM"
DATATYPE("") -> "CHAR"
DATATYPE("123%") -> "CHAR"
DATATYPE("12.3","N") -> 1
DATATYPE("12.3","W") -> 0
DATATYPE("Fred","M") -> 1
DATATYPE("Fred","U") -> 0
DATATYPE("Fred","L") -> 0
DATATYPE("?20K","s") -> 1
DATATYPE("BCd3","X") -> 1
DATATYPE("BC d3","X") -> 1

Chapter 8. Functions

Note: The DATATYPE function tests the meaning or type of characters in a string, independent of the
encoding of those characters (for example, ASCIl or EBCDIC).

8.4.24. DATE

>>-DATE (---------- -- -- --

P -- -- --

+-option--+---- -- --

+-,string-—+--—-—--—--- ===
| +-,option2-+

e +-—+-,0Sep-—————------ +—+

+-,string--+-,option2-+-+

>m=)mmmmmmmem e

+-+-,0sep—+--,

isep-+

Returns, by default, the local date in the forndd:mon yyyyday month year--for example3 Nov
1998), with no leading zero or blank on the day. The first three characters of the English name of the

month are used.

You can use the followingptiors to obtain specific formats. (Only the capitalized letter is needed,; all

characters following it are ignored.)

Base

returns the number of complete days (that is, not including the current day) since and including the
base date, 1 January 0001, in the forndaidddd(no leading zeros or blanks). The expression
DATE("B")//7 returns a number in the ranges that corresponds to the current day of the week,

whereo is Monday and is Sunday.

Note: The base date of 1 January 0001 is determined by extending the current Gregorian
calendar backward (365 days each year, with an extra day every year that is divisible by 4

311

Chapter 8. Functions

312

except century years that are not divisible by 400. It does not take into account any errors in the
calendar system that created the Gregorian calendar originally.

Days
returns the number of days, including the current day, that have passed this year in thelfiirmat
(no leading zeros or blanks).

European
returns the date in the format dd/mm/yy.

Language

returns the date in an implementation- and language-dependent, or local, date format. The format is
dd month yyyyThe name of the month is according to the national language installed on the
system. If no local date format is available, the default format is returned.

Note: This format is intended to be used as a whole; Rexx programs must not make any
assumptions about the form or content of the returned string.

Month

returns the full English name of the current month, for examplgyst.

Normal

returns the date in the formdtl mon yyyyThis is the default.

Ordered

returns the date in the formgay/mm/ddsuitable for sorting, for example).

Standard

returns the date in the formgyyymmddsuitable for sorting, for example).

Usa

returns the date in the formatm/dd/yy

Weekday
returns the English name for the day of the week, in mixed case, for exarpieay.

Here are some examples, assuming today is 13 November 1996:

DATEQ) -> "13 Nov 1996"
DATE("B") -> 728975

DATE("D") -> 318

DATE("E") -> "13/11/96"
DATE("L") -> "13 November 1996"

Chapter 8. Functions

DATE("M") -> "November"
DATE("N") -> "13 Nov 1996"
DATE("0") -> "96/11/13"
DATE("S") -> "19961113"
DATE("U") -> "11/13/96"
DATE("W") -> "Wednesday"

Note: The first call to DATE or TIME in one clause causes a time stamp to be made that is then used
for all calls to these functions in that clause. Therefore, several calls to any of the DATE or TIME
functions, or both, in a single expression or clause are consistent with each other.

If you specifystring, DATE returns the date correspondingstoing in the formatoption Thestring

must be supplied in the formaption2 Theoption2format must specify day, month, and year (that is,
not "D", "L", "M", or "W"). The default foroption2is "N", so you need to specifyption2if stringis not
in the Normal format. Here are some examples:

DATE("0","13 Feb 1923") -> "23/02/13"
DATE("0","06/01/50","U") -> "50/06/01"

If you specify an output separator charaaisep the days, month, and year returned are separated by
this character. Any nonalphanumeric character or an empty string can be used. A separator character is
only valid for the formats "E", "N", "O", "S", and "U". Here are some examples:

DATE("S","13 Feb 1996","N","-") -> "1996-02-13"
DATE("N","13 Feb 1996","N","") -> "13Feb1996"
DATE("N","13 Feb 1996","N","-") -> "13-Feb-1996"
DATE("QO","06/01/50","U","") -> "500601"
DATE("E","02/13/96","U",".") -> "13.02.96"

DATE("N", , ,"_") -> "26_Mar_1998" (today)

In this way, formats can be created that are derived from their respective default format, which is the
format associated witbptionusing its default separator character. The default separator character for
each of these formats is:

Option Default separator
European "/
Normal "
Ordered "/
Standard "' (empty string)
Usa "/

If you specify astring containing a separator that is different from the default separator character of
option2 you must also specifisepto indicate which separator character is valid$ting. Basically,

any date format that can be generated with any valid separator character can be used as ispingiate
as long as its format has the generalized form specifieaptipn2and its separator character matches
the character specified lisep

Here are some examples:

DATE("S","1996_11_13","S","","_") -> "19961113"

313

Chapter 8. Functions

314

DATE(IISII’lI13_Nov_1996ll’llNll,llll’ll_ll) -> "10961113"
DATE("U","OS*O].*SO",“U","","*") -> "500601"
DATE("U","13.Feb.1996" ,"N", ,".") -> "02/13/96"

You can determine the number of days between two dates; for example:
say date("B","12/25/96","U")-date("B") " shopping days till Christmas!"

If stringdoes not include the century boptiondefines that the century be returned as part of the date,

the century is determined depending on whether the year to be returned is within the past 50 years or the
next 49 years. Assume, for example, that you specify 10/15/4&tfimg and today’s date is 10/27/1998.

In this case, 1943 would be 55 years ago and 2043 would be 45 years in the future. So, 10/15/2043
would be the returned date.

Note: This rule is suitable for dates that are close to today’s date. However, when working with birth
dates, it is recommended that you explicitly provide the century.

8.4.25. DELSTR (Delete String)

>>-DELSTR(string,n-—+--------- +=—=)————= - ><
+-,length-+

Returnsstring after deleting the substring that begins atttecharacter and is déngthcharacters. If
you omitlength or if lengthis greater than the number of characters fiota the end oktring, the
function deletes the rest sfring (including thenth character). Théengthmust be a positive whole
number or zeron must be a positive whole number.nfs greater than the length sfring, the function
returnsstring unchanged.

Here are some examples:

DELSTR("abcd",3) -> "ab"
DELSTR("abcde",3,2) -> "abe"
DELSTR("abcde",6) -> "abcde"

8.4.26. DELWORD (Delete Word)

>>-DELWORD (string,n--+--------- +-=)-——- - - ><
+-,length-+

Returnsstring after deleting the substring that starts atmtteword and is ofengthblank-delimited

words. If you omitlength or if lengthis greater than the number of words fromnto the end oftring, the
function deletes the remaining wordsstring (including thenth word). Thelengthmust be a positive
whole number or zers must be a positive whole number.rifs greater than the number of words in
string, the function returnstring unchanged. The string deleted includes any blanks following the final
word involved but none of the blanks preceding the first word involved.

Here are some examples:

Chapter 8. Functions

DELWORD("Now is the time",2,2) -> "Now time"
DELWORD("Now is the time ",3) -> "Now is "
DELWORD("Now is the time",5) -> "Now is the time"
DELWORD("Now is the time",3,1) -> "Now is time"
DELWORD("Now is the time",2,2) -> "Now time"

8.4.27. DIGITS

>>—DIGITS()—— - - _ ><

Returns the current setting of NUMERIC DIGITS. S¢6MERIC for more information.

Here is an example:

DIGITS() -> 9 /* by default */

8.4.28. DIRECTORY

>>-DIRECTORY (——+-————————--—-—- +-=)————- - ><
+-newdirectory-+

Returns the current directory, changing inewdirectoryif an argument is supplied and the named
directory exists. Ihewdirectoryis not specified, the name of the current directory is returned. Otherwise,
an attempt is made to change to the specifieddirectory If successful, the name of tmewdirectoryis
returned; if an error occurred, null is returned.

For example, the following program fragment saves the current directory and switches to a new
directory; it performs an operation there, and then returns to the former directory.

/* get current directory */
curdir = directory()
/* go play a game */
newdir = directory("/usr/bin") /* Linux type subdirectory */
if newdir = "/usr/games" then
do

fortune /* tell a fortune */
/* return to former directory */
call directory curdir
end
else
say "Can't find /usr/games"

8.4.29. ENDLOCAL (Linux only)

>>—ENDLOCAL() ----- - - - - -_ ><

315

Chapter 8. Functions

Restores the directory and environment variables in effect before tHeHI$tOCAL function was run.
If ENDLOCAL is not included in a procedure, the initial environment saved by SETLOCAL is restored
upon exiting the procedure.

ENDLOCAL returns a value of 1 if the initial environment is successfully restored and a value of O if no
SETLOCAL was issued or the action is otherwise unsuccessful.

Here is an example:

SETLOCAL () /* saves the current environment */
/%
The program can now change environment variables
(with the VALUE function) and then work in the
changed environment.
*/
ENDLOCAL () /* restores the initial environment */

n

n

For additional examples, s&ETLOCAL.

8.4.30. ERRORTEXT

>>-ERRORTEXT (n) ——-------- -- ittt -- ><

Returns the Rexx error message associated with error numbenust be in the range-99. It returns
the null string ifn is in the allowed range but is not a defined Rexx error numberE&®e Numbers and
Message$or a complete description of error numbers and messages.

Here are some examples:

ERRORTEXT (16) -> "Label not found"
ERRORTEXT (60) -> nn

8.4.31. FILESPEC

>>-FILESPEC(option,filespec)---- - - ><

Returns a selected element of filespec, a given file specification, identified by one of the following strings
for option:

Drive
The drive letter of the given filespec.

Path
The directory path of the givefilespec

Name
The file name of the givefilespec

If the requested string is not found, then FILESPEC returns a null string (™).

316

Chapter 8. Functions

Note: Only the initial letter of option is needed.

Here are some Windows examples:

thisfile = "C:\WINDOWS\UTIL\SYSTEM.INI"

say FILESPEC("drive",thisfile) /* says "C:" */
say FILESPEC("path",thisfile) /* says "\WINDOWS\UTIL\" x/
say FILESPEC("name",thisfile) /* says "SYSTEM.INI" */
part = "name"

say FILESPEC(part,thisfile) /* says "SYSTEM.INI" x/
8.4.32. FORM

>>-FORM() -~ -- -- -- ><

Returns the current setting of NUMERIC FORM. S¢¢ MERIC for more information.

Here is an example:

FORM() -> "SCIENTIFIC" /* by default */

8.4.33. FORMAT

>>-FORMAT (number-- - - - ->

>——t—- - - - ——t—=>

+- s . s M
+ + + +-+

+-before—+ +-,——t-———————4——+—- ——————— +-+

+-after—-+ +-,——+——————t——t———————t—+

+-expp-+ +-,expt-+
>) e e ><

Returnsnumber rounded and formatted.

Thenumberis first rounded according to standard Rexx rules, as though the operatigir+0 had
been carried out. The result is precisely that of this operation if you specifynamhper If you specify
any other options, theumberis formatted as described in the following.

Thebeforeandafter options describe how many characters are used for the integer and decimal parts of
the result, respectively. If you omit either or both of them, the number of characters used for that part is
as needed.

If beforeis not large enough to contain the integer part of the number (plus the sign for a negative
number), an error results. bieforeis larger than needed for that part, the number is padded on the left
with blanks. Ifafteris not the same size as the decimal part of the number, the number is rounded (or
extended with zeros) to fit. Specifyingcauses the number to be rounded to an integer.

Here are some examples:

317

Chapter 8. Functions

318

FORMAT("3",4) ->
FORMAT("1.73",4,0) ->
FORMAT("1.73",4,3) ->
FORMAT ("-.76",4,1) ->
FORMAT ("3.03",4) ->
FORMAT(" - 12.73", ,4) ->
FORMAT (" - 12.73") ->
FORMAT ("0.000") ->

woogn
W oo

" 1.730"
" -0.8"

" 3.03"
"-12.7300"
"-12.73"
nn

The first three arguments are as described previously. In additippandexptcontrol the exponent part

of the result, which, by default, is formatted according to the current NUMERIC settings of DIGITS and
FORM. exppsets the number of places for the exponent part; the default is to use as many as needed
(which can be zeroexptspecifies when the exponential expression is used. The default is the current

setting of NUMERIC DIGITS.

If exppis 0, the number is not in exponential notationekppis not large enough to contain the

exponent, an error results.

If the number of places needed for the integer or decimal part exesgdtsr twice expt respectively,

the exponential notation is used eifptis 0, the exponential notation is always used unless the exponent
would beo. (If exppis o, this overrides @ value ofexpt) If the exponent would be when a nonzero
exppis specified, theexppt2 blanks are supplied for the exponent part of the result. If the exponent
would beo andexppis not specified, the number is not an exponential expression.

Here are some examples:

FORMAT("12345.73", , ,2,2)
FORMAT("12345.73", ,3, ,0)
FORMAT("1.234573", ,3, ,0)
FORMAT("12345.73", , ,3,6)
FORMAT("1234567e5", ,3,0)

8.4.34. FUZZ

"1.234573E+04"
"1.235E+4"

"1.235"

"12345.73"
"123456700000.000"

>>-FUZZ () --—------ -

><

Returns the current setting of NUMERIC FUZZ. S¢6MERIC for more information.

Here is an example:

FUZZ() -> 0

8.4.35. INSERT

/* by default */

>>-INSERT (new, target-——---—

>So—t—— - -
B S

+-n-+ +—,——F————————t——t——————+—+
+-length-+ +-,pad-+

Chapter 8. Functions

Inserts the stringew, padded or truncated to lengtngth into the stringargetafter thenth character.
The default value fon is 0, which means insertion before the beginning of the string. If specifiadd
lengthmust be positive whole numbers or zeronli greater than the length of the target string, the
stringnewis padded at the beginning. The default valuelémgthis the length ohew If lengthis less
than the length of the stringew, then INSERT truncatesewto lengthlength The defaulpad character
is a blank.

Here are some examples:

INSERT(" ","abcdef",3) -> "abc def"
INSERT("123","abc",5,6) -> "abc 123 "
INSERT("123","abc",5,6,"+") -> "abc++123+++"
INSERT("123","abc") -> "123abc"
INSERT("123","abc", ,5,"-") -> "123--abc"

8.4.36. LASTPOS (Last Position)

>>-LASTPOS (needle,haystack——+--—----- +-=)-—- - ><

Returns the position of the last occurrence of one striegdle in anotherhaystack (See alsd®?OS
(Position)) It returnso if needleis a null string or not found. By default, the search starts at the last
character ohaystackand scans backward. You can override this by specifgtad, the point at which
the backward scan starart must be a positive whole number and defaultsEOGTH (haystack) if
larger than that value or omitted.

Here are some examples:

LASTPOS(" ","abc def ghi") -> 8

LASTPOS(" ","abcdefghi") -> 0

LASTPOS("xy", "efgxyz") -> 4

LASTPOS(" ","abc def ghi",7) -> 4

8.4.37. LEFT

>>-LEFT(string,length-—+--——-- +-=)————- - ><
+-,pad-+

Returns a string of lengtiength containing the leftmodengthcharacters oétring. The string returned
is padded wittpad characters, or truncated, on the right as needed. The dptdittharacter is a blank.
lengthmust be a positive whole number or zero. The LEFT function is exactly equivalent to:

>>-SUBSTR(string,1,length-—+-—-———+--) - -= ><
+-,pad-+

Here are some examples:

LEFT("abc 4",8) -> "abc d "
LEFT("abc 4",8,".") -> "abc d..."

319

Chapter 8. Functions

320

LEFT("abc def",7) -> "abc de"

8.4.38. LENGTH

>>-LENGTH(string) - - - - ><

Returns the length daftring.

Here are some examples:

LENGTH("abcdefgh") -> 8
LENGTH("abc defg") -> 8
LENGTH("") -> 0

8.4.39. LINEIN (Line Input)

>>-LINEIN (-—+-—=—=—+-—+-= -- -- et R B ><
+-name-+ +-,-—t+-—————+-—-+ +-+

+-line-+ +-,count-+

Returnscountlines read from the character input streaame Thecountmust bet or 0 (To understand
the input and output functions, segut and Output Streamdf you omit name the line is read from the
default input stream, STDIN. The defaagtuntis 1.

For persistent streams, a read position is maintained for each stream. Any read from the stream starts at
the current read position by default. Under certain circumstances, a call to LINEIN returns a partial line.
This can happen if the stream has already been read with the CHARIN function, and part but not all of a
line (and its termination, if any) has already been read. When the language processor completes reading,
the read position is moved to the beginning of the next line.

A line number may be given to set the read position to the start of a specified line. This line number must
be positive and within the bounds of the stream, and must not be specified for a transient stream. The
read position can be set to the beginning of the stream by givia@ value ofi.

If you give acountof o, then no characters are read and a null string is returned.

For transient streams, if a complete line is not available in the stream, then execution of the program
usually stops until the line is complete. If, however, it is impossible for a line to be completed because of
an error or another problem, the NOTREADY condition is raised Eeers during Input and Output

and LINEIN returns whatever characters are available.

Here are some examples:

LINEIN() /* Reads one line from the */
/* default input stream; */
/* usually this is an entry */
/* typed at the keyboard */

myfile = "ANYFILE.TXT"

LINEIN(myfile) -> "Current line" /* Reads one line from */
/* ANYFILE.TXT, beginning */
/* at the current read */

Chapter 8. Functions

/* position. (If first call, x*/
/* file is opened and the */
/* first line is read.) */

LINEIN(myfile,1,1) -> "first line" /* Opens and reads the first */
/* line of ANYFILE.TXT (if */
/* the file is already open, */

/* reads first line); sets */
/* read position on the */
/* second line. */
LINEIN(myfile,1,0) -> " /* No read; opens ANYFILE.TXT */

/* (if file is already open, */
/* sets the read position to */
/* the first line). */

LINEIN(myfile, ,0) -> "" /* No read; opens ANYFILE.TXT */
/* (no action if the file is */
/* already open) . */

LINEIN("QUEUE:") -> "Queue line" /* Read a line from the queue. */
/* If the queue is empty, the */

/* program waits until a line */
/* is put on the queue. */

Note: If you want to read complete lines from the default input stream, as in a dialog with a user, use
the PULL or PARSE PULL instruction.

The PARSE LINEIN instruction is also useful in certain cases. (#&RSE LINEIN)

8.4.40. LINEOUT (Line Output)

>>-LINEQUT (——+-—————+-—+ - - =) mmmmmm e ><
+-name-+ +-,-—+-————=—- e +—+

+-string-+ +-,line-+

Returnso if successful in writingstring to the character output strearame or 1 if an error occurs while
writing the line. (To understand the input and output functions]iseet and Output Streamdf you

omit string but includeline, only the write position is repositioned.sfringis a null string, LINEOUT
repositions the write position (if you includiee) and does a carriage return. Otherwise, the stream is
closed. LINEOUT adds a line-feed and a carriage-return character to the stishgf

If you omit name the line is written to the default output stream STDOUT (usually the display).

For persistent streams, a write position is maintained for each stream. Any write to the stream starts at
the current write position by default. (Under certain circumstances the characters written by a call to
LINEOUT can be added to a partial line previously written to the stream with the CHAROUT routine.
LINEOUT stops a line at the end of each call.) When the language processor completes writing, the
write position is set to the beginning of the line following the one just written. When the stream is first

321

Chapter 8. Functions

322

opened, the write position is at the end of the stream, so that calls to LINEOUT append lines to the end
of the stream.

You can specify dine number to set the write position to the start of a particular line in a persistent
stream. This line number must be positive and within the bounds of the stream unless it is a binary
stream (though it can specify the line number immediately after the end of the stream). A valioe of
line refers to the first line in the stream. Note that, unlike CHAROUT, you cannot specify a position
beyond the end of the stream for non-binary streams.

You can omit thestring for persistent streams. If you speclige, the write position is set to the start of
theline that was given, nothing is written to the stream, and the function retuthgou specify neither
line nor string, the stream is closed. Again, the function retuyns

Execution of the program usually stops until the output operation is effectively complete. For example,
when data is sent to a printer, the system accepts the data and returns control to Rexx, even though the
output data might not have been printed. Rexx considers this to be complete, even though the data has
not been printed. If, however, it is impossible for a line to be written, the NOTREADY condition is raised
(seeErrors during Input and Outpltand LINEOUT returns a result af that is, the residual count of

lines written.

Here are some examples:

LINEQUT(,"Display this") /* Writes string to the default */
/* output stream (usually, the */
/* display); returns O if */
/* successful */

myfile = "ANYFILE.TXT"

LINEOUT (myfile,"A new line") /* Opens the file ANYFILE.TXT and */
/* appends the string to the end. */
/* If the file is already open, */
/* the string is written at the */
/* current write position. */
/* Returns O if successful. */

LINEOUT (myfile,"A new start",1) /* Opens the file (if not already */
/* open); overwrites first line */

/* with a new line. */
/* Returns 0 if successful. */
LINEQUT (myfile, ,1) /* Opens the file (if not already */
/* open). No write; sets write */
/* position at first character. */
LINEOUT (myfile) /* Closes ANYFILE.TXT */

LINEOUT is often most useful when called as a subroutine. The return value is then available in the
variable RESULT. For example:

Call LINEOUT "A:rexx.bat","Shell",1
Call LINEOUT ,"Hello"

Chapter 8. Functions

Note: If the lines are to be written to the default output stream without the possibility of error, use the
SAY instruction instead.

8.4.41. LINES (Lines Remaining)

+-, Normal-+
>>-LINES (--+------ o= Fomm e - ><

Returnst if any data remains between the current read position and the end of the character input stream
name It returnso if no data remains. In effect, LINES reports whether a read action that CHARIN (see
CHARIN (Character Inpuj)or LINEIN (seeLINEIN (Line Input)) performs will succeed. (To

understand the input and output functions, sgrit and Output Strean)s

The ANSI Standard has extended this function to allow an option: "Count". If this option is used, LINES
returns the actual number of complete lines remaining in the stream, irrespective of how long this
operation takes.

The option "Normal" returns 1 if there is at least one complete line remaining in the file or O if no lines
remain.

The default is "Normal".

Here are some examples:

LINES(myfile) -> 0 /* at end of the file */
LINESQ) -> 1 /* data remains in the */
/* default input stream */
/* STDIN: x/

Note: The CHARS function returns the number of characters in a persistent stream or the presence
of data in a transient stream.

8.4.42. MAX (Maximum)

v I
>>-MAX (----number—+--) --- -- -- -- ><

Returns the largest number of the list specified, formatted according to the current NUMERIC settings.
You can specify any humber aimbes.

Here are some examples:

MAX(12,6,7,9) -> 12
MAX(17.3,19,17.03) -> 19
MAX(-7,-3,-4.3) -> -3

323

Chapter 8. Functions

MAX(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21) -> 21

8.4.43. MIN (Minimum)

v |
>>-MIN (----number-+--)--- - - - ><

Returns the smallest number of the list specified, formatted according to the current NUMERIC settings.
You can specify any number aimbes.

Here are some examples:

MIN(12,6,7,9) -> 6
MIN(17.3,19,17.03) -> 17.03
MIN(-7,-3,-4.3) -> -7

MIN(21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1) -> 1

8.4.44. OVERLAY

>>-0VERLAY (new, target-—--- -- -- -- -- ->

+-n-+ -, ——F————————t————————t—+
+-length-+ +-,pad-+

Returns the stringarget, which, starting at thath character, is overlaid with the strimgw padded or
truncated to lengtlength The overlay must extend beyond the end of the origisuget string. If you
specifylength it must be a positive whole number or zero. The default valuéfagthis the length of
new If nis greater than the length of the target string, the stniegis padded at the beginning. The
defaultpad character is a blank, and the default valuerfdés 1. If you specifyn, it must be a positive
whole number.

Here are some examples:

OVERLAY(" ","abcdef",3) -> "ab def"
OVERLAY(".","abcdef",3,2) -> "ab. ef"
OVERLAY("qq", "abcd") -> "gqed”
OVERLAY("qq", "abcd",4) -> "abcqq"
OVERLAY("123","abc",5,6,"+") -> "abc+123+++"

8.4.45. POS (Position)

>>-P0S(needle,haystack-—+-------- e et ><
+-,start-+

324

Chapter 8. Functions

Returns the position of one stringeedle in anotherhaystack (See als@. ASTPOS (Last Position) It
returnso if needlés a null string or not found or i§tartis greater than the length baystack By

default, the search starts at the first charactéragstackthat is, the value oftartis 1. You can override
this by specifyingstart (which must be a positive whole number), the point at which the search starts.

Here are some examples:

POS("day", "Saturday") -> 6

POS("x","abc def ghi") -> 0

POS(" ","abc def ghi") -> 4

POS(" ","abc def ghi",5) -> 8

8.4.46. QUEUED

>>-QUEUED () -- - - . s<¢

Returns the number of lines remaining in the external data queue when the function is callédp(See
and Output Streantfsr a discussion of Rexx input and output.)

Here is an example:

QUEUED () -> 5 /* Perhaps */

8.4.47. RANDOM

>>-RANDOM (-—+----- - - =) mm o ><
+--max - - e +
B o, ot +—+
+--min--+ +--max--+ +--,seed-+

Returns a quasi-random nonnegative whole number in the raimg® maxinclusive. If you specifymax
or min,max thenmaxminusmin cannot exceed 100006in andmaxdefault too and999, respectively.
To start a repeatable sequence of results, use a spgasfits the third argument, as described in Nbte
This seedmust be a positive whole number from 0 to 999999999.

Here are some examples:

RANDOM() -> 305
RANDOM(5,8) -> 7
RANDOM(2) -> 0 /* 0 to 2 */

RANDOM(, ,1983) -> 123 /* reproducible */

Notes:

1. To obtain a predictable sequence of quasi-random numbers, use RANDOM a number of times, but
specify aseedonly the first time. For example, to simulate 40 throws of a 6-sided, unbiased die:

sequence = RANDOM(1,6,12345) /* any number would */
/* do for a seed */

325

Chapter 8. Functions

326

do 39

sequence = sequence RANDOM(1,6)
end

say sequence

The numbers are generated mathematically, using the is@&d so that as far as possible they

appear to be random. Running the program again produces the same sequence; using a different

initial seedalmost certainly produces a different sequence. If you do not sum@gathe first time

RANDOM is called, an arbitrary seed is used. Hence, your program usually gives different results

each time itis run.

2. The random number generator is global for an entire program; the current seed is not saved across

internal routine calls.

8.4.48. REVERSE

>>-REVERSE (string) -- -- - ><

Returnsstring reversed.

Here are some examples:

REVERSE("ABc.") -> ".cBA"

REVERSE("XYZ ") -> " ZYX"

8.4.49. RIGHT

>>-RIGHT (string,length-—+-----—- +-=)———-— - - ><
+-,pad-+

Returns a string of lengtlengthcontaining the rightmogéngthcharacters o$tring. The string returned
is padded wittpad character, or truncated, on the left as needed. The defadltharacter is a blank.
Thelengthmust be a positive whole number or zero.

Here are some examples:

RIGHT("abc d",8) -> " abc 4"
RIGHT("abc def",5) -> "c def"
RIGHT("12",5,"0") -> "00012"

8.4.50. RXFUNCADD

>>-RXFUNCADD (name ,module-+---------—-—-— +-)——- - ><
+-,procedure-+

Registers the functioname making it available to Rexx procedures. A return value 0 signifies
successful registration. A return value 1 signifies that the function is already registered.

rxfuncadd("SysCls", "rexxutil", "SysCls") -> O /* if not already registered */

Chapter 8. Functions

-> 1 /x if already registered */

Note: A return code of O signifies only that the function is successfully registered, but not that the
function or module is actually available.

Note: The name and module arguments are case-sensitive in some environments like Linux

8.4.51. RXFUNCDROP

>>-RXFUNCDROP (name) ——---— == -= -= == ><

Removes (deregisters) the functioamefrom the list of available functions. A zero return value
signifies successful removal.

rxfuncdrop("SysLoadFuncs") -> 0 /* if successfully removed */

8.4.52. RXFUNCQUERY

>>-RXFUNCQUERY (name) - - - ><

Queries the list of available functions for the functimame It returns a value of if the function is
registered, and a value ofif it is not.

rxfuncquery("SysLoadFuncs") -> 0 /* if registered */

8.4.53. RXQUEUE

>>-RXQUEUE (-+-"Create" —+------------ +oto) == - ><
| +-,queuename—+ |

+-"Delete",queuename------ +
+-"Get"—————— +
+-"Set" ,newqueuename------ +

Creates and deletes external data queues. It also sets and queries their names.

"Create"

creates a queue with the namapgeuenaméd you specifyqueuenamand if no queue of that name
exists already. You must not use SESSION gsi@auenamdf you specify noqueuenamehen the
language processor provides a name. The name of the queue is returned in either case.

The maximum length ofjlueuenamean be 1024 characters.

327

Chapter 8. Functions

328

Many queues can exist at the same time, and most systems have sufficient resources available to
support several hundred queues at a time. If a queue with the specified name exists already, a queue
is still created with a name assigned by the language processor. The assigned name is then returned
to you.

"Delete"

deletes the named queue. It returns 0 if successful or a nonzero number if an error occurs. Possible
return values are:

0

Queue has been deleted.
5

Not a valid queue name or tried to delete queue named "SESSION".
9

Specified queue does not exist.
10

Queue is busy; wait is active.
12

A memory failure has occurred.
1002

Failure in memory managetr.

"Get"

returns the name of the queue currently in use.

llSetll
sets the name of the current queuaésvgqueuenamand returns the previously active queue name.

The first parameter determines the function. Only the first character of the first parameter is significant.
The parameter can be entered in any case. The syntax for a valid queue name is the same as for a valid
Rexx symbol.

The second parameter specified for Create, Set, and Delete must follow the same syntax rules as the
Rexx variable names. There is no connection, however, between queue names and variable names. A
program can have a variable and a queue with the same name. The actual name of the queue is the
uppercase value of the name requested.

Named queues prevent different Rexx programs that are running in a single session from interfering with
each other. They allow Rexx programs running in different sessions to synchronize execution and pass
data. LINEIN("QUEUE:") is especially useful because the calling program stops running until another
program places a line on the queue.

Chapter 8. Functions

/* default queue */
rxqueue ("Get") -> "SESSION"

/* assuming FRED does not already exist */
rxqueue("Create", "Fred") -> "FRED"

/* assuming SESSION had been active x/
rxqueue("Set", "Fred") -> "SESSION"

/* assuming FRED did not exist x/
rxqueue("delete", "Fred") -> "O"

8.4.54. SETLOCAL (Linux only)

>>-SETLOCAL () - - _ s<

Saves the current working directory and the current values of the environment variables that are local to
the current process.

For example, SETLOCAL can be used to save the current environment before changing selected settings
with the VALUE function (se&/ALUE. To restore the directory and environment, use the ENDLOCAL
function (seeENDLOCAL.

SETLOCAL returns a value of 1 if the initial directory and environment are successfully saved and a
value of 0 if unsuccessful. If SETLOCAL is not followed by an ENDLOCAL function in a procedure,
the initial environment saved by SETLOCAL is restored upon exiting the procedure.

Here is an example:

/* Current path is "user/bin" */
n = SETLOCAL() /* saves all environment settings */
/* Now use the VALUE function to change the PATH variable */
p = VALUE("Path","home/user/bin"."ENVIRONMENT")

* Programs in directory home/user/bin can now be run *

/* Prog in di y home/ /bi b /

n = ENDLOCAL() /* restores initial environment including */
/* the changed PATH variable, which is */
/* "user/bin" */

>>-SIGN (number)--- - - -- ><

Returns a number that indicates the sigmomber Thenumberis first rounded according to standard
Rexx rules, as though the operatigmber+0 had been carried out. It returas if numberis less tharo,
oifitis o, and1 if it is greater tharo.

Here are some examples:

SIGN("12.3") -> 1
SIGN(" -0.307") -> -1
SIGN(0.0) -> 0

329

Chapter 8. Functions

8.4.56. SOURCELINE

>>-S0URCELINE (-—+---+--) - - —————————————— —_ ><
+-n-+

Returns the line number of the final line in the program if you amif you specifyn, returns theith

line in the program if available at the time of execution. Otherwise, it returns a null string. If spenified,
must be a positive whole number and must not exceed the number that a call to SOURCELINE with no
arguments returns.

If the Rexx program is in tokenized form the this function raises an error for all attempts to retrieve a line
of the program.

Here are some examples:

SOURCELINE() -> 10
SOURCELINE(1) -> "/x This is a 10-line Rexx program */"

8.4.57. SPACE
>>-SPACE(string-—+ - S Y - o<
B e et s

+-n-+ +-,pad-+

Returns the blank-delimited words string with n padcharacters between each word. If you spenifit
must be a positive whole number or zero. If ibisall blanks are removed. Leading and trailing blanks
are always removed. The default fois 1, and the defaulpad character is a blank.

Here are some examples:

SPACE("abc def ") -> "abc def"
SPACE(" abc def",3) -> "abc def"
SPACE("abc def ",1) -> "abc def"
SPACE("abc def ",0) -> "abcdef"
SPACE("abc def ",2,"+") -> "abc++def"

8.4.58. STREAM

>>-STREAM (name--+-------- - mmmmmmmmme o e R ><

+-Command--,--stream_command-+
+-Description--------=------- +

Returns a string describing the state of, or the result of an operation upon, the charactenatream
The result may depend on characteristics of the stream that you have specified in other uses of the
STREAM function. (To understand the input and output functions)geet and Output Stream)sThis
function requests information on the state of an input or output stream or carries out some specific
operation on the stream.

330

Chapter 8. Functions

The first argumenthame specifies the stream to be accessed. The second argument can be one of the
following strings that describe the action to be carried out. (Only the capitalized letter is needed; all
characters following it are ignored.)

Command

an operation (specified by tlstream_commangdiven as the third argument) is applied to the
selected input or output stream. The string that is returned depends on the command performed and
can be a null string. The possible input strings forslream_commandrgument are described
later.
Description

returns any descriptive string associated with the current state of the specified stream. It is identical
to the State operation, except that the returned string is followed by a colon and, if available,
additional information about the ERROR or NOTREADY states.

State
returns a string that indicates the current state of the specified stream. This is the default operation.

The returned strings are as describe&ATE.

Note: The state (and operation) of an input or output stream is global to a Rexx program; it is not
saved and restored across internal function and subroutine calls (including those calls that a CALL
ON condition trap causes).

8.4.58.1. Stream Commands

The following stream commands are used to:

« Open a stream for reading, writing, or both.

+ Close a stream at the end of an operation.

- Position the read or write position within a persistent stream (for example, a file).

- Getinformation about a stream (its existence, size, and last edit date).

The streamcommandrgument must be used when--and only when--you select the operation C
(command). The syntax is:

>>-STREAM (name, "C",streamcommand) —————--———————————————————————— ><

In this form, the STREAM function itself returns a string corresponding to the gtreamcommani
the command is successful. If the command is unsuccessful, STREAM returns an error message string in
the same form as the(Description) operation supplies.

For most error conditions, the additional information is in the form of a numeric return code. This return
code is the value dERRNGCthat is set whenever one of the file system primitives returns with a -1.

331

Chapter 8. Functions

8.4.58.1.1. Command Strings

The argumenstreamcommandan be any expression that the language processor evaluates to a
command string that corresponds to the following diagram:

+-BOTH--| Write Options |--+

>>-+-0PEN--+ - - +-—+ - +—+ ><
| +-READ- - -+ +-| Options |-+ |
| +-WRITE--| Write Options |-+
+-CLOSE-—- -- m—mmmm———————— -+
+-FLUSH- - - -+
| +- = -+ +-CHAR-+
+-+-SEEK-—--- e +-offset-—+-——--——- e ==t
| +-POSITION-+ +- < -+ +-READ--+ +-LINE-+ |
| +- + -+ +-WRITE-+ |
I +- -+ |
+-QUERY--+-DATETIME--- -- -- ——t -+
+-EXISTS - -t
+-HANDLE----- -- -- ————+
| +-CHAR-+ |
+-+-SEEK----—+--+-READ-—+-—————+-——+-+
| +-POSITION-+ | +-LINE-+ | |
| | +-CHAR-+ | |
| +-WRITE--+--—--—-- +-+ |
| | +-LINE-+ | |
| +-8YS----——————--- +
+-SIZE - - -+
+-STREAMTYPE- - - —-————t
+-TIMESTAMP-- - - -———t
Write Options:
| ——4———————- +o——= - - - - - -
+-APPEND--+
+-REPLACE-+
Options:
+-——— - - - ————t
v |
[==+ -—--—+----+-NOBUFFER- -- ————t— -
+-SHARED----- + +-BINARY-——+-—————-————————————— +-+
+-SHAREREAD--+ +-RECLENGTH--length-+

+-SHAREWRITE-+

OPEN

opens the named stream. The default for OPEN is to open the stream for both reading and writing
data, for example!0PEN BOTH".

The STREAM function itself returns a description string similar to the one that tpion
provides, for example, "READY:" if the named stream is successfully opened, or "ERROR:2" if the
named stream is not found.

332

Chapter 8. Functions

The following is a description of the options for OPEN:

READ

opens the stream for reading only.

WRITE
opens the stream for writing only.

BOTH

opens the stream for both reading and writing. (This is the default.) Separate read and write
pointers are maintained.

APPEND

positions the write pointer at the end of the stream. The write pointer cannot be moved
anywhere within the extent of the file as it existed when the file was opened.

REPLACE

sets the write pointer to the beginning of the stream and truncates the file. In other words, this
option deletes all data that was in the stream when opened.

SHARED

Enables another process to work with the stream in a shared mode. This mode must be
compatible with the shared mode (SHARED, SHAREREAD, or SHAREWRITE) used by the
process that opened the stream.

SHAREREAD

Enables another process to read the stream in a shared mode.

SHAREWRITE

Enables another process to write the stream in a shared mode.

NOBUFFER

turns off buffering of the stream. Thus, all data written to the stream is flushed immediately to
the operating system for writing. This option can severely affect output performance.
Therefore, use it only when data integrity is a concern, or to force interleaved output to a
stream to appear in the exact order in which it was written.

BINARY

causes the stream to be opened in binary mode. This means that line end characters are ignored

and treated as another byte of data. This is intended to force file operations that are compatible
with other Rexx language processors that run on record-based systems, or to process binary
data using the line operations.

Note: Specifying the BINARY option for a stream that does not exist but is opened for writing
also requires the RECLENGTH option to be specified. Omitting the RECLENGTH option in
this case raises an error condition.

333

Chapter 8. Functions

334

RECLENGTHIength

allows the specification of an exact length for each line in a stream. This allows line operations
on binary-mode streams to operate on individual fixed-length records. Without this option, line
operations on binary-mode files operate on the entire file (for example, aREdHENGTH
option were specified with a length equal to that of the fiengthmust be 1 or greater.

Examples:

stream(strout,"c","open")
stream(strout,"c","open write")
stream(strinp,"c","open read")
stream(strinp,"c","open read shared")

CLOSE

closes the named stream. The STREAM function itself reteEasy : if the named stream is
successfully closed, or an appropriate error message. If an attempt is made to close an unopened
file, STREAM returns a null string (™).

Example:

stream("STRM.TXT","c","close")

FLUSH

forces any data currently buffered for writing to be written to this stream.

SEEK offset

sets the read or write position within a persistent stream. If the stream is opened for both reading
and writing and no SEEK option is specified, both the read and write positions are set.

Note: See Input and Output Streams for a discussion of read and write positions in a persistent

stream.

To use this command, the named stream must first be opened with the OPEN stream command or
implicitly with an input or output operation. One of the following characters can preceddftet
number:

explicitly specifies theffsetfrom the beginning of the stream. This is the default if no prefix is
suppliedLine 0ffset=1 means the beginning of stream.

specifiesffsetfrom the end of the stream.

Chapter 8. Functions

specifiewffsetforward from the current read or write position.

specifieoffsetbackward from the current read or write position.

The STREAM function itself returns the new position in the stream if the read or write position is
successfully located or an appropriate error message otherwise.

The following is a description of the options for SEEK:

READ

specifies that the read position is to be set by this command.

WRITE

specifies that the write position is to be set by this command.

CHAR

specifies that the positioning is to be done in terms of characters. This is the default.

LINE

specifies that the positioning is to be done in terms of lines. For non-binary streams, this is an
operation that can take a long time to complete, because, in most cases, the file must be
scanned from the top to count line-end characters. However, for binary streams with a specified
record length, this results in a simple multiplication of the new resulting line number by the
record length, and then a simple character positioning L8eeversus Character Positioning

for a detailed discussion of this issue.

Note: If you do line positioning in a file open only for writing, you receive an error message.

Examples:

stream(name,"c","seek =2 read")
stream(name,"c","seek +15 read")
stream(name,"c","seek -7 write line")
fromend = 125

stream(name,"c","seek <"fromend read)

POSITION
is a synonym for SEEK.

8.4.58.1.2. QUERY Stream Commands

Used with these stream commands, the STREAM function returns specific information about a stream.
Except for QUERY HANDLE and QUERY POSITION, the language processor returns the query

335

Chapter 8. Functions

information even if the stream is not open. The language processor returns the null string for nonexistent
streams.

QUERY DATETIME

returns the date and time stamps of a stream in US format. This is included for compatibility with
0S/2®.

stream("..\file.txt","c","query datetime")

A sample output might be:
11-12-98 03:29:12

QUERY EXISTS
returns the full path specification of the named stream, if it exists, or a null string.
stream("..\file.txt","c","query exists")
A sample output might be:

c:\data\file.txt

QUERY HANDLE
returns the handle associated with the open stream.
stream("..\file.txt","c","query handle")

A sample output might be:
3

QUERY POSITION

returns the current read or write position for the stream, as qualified by the following options:

READ

returns the current read position.

WRITE
returns the current write position.

Note: If the stream is open for both reading and writing, the default is to return the read
position. Otherwise, it returns the appropriate position by default.

CHAR

returns the position in terms of characters. This is the default.

336

Chapter 8. Functions

LINE

returns the position in terms of lines. For non-binary streams, this operation can take a long
time to complete, because the language processor starts tracking the current line number if not
already doing so. Thus, it might require a scan of the stream from the top to count line-end
characters. Sdene versus Character Positionifgy a detailed discussion of this issue.

stream("myfile","c","query position write")
A sample output might be:
247

SYS

returns the operating-system stream position in terms of characters.

QUERY SIZE
returns the size, in bytes, of a persistent stream.
stream("..\file.txt","c","query size")
A sample output might be:
1305

QUERY STREAMTYPE

returns a string indicating whether the strearPEBSISTENT, TRANSIENT, OF UNKNOWN.

QUERY TIMESTAMP

returns the date and time stamps of a stream in an international format. This is the preferred method
of getting the date and time because it provides the full 4-digit year.

stream("..\file.txt","c","query timestamp")
A sample output might be:

1998-11-12 03:29:12

8.4.59. STRIP
>>-STRIP(string--+------- - - +-=)-—- - ><
+o, — b +——pm—————— +-+

3

+-option-+ +-,char-+

Returnsstring with leading characters, trailing characters, or both, removed, based opttheyou
specify. The following are validptions. (Only the capitalized letter is needed; all characters following it
are ignored.)

337

Chapter 8. Functions

Both

removes both leading and trailing characters fginng. This is the default.

Leading

removes leading characters fratning.

Trailing
removes trailing characters frostring.

The third argumenthar, specifies the character to be removed, and the default is a blank. If you specify
char, it must be exactly one character long.

Here are some examples:

STRIP(" ab c ") -> "ab c"
STRIP(" ab c ","L") -> "ab c "
STRIP(" ab c ","t") -> " ab c"
STRIP("12.7000", ,0) -> "12.7"
STRIP("0012.700", ,0) -> "12.7"

8.4.60. SUBSTR (Substring)

>>-SUBSTR (string,n-—+---- - - ——t--)- - ><
B e Tt DR S

+-length-+ +-,pad-+

Returns the substring atring that begins at thath character and is of lengténgth padded wittpad if
necessaryn must be a positive whole number.His greater thamENGTH (string), only pad characters
are returned.

If you omit length the rest of the string is returned. The defgat character is a blank.

Here are some examples:

SUBSTR("abc",2) -> "bc"
SUBSTR("abc",2,4) -> "bc "
SUBSTR("abc",2,6,".") -> "bc...."

Note: In some situations the positional (numeric) patterns of parsing templates are more convenient
for selecting substrings, especially if more than one substring is to be extracted from a string. See
also LEFT and RIGHT.

8.4.61. SUBWORD

>>-SUBWORD (string,n-—+--------- +-=)-——- - ><
+-,length-+

338

Chapter 8. Functions

Returns the substring string that starts at thath word, and is up téengthblank-delimited wordsn
must be a positive whole number. If you or@hgth it defaults to the number of remaining words in
string. The returned string never has leading or trailing blanks, but includes all blanks between the
selected words.

Here are some examples:

SUBWORD("Now is the time",2,2) -> "is the"
SUBWORD("Now is the time",3) -> "the time"
SUBWORD("Now is the time",5) -> "

8.4.62. SYMBOL

>>-SYMBOL (name) --- - - - - - ><

Returns the state of the symbol namediayne It returnssab if hameis not a valid Rexx symbol. It
returnsvar if it is the name of a variable, that is, a symbol that has been assigned a value. Otherwise, it
returnsLIT, indicating that it is either a constant symbol or a symbol that has not yet been assigned a
value, that is, a literal.

As with symbols in Rexx expressions, lowercase charactararnmeare translated to uppercase and
substitution in a compound name occurs if possible.

Note: You should specify name as a literal string, or it should be derived from an expression, to

prevent substitution before it is passed to the function.

Here are some examples:

/* following: Drop A.3; J=3 x/

SYMBOL("J") -> "VAR"

SYMBOL (J) -> "LIT" /* has tested "3" */

SYMBOL("a.j") -> "LIT" /* has tested A.3 */

SYMBOL (2) -> "LIT" /* a constant symbol */

SYMBOL ("*") -> "BAD" /* not a valid symbol */

8.4.63. TIME

>>-TIME(--+ - - ——+--)- - ><
+-option-—+---- - - +-+

+-,string-—+--——------ +-+

+-,option2-+

Returns the local time in the 24-hour clock format hh:mm:ss (hours, minutes, and seconds) by default,
for examplep4:41:37.

You can use the followingptiors to obtain alternative formats, or to gain access to the elapsed-time
clock. (Only the capitalized letter is needed; all characters following it are ignored.)

339

Chapter 8. Functions

340

Civil
returns the time in Civil format hh:mmxx. The hours can take the valubsough12, and the
minutes the valueso throughs9. The minutes are followed immediately by the lettetr pm.
This distinguishes times in the morning (12 midnight through 11:59 a.m.--appearingo@sn
through11:59am) from noon and afternoon (12 noon through 11:59 p.m.--appearing:aspm
throughi1:59pm). The hour has no leading zero. The minute field shows the current minute (rather
than the nearest minute) for consistency with other TIME results.

Elapsed

returns sssssssss.uuuuuu, the number of seconds and microseconds since the elapsed-time clock
(described later) was started or reset. The returned number has no leading zeros or blanks, and the
setting of NUMERIC DIGITS does not affect it. The number has always four trailing zeros in the
decimal portion.

The language processor calculates elapsed time by subtracting the time at which the elapsed-time
clock was started or reset from the current time. It is possible to change the system time clock while
the system is running. This means that the calculated elapsed time value might not be a true elapsed
time. If the time is changed so that the system time is earlier than when the Rexx elapsed-time clock
was started (so that the elapsed time would appear negative), the language processor raises an error
and disables the elapsed-time clock. To restart the elapsed-time clock, trap the error through
SIGNAL ON SYNTAX.

The clock can also be changed by programs on the system. Many LAN-attached programs
synchronize the system time clock with the system time clock of the server during startup. This
causes the Rexx elapsed time function to be unreliable during LAN initialization.

Hours

returns up to two characters giving the number of hours since midnight in the format hh (no leading
zeros or blanks, except for a resulto)f

Long

returns time in the format hh:mm:ss.uuuuuu (where uuuuuu are microseconds).

Minutes
returns up to four characters giving the number of minutes since midnight in the format mmmm (no
leading zeros or blanks, except for a resulbpf

Normal

returns the time in the default format hh:mm:ss. The hours can have the valthesugh23, and
minutes and second®) throughsg. There are always two digits. Any fractions of seconds are
ignored (times are never rounded). This is the default.

Reset

returns sssssssss.uuuuuu, the number of seconds and microseconds since the elapsed-time clock
(described later) was started or reset and also resets the elapsed-time clock to zero. The returned

Chapter 8. Functions
number has no leading zeros or blanks, and the setting of NUMERIC DIGITS does not affect it. The
number always has four trailing zeros in the decimal portion.

See the Elapsed option for more information on resetting the system time clock.

Seconds

returns up to five characters giving the number of seconds since midnight in the format sssss (no
leading zeros or blanks, except for a resulbpf

Here are some examples, assuming that the time is 4:54 p.m.:

TIME(Q) -> "16:54:22"

TIME("C") -> "4:54pm"

TIME("H") -> "16"

TIME("L") -> "16:54:22.120000" /* Perhaps */
TIME("M") -> "1014" /* 54 + 60%16 */
TIME("N") -> "16:54:22"

TIME("S") -> "60862" /x 22 + 60%(54+60%16) */

The elapsed-time clock:

You can use the TIME function to measure real (elapsed) time intervals. On the first call in a program to
TIME("E") or TIME("R"), the elapsed-time clock is started, and either call retarfsom then on, calls to
TIME("E") andTIME("R") return the elapsed time since that first call or since the last catiMexX"gr").

The clock is saved across internal routine calls, which means that an internal routine inherits the time
clock that its caller started. Any timing the caller is doing is not affected, even if an internal routine resets
the clock. An example of the elapsed-time clock:

time ("E") -> 0 /* The first call */
/* pause of one second here */
time ("E") -> 1.020000 /* or thereabouts */
/* pause of one second here */
time ("R") -> 2.030000 /* or thereabouts */
/* pause of one second here */
time ("R") -> 1.050000 /* or thereabouts */

Note: The elapsed-time clock is synchronized with the other calls to TIME and DATE, so several
calls to the elapsed-time clock in a single clause always return the same result. For this reason, the
interval between two usual TIME/DATE results can be calculated exactly using the elapsed-time
clock.

If you specifystring, TIME returns the time correspondingdtring in the formatoption Thestring

must be supplied in the formaption2 The default foroption2is "N". So you need to specifyption2
only if stringis not in the Normal formabption2must specify the current time, for example, not "E" or
"R". Here are some examples:

time("C","11:27:21") -> 11:27am
time("N","11:27am","C") -> 11:27:00

341

Chapter 8. Functions

You can determine the difference between two times; for example:

If TIME("M","5:00pm","C")-TIME("M")<=0
then say "Time to go home"
else say "Keep working"

The TIME returned is the earliest time consistent veitling. For example, if the result requires
components that are not specified in the source format, then those components of the result are zero. If
the source has components that the result does not need, then those components of the source are ignored.

Implementation maximum: If the number of seconds in the elapsed time exceeds nine digits
(equivalent to over 31.6 years), an error results.

8.4.64. TRACE

>>-TRACE (——+------ b—-) - - e - ><
+-option-+

Returns trace actions currently in effect and, optionally, alters the setting.

If you specifyoption it selects the trace setting. It must be the valid prefigne of the alphabetic
character options associated with the TRACE instruction (that is, startinguwdite, , 1, L, N, 0, OrR),
or both. (See the TRACE instruction Alphabetic Character (Word) Optioffer full details.)

Unlike the TRACE instruction, the TRACE function alters the trace action even if interactive debugging
is active. Also unlike the TRACE instructionptioncannot be a number.

Here are some examples:
TRACE(Q) -> "?R" /* maybe */

TRACE("0") -> "?R" /x also sets tracing off */
TRACE("?I") -> "O" /* now in interactive debugging */

8.4.65. TRANSLATE

>>-TRANSLATE(string———-—-———————————————————————— - >
S - - - D R e ><
T +——+ - - ——+—+
+-tableo—+ +—,——+-———————d——t——————4—+

+-tablei-+ +-,pad-+

Returnsstring with each character translated to another character or unchanged. You can also use this
function to reorder the charactersstring.

The output table isableoand the input translation tablet@blei. TRANSLATE searchetableifor each
character irstring. If the character is found, the corresponding characteabieois used in the result
string; if there are duplicates tableij, the first (leftmost) occurrence is used. If the character is not
found, the original character stringis used. The result string is always the same lengstrasg.

342

Chapter 8. Functions

The tables can be of any length. If you specify neither table andmejtstring is simply translated to
uppercase (that is, lowercase to uppercase-z), but, if you includepad, the language processor
translates the entire string pad characterstablei defaults toxRANGE("00"x, "FF"x), andtableodefaults
to the null string and is padded wiffad or truncated as necessary. The defaaliis a blank.

Here are some examples:

TRANSLATE("abcdef") -> "ABCDEF"
TRANSLATE("abcdef","12","ec") -> "ab2d1f"
TRANSLATE("abcdef","12","abcd",".") -> "12..ef"
TRANSLATE("APQRV", ,"PR") -> "AQ V"
TRANSLATE("APQRV" ,XRANGE("00"X,"Q")) > "APQ "
TRANSLATE("4123", "abcd", "1234") -> "dabc"

Note: The last example shows how to use the TRANSLATE function to reorder the characters in a
string. The last character of any four-character string specified as the second argument is moved to
the beginning of the string.

8.4.66. TRUNC (Truncate)

>>-TRUNC (number-—+----+--) =—==--= -- -- ><
+-,n-+

Returns the integer part olmberandn decimal places. The defaudtis 0 and returns an integer with no
decimal point. If you specify, it must be a positive whole number or zero. Thenberis rounded

according to standard Rexx rules, as though the operatitter+0 had been carried out. Then it is

truncated ton decimal places or trailing zeros are added to reach the specified length. The result is never
in exponential form. If there are no nonzero digits in the result, any minus sign is removed.

Here are some examples:

TRUNC(12.3) -> 12

TRUNC (127.09782,3) -> 127.097
TRUNC(127.1,3) -> 127.100
TRUNC(127,2) -> 127.00

Note: The number is rounded according to the current setting of NUMERIC DIGITS, if necessary,
before the function processes it.

8.4.67. USERID

>>-USERID() - - - ><

The return value is the active user identification.

343

Chapter 8. Functions

344

8.4.68. VALUE
>>-VALUE (name-—+-- - - s e L ><

+-newvalue-+ +-,selector—-+

Returns the value of the symbol thetme(often constructed dynamically) represents and optionally
assigns a new value to it. By default, VALUE refers to the current Rexx-variables environment, but other,
external collections of variables can be selected. If you use the function to refer to Rexx variabies,

must be a valid Rexx symbol. (You can confirm this by using the SYMBOL function.) Lowercase
characters imameare translated to uppercase for the local environment. For the global environment
lowercase characters are not translated because the global environment supports mixed-case identifiers.
Substitution in a compound name (€@empound Symbo)soccurs if possible.

If you specifynewvaluethe named variable is assigned this new value. This does not affect the result
returned; that is, the function returns the valumameas it was before the new assignment.

Here are some examples:

/* After: Drop A3; A33=7; K=3; fred="K"; list.5="Hi" */

VALUE("a"k) -> "A3" /% looks up A3 */
VALUE("a"k| k) -> "7
VALUE("fred") -> "K" /% looks up FRED */
VALUE (fred) -> "3" /x looks up K */
VALUE(fred,5) -> "3" /* looks up K and */
/* then sets K=5 */
VALUE (fred) -> "5" /% looks up K */
VALUE("LIST."k) -> "Hi" /* looks up LIST.5 */

To use VALUE to manipulate environment variableglectormust be the string "ENVIRONMENT" or
an expression that evaluates to "ENVIRONMENT". In this case, the vanetreeneed not be a valid
Rexx symbol. Environment variables set by VALUE are not kept after program termination.

Restriction: The values assigned to the variables must not contain any character that is a hexadecimal
zero ("00"X). For example:

Call VALUE "MYVAR", "FIRST" || "00"X || "SECOND", "ENVIRONMENT"

sets MYVAR to "FIRST", truncating "00"x and "SECOND".

Here are some more examples:

/* Given that an external variable FRED has a value of 4 */

share = "ENVIRONMENT"

say VALUE("fred",7,share) /* says "4" and assigns */
/* FRED a new value of 7 */

say VALUE("fred", ,share) /* says "7" */

/* Accessing and changing Windows environment entries given that */

/* PATH=C:\EDIT\DOCS; */
env = "ENVIRONMENT"
new = "C:\EDIT\DOCS;"
say value("PATH",new,env) /* says "C:\WINDOWS" (perhaps) */

Chapter 8. Functions
/* and sets PATH = "C:\EDIT\DOCS;" */
say value("PATH", ,env) /* says "C:\EDIT\DOCS;" */

To delete an environment variable use the .NIL object aniéivevalue To delete the environment

variable "MYVAR" specify: value("MYVAR", .NIL, "ENVIRONMENT"). If you specify an empty

string as thenewvaludike in value("MYVAR", ", "ENVIRONMENT") the value of the external environment
variable is set to an empty string which on Windows and *nix is not the same as deleting the environment
variable.

A selector called "WSHENGINE" is also available to the VALUE function when a Rexx scriptis run in a
Windows Script Host scripting context (running via cscript, wscript or as embedded code in HTML for
the Microsoft Internet Explorer). The only currently supported value is "NAMEDITEMS". Calling
VALUE with these parameters returns an array with the names of the named items that were added at
script start.

Example:

myArray = VALUE("NAMEDITEMS", ,"WSHENGINE")

The value NAMEDITEMS is read-only, writing to it is prohibited.

Object Rexx scripts running via the scripting engine (in WSH context) can now call the default method
of an object as a function call with the object name.

Example:

The SESSION object of ASP (Active Server Pages) has the default method VALUE. The usual (and
recommended) way of using the SESSION object would be to use

SESSION"VALUE("key","value").
Because VALUE is the default method, a function call

SESSION("key","value")
SESSION~VALUE("key","value") .

causes an invocation of VALUE with the given arguments. For objects that have the name of a Rexx
function, an explicit call to the default method must be made, because Rexx functions have priority over
this implicit method invocation mechanism.

Note: In contrast to OS/2, the Windows and *nix environments are unchanged after program
termination.

You can use the VALUE function to return a value to the global environment directory. To do so, omit
newvalueand specifyselectoras the null string. The language processor sends the measaage

(without arguments) to the current environment object. The environment returns the object identified by
name If there is no such object, it returns, by default, the striagnewith an added initial period (an
environment symbol--séeénvironment Symbo)s

Here are some examples:

/* Assume the environment name MYNAME identifies the string "Simon" x/

345

Chapter 8. Functions

346

name = value("MYNAME", ,"") /* Sends MYNAME message to the environment */
name = .myname /* Same as previous instruction x/
say "Hello," name /* Produces: "Hello, Simon" */
/* Assume the environment name NONAME does not exist. */
name = value("NONAME", ,"") /* Sends NONAME message to the environment */
say "Hello," name /* Produces: "Hello, .NONAME" */

You can use the VALUE function to change a value in the Rexx environment directory. Include a
newvalueand specifyselectoras the null string. The language processor sends the masaagéwith =
appended) and the single argumeetvvalueo the current environment object. After receiving this
message, the environment identifies the oljestvalueby the namaiame

Here is an example:

name = value("MYNAME","David","") /* Sends "MYNAME=("David") message */

/* to the environment. */
/* You could also use: */
/* call value "MYNAME","David","" */
say "Hello," .myname /* Produces: "Hello, David" */
Notes:

1. If the VALUE function refers to an uninitialized Rexx variable, the default value of the variable is
always returned. The NOVALUE condition is not raised because a reference to an external
collection of variables never raises NOVALUE.

2. The VALUE function is used when a variable contains the name of another variable, or when a name
is constructed dynamically. If you specifiameas a single literal string and omiewvalueand
selector the symbol is a constant and the string between the quotation marks can usually replace the
whole function call. For exampléred=VALUE("k") ; iS identical with the assignmefited=k;,
unless the NOVALUE condition is trapped. S@enditions and Condition Traps

8.4.69. VAR

>>-VAR (name) - - - - - ><

Returnst if nameis the name of a variable, that is, a symbol that has been assigned a value), or

Here are some examples:

/* Following: DROP A.3; J=3 x*/

VAR("J") -> 1

VAR(J) -> 0 /* has tested "3" */
VAR("a.j") -> 0 /* has tested "A.3" x/
VAR(2) -> 0 /% a constant symbol */
VAR("*") -> 0 /#* an invalid symbol */

Chapter 8. Functions

8.4.70. VERIFY

>>-VERIFY (string,reference--+--- e +--)——-><

+-option-+ +-,start-+

Returns a number that, by default, indicates whesti@ng is composed only of characters from
referencelt returnso if all characters irstring are inreferenceor returns the position of the first
character irstring that is not inreference

Theoptioncan be eitheXomatch (the default) oMatch. (Only the capitalized and highlighted letter is
needed. All characters following it are ignored, and it can be in uppercase or lowercase characters.) If
you specifyMatch, the function returns the position of the first character ingtnig that is inreference

or returnso if none of the characters are found.

The default forstartis 1; thus, the search starts at the first charactetrifig. You can override this by
specifying a differenstart point, which must be a positive whole number.

If stringis null, the function returns, regardless of the value of the third argument. Similarlgtafrt is
greater thanENGTH(string), the function returns. If references null, the function returns if you
specifyMatch; otherwise, the function returns tistart value.

Here are some examples:

VERIFY("123","1234567890") -> 0
VERIFY("1Z3","1234567890") -> 2
VERIFY ("AB4T","1234567890") -> 1
VERIFY("AB4T","1234567890" ,"M") -> 3
VERIFY ("AB4T","1234567890","N") -> 1
VERIFY("1P3Q4","1234567890", ,3) -> 4
VERIFY("123","" 'N,2) -> 2
VERIFY("ABCDE","", ,3) -> 3
VERIFY("AB3CD5","1234567890","M" ,4) -> 6
8.4.71. WORD

>>-WORD(string,n)- - - - - - ><

Returns theath blank-delimited word irstring or returns the null string if less tharwords are irstring.
n must be a positive whole number. This function is equal to SUBWGRIDE, n,1).

Here are some examples:

WORD("Now is the time",3) -> "the"
WORD("Now is the time",5) -> n

8.4.72. WORDINDEX

>>-WORDINDEX (string,n)--- - - - ><

347

Chapter 8. Functions

348

Returns the position of the first character in title blank-delimited word irstring or returnso if less
thann words are irstring. n must be a positive whole number.

Here are some examples:

WORDINDEX ("Now is the time",3) -> 8
WORDINDEX ("Now is the time",6) -> 0

8.4.73. WORDLENGTH

>>-WORDLENGTH(string,n)-- - - - ><

Returns the length of thath blank-delimited word in thetring or returnso if less tham words are in the
string. n must be a positive whole number.

Here are some examples:

WORDLENGTH("Now is the time",2) -> 2
WORDLENGTH("Now comes the time",2) -> 5
WORDLENGTH("Now is the time",6) -> 0

8.4.74. WORDPOS (Word Position)

>>-WORDPOS (phrase, string——+-------- +--) - - ><

Returns the word number of the first wordpfrasefound instring or returnso if phrasecontains no
words or ifphraseis not found. Several blanks between words in eiffteaseor string are treated as a
single blank for the comparison, but otherwise the words must match exactly.

By default, the search starts at the first worgtining. You can override this by specifyirgiart (which
must be positive), the word at which to start the search.

Here are some examples:

WORDPOS("the","now is the time") -> 3
WORDPOS("The","now is the time") -> 0

WORDPOS("is the","now is the time") -> 2

WORDPOS("is the","now is the time") -> 2

WORDPOS("is time ","now is the time") -> 0
WORDPOS("be","To be or not to be") -> 2
WORDPOS("be","To be or not to be",3) -> 6

8.4.75. WORDS

>>-WORDS (string)-- -- -- -- -- ><

Returns the number of blank-delimited wordssining.

Chapter 8. Functions

Here are some examples:

WORDS("Now is the time") -> 4
WORDS(" ") -> 0

8.4.76. X2B (Hexadecimal to Binary)

>>-X2B(hexstring) - - - - - - ><

Returns a string, in character format, that represeetstringconverted to binary. Thieexstringis a

string of hexadecimal characters. It can be of any length. Each hexadecimal character is converted to a
string of 4 binary digits. You can optionally include blanksiexstring(at byte boundaries only, not

leading or trailing) to improve readability; they are ignored.

The returned string has a length that is a multiple of 4, and does not include any blanks.
If hexstringis null, the function returns a null string.

Here are some examples:

X2B("C3") -> "11000011"
X2B("7") -> "0111"
X2B("1 C1") -> "000111000001"

You can combine X2B with the functions D2X and C2X to convert numbers or character strings into
binary form.

Here are some examples:

X2B(C2X("C3"x)) -> "11000011"
X2B(D2X("129")) -> "10000001"
X2B(D2X("12")) -> "1100"

8.4.77. X2C (Hexadecimal to Character)

>>-X2C (hexstring)-------- - ———— - ><

Returns a string, in character format, that represeatstringconverted to character. The returned string
has half as many bytes as the origihakstring hexstringcan be of any length. If necessary, it is padded
with a leading zero to make an even number of hexadecimal digits.

You can optionally include blanks imexstring(at byte boundaries only, not leading or trailing) to
improve readability; they are ignored.

If hexstringis null, the function returns a null string.

Here are some examples:

X2C("4865 6¢c6¢c 6£") -> "Hello" /* ASCII */
X2c("3732 73") -> "72s" /* ASCII */

349

Chapter 8. Functions

8.4.78. X2D (Hexadecimal to Decimal)

>>-X2D (hexstring——+----+--)-—--- -
+-,n-+

Returns the decimal representatiorhekstring The hexstringis a string of hexadecimal characters. If
the result cannot be expressed as a whole number, an error occurs. That is, the result must not have more
digits than the current setting of NUMERIC DIGITS.

You can optionally include blanks imexstring(at byte boundaries only, not leading or trailing) to aid
readability; they are ignored.

If hexstringis null, the function returns.
If you do not specifyn, thehexstringis processed as an unsigned binary number.

Here are some examples:

X2D("0E") -> 14

X2n("81") -> 129

X2D("F81") -> 3969

X2D("FF81") -> 65409

X2D("46 30"X) -> 240 /* ASCII */
X2D("66 30"X) -> 240 /* ASCII */

If you specifyn, the string is taken as a signed number expressadexadecimal digits. If the leftmost
bit is off, then the number is positive; otherwise, it is a negative number. In both cases it is converted to a
whole number, which can be negativenlis o, the function returns.

If necessaryhexstringis padded on the left with characters (not "sign-extended"), or truncated on the
left to n characters.

Here are some examples:

350

X2p("81",2) -> -127
X2p("81",4) -> 129
X2D("F081",4) -> -3967
X2D("F081",3) -> 129
X2D("F081",2) -> -127
X2D("F081",1) -> 1
X2D("0031",0) -> 0

8.4.79. XRANGE (Hexadecimal Range)

>>-XRANGE (-—+------- R +==)————- - ><
+-start-+ +-,end-+

Returns a string of all valid 1-byte encodings (in ascending order) between and including thestalues
andend The default value fostartis "00"x, and the default value fandis "FF"x. If startis greater
thanend the values wrap fromrF"x to "00"x. If specified,startandendmust be single characters.

Here are some examples:

XRANGE("a","£f")
XRANGE("03"x,"07"x)
XRANGE(, "04"x)
XRANGE ("FE"x, "02"x)
XRANGE("i","j")

"abcdef"

"0304050607"x

"0001020304"x

"FEFF000102"x

"ij" /* ASCII

*/

Chapter 8. Functions

351

Chapter 8. Functions

352

Chapter 9. Rexx Utilities (RexxUtil)

RexxUtil is a Dynamic Link Library (DLL) package for Windows and *nix platforms; the package
contains external Rexx functions. These functions:

- Manipulate operating system files and directories
« Manipulate Windows classes and objects
« Perform text screen input and output

All of the RexxUtil functions are registered by the ooRexx interpreter on startup so there is no need to
register the functions either individually or via the SysLoadFuncs function.

9.1. List of Rexx Utility Functions

The following table lists all of the REXXUTIL functions and the platforms on which they are available.

Table 9-1. Rexx Utility Library Functions

Function Name Exists on Platform Remarks
Windows Unix

SysAddFileHandle YES NO
SysAddRexxMacro YES YES
SysBootDrive YES NO
SysClearRexxMacroSpace YES YES
SysCloseEventSem YES YES
SysCloseMutexSem YES YES
SysCls YES YES
SysCopyObject YES NO
SysCreateEventSem YES YES
SysCreateMutexSem YES YES
SysCreateObject YES NO
SysCreatePipe YES YES AlX only
SysCurPos YES NO
SysCurState YES NO
SysDrivelnfo YES NO
SysDriveMap YES NO
SysDropFuncs YES YES
SysDropLibrary YES NO
SysDumpVariables YES YES
SysFileCopy YES NO

353

Chapter 9.

354

Rexx Utilities (RexxUtil)

Function Name Exists on Platform Remarks
Windows Unix

SysFileDelete YES YES

SysFileMove YES NO

SysFileSearch YES YES

SysFileSystemType YES NO

SysFileTree YES YES Works differently

SysFork NO YES Linux, AlX,

Solaris only

SysFromUnicode YES NO

SysGetErrortext YES YES

SysGetCollate YES NO

SysGetFileDateTime YES YES

SysGetKey YES YES

SysGetMessage YES YES

SysGetMessageX NO YES

Syslni YES NO

SyslsFile YES YES

SyslsFileCompressed YES NO

SyslsFileDirectory YES YES

SyslsFileEncrypted YES NO

SyslsFileLink YES YES

SyslsFileNotContentindexed YES NO

SyslsFileOffline YES NO

SyslsFileSparse YES NO

SyslsFileTemporary YES NO

SysLoadFuncs YES YES

SysLoadLibrary YES NO

SysLoadRexxMacroSpace YES YES

SysMapCase YES NO

SysMkDir YES YES

SysNationalLanguageCompare YES NO

SysOpenEventSem YES YES

SysOpenMutexSem YES YES

SysPostEventSem YES YES

SysProcessType YES NO

SysPulseEventSem YES NO

SysQueryProcess YES YES Works differently

SysQueryProcessCodePage YES NO

Chapter 9. Rexx Utilities (RexxUtil)

Function Name Exists on Platform Remarks
Windows Unix

SysQueryRexxMacro YES YES
SysReleaseMutexSem YES YES
SysReorderRexxMacro YES YES
RequestMutexSem YES YES
SysResetEventSem YES YES
SysRmDir YES YES
SysSearchPath YES YES
SysSetFileDateTime YES YES
SysSetPriority YES NO
SysSetProcessCodePage YES NO
SysShutdownSystem YES NO
SysSleep YES YES
SysStemCopy YES YES
SysStemDelete YES YES
SysSteminsert YES YES
SysStemSort YES YES
SysSwitchSession YES NO
SysTempFileName YES YES
SysTextScreenRead YES NO
SysTextScreenSize YES NO
SysToUnicode YES NO
SysUtilVersion YES YES
Sys\ersion YES YES
SysVolumeLable YES NO
SysWait YES YES AlX only
SysWaitEventSem YES YES
SysWaitNamedPipe YES NO
SysWinDecryptFile YES NO
SysWinEncryptFile YES NO
SysWinVer YES NO
SysWinGetPrinters YES NO
SysWinGetDefaultPrinter YES NO
SysWinSetDefaultPrinter YES NO

355

Chapter 9. Rexx Utilities (RexxUtil)

9.2. RxMessageBox (Windows only)

>>-RxMessageBox (text - - - ->
> e -- -- e I ><
Pt G et - - ——+—+
+-title—+ +-,-—+ ———

+-button-+ +-,icon-+

Displays a Windows message box.

RxMessageBox returns the selected message box push button. Possible values are:

1

The OK push button was pressed
2

The CANCEL push button was pressed
3

The ABORT push button was pressed
4

The RETRY push button was pressed
5

The IGNORE push button was pressed
6

The YES push button was pressed
7

The NO push button was pressed

If a message box has a "CANCEL" button, the function returns the 2 value if either the ESC key is
pressed or the "CANCEL" button is selected. If the message box has no "CANCEL" button, pressing
ESC has no effect.

text

The message box text.

title

The message box title. The default title is "Error!".

356

Chapter 9. Rexx Utilities (RexxUtil)

button

The message box push button style. The allowed styles are:

"NONE"

No icon is displayed.
IIOKII
A single OK push button.

"OKCANCEL"
An OK push button and a CANCEL push button.

"RETRYCANCEL"
A RETRY push button and a CANCEL push button.

"ABORTRETRYIGNORE"
An ABORT push button, a RETRY push button and an IGNORE push button.

"YESNO"
A YES push button and a NO push button.

"YESNOCANCEL"
A YES push button, a NO push button and a CANCEL push button.
The default push button style is OK.
icon

The message box icon style. The allowed styles are:

"HAND"
A hand icon is displayed.

"QUESTION"

A question mark icon is displayed.

"EXCLAMATION"

An exclamation point icon is displayed.

"ASTERISK"

An asterisk icon is displayed.

"INFORMATION"

An information icon is displayed.

357

Chapter 9. Rexx Utilities (RexxUtil)
"STOP"
A stop icon is displayed.
"QUERY"
A query icon is displayed.
"WARNING"
A warning icon is displayed.

"ERROR"

An error icon is displayed.

Example:

/* Give option to quit */

if RxMessageBox("Shall we continue", , "YesNo", "Question") =7
Then Exit /* quit option given, exit */

9.3. RxWinExec (Windows only)

>>-RxWinExec(-cmdline--+----—-——-—--—- e ><
+-,-—-cmdshow-+
Runs the application as specifieddmdline

Parameters:

cmdline

A string containing a file name and optional parameters for the application to be executed. If the
name of the executable file amdlinedoes not contain a directory path, RxWinExec searches for
the executable file in this sequence:

1
The directory from which Object Rexx was loaded.
2
The current directory.
3
The Windows system directory.
4

The Windows directory.

358

Chapter 9. Rexx Utilities (RexxUtil)

The directories listed in the PATH environment variable.

cmdshow

Specifies how a Windows-based application window is to be shown. For a hon-Windows-based
application, the PIF file, if any, for the application determines the window state.

SHOWNORMAL

Activates and displays a window.

SHOWNOACTIVATE

Displays the window while the current active window remains active.

SHOWMINNOACTIVE

Displays the window as a minimized window, the current active window remains active.

SHOWMINIMIZED

Activates the window and displays it as a minimized window.

SHOWMAXIMIZED

Activates the window and displays it as a maximized window.

HIDE

Hides the window and activates another window.

MINIMIZE

Minimizes the specified window and activates the next top-level window in the Z order.

Return codes:

If the function succeeds, the return value is greater than 31; otherwise, it is one of the following:

0
The system is out of memory or resources.
2
The specified file was not found.
3
The specified path was not found.
11

The EXE file is invalid.

359

Chapter 9. Rexx Utilities (RexxUtil)

9.4. SysAddFileHandle (Windows only)

>>-SysAddFileHandle (number)----- - - ><

Increases the number of available file handles for the procesarper

Parameters:

number
The number of additional file handles to add to the currently available number.
Return codes:

The number of Allocated File Handles (total number after adding what was requested or maximum
number able to allocate).

9.5. SysAddRexxMacro

>>-SysAddRexxMacro(name,file-+-------- +-)-—= - ><
+-,order-+

Adds a routine to the Rexx macrospace. SysAddRexxMacro returns the RexxAddMacro return code.

Parameters:
name
The name of the function added to the macrospace.

file

The file containing the Rexx program.

order

The macrospace search order. The order can be "B" (Before) or "A" (After).

9.6. SysBootDrive (Windows only)

>>-SysBootDrive--(--)---- - - - _— ><

Returns the drive used to boot Windows, for example, "C:".

9.7. SysClearRexxMacroSpace

>>-SysClearRexxMacroSpace () ———————————————————————————————————— ><

Clears the Rexx macrospace. SysClearRexxMacroSpace returns the RexxClearMacroSpace return code.

360

Chapter 9. Rexx Utilities (RexxUtil)

9.8. SysCloseEventSem

>>-SysCloseEventSem(handle) -—--- - - ><

Closes an event semaphore.

Parameter:

handle
A handle returned from a previous SysCreateEventSem or SysOpenEventSem call.

Return codes:

0

No errors.
6

Invalid handle.
102

Error semaphore busy.

9.9. SysCloseMutexSem

>>-SysCloseMutexSem(handle) -—--- - - - ><

Closes a mutex semaphore.

Parameter:

handle
A handle returned from a previous SysCreateMutexSem call.

Return codes:

0

No errors.
6

Invalid handle.
102

Error semaphore busy.

361

Chapter 9. Rexx Utilities (RexxUtil)

9.10. SysCls

>>-8ysCls () -- - - - ><

Clears the screen.

Example:

/* Code */
call SysCls

9.11. SysCreateEventSem

>>-SysCreateEventSem(-+------ e ———+-)- - ><

+-name-+ +-manual_reset-+

Creates or opens an event semaphore. It returns an event semaphore handle that can be used with
SysCloseEventSem, SysOpenEventSem, SysResetEventSem, SysPostEventSem, and SysWaitEventSem.
SysCreateEventSem returns a null string (") if the semaphore cannot be created or opened.

Parameters:

name

The optional event semaphore name. If you amaine SysCreateEventSem creates an unnamed,

shared event semaphore. If you speciyme SysCreateEventSem opens the semaphore if the
semaphore has already been created. A semaphore name can be MAX_PATH long, and can contain
any character except the backslash (\) path-separator character. Semaphore names are case-sensitive.

manual_reset

A flag to indicate that the event semaphore must be reset manually by SysResetEventSem. If this
parameter is omitted, the event semaphore is reset automatically by SysWaitEventSem.

9.12. SysCreateMutexSem

362

>>-SysCreateMutexSem (—+------+-) -- -- ><
+-name-+

Creates or opens a mutex semaphore. Returns a mutex semaphore handle that can be used with
SysCloseMutexSem, SysRequestMutexSem, and SysReleaseMutexSem. SysCreateMutexSem returns a
null string (") if the semaphore cannot be created or opened.

Parameter:

name

The optional mutex semaphore name. If you onailne SysCreateMutexSem creates an unnamed,
shared mutex semaphore. If you speciime SysCreateMutexSem opens the semaphore if the

Chapter 9. Rexx Utilities (RexxUtil)

mutex has already been created. The semaphore names cannot be longer than 63 characters.
Semaphore names are case-sensitive.

9.13. SysCreatePipe (AlIX only)

>>-SysCreatePipe () -- - - - - ><

Creates an unnamed pipe.
Returns:

Returns a string likehandle handle" where the first handle is for read and the second handle for write.

9.14. SysCurPos (Windows only)

>>-SysCurPos (—+-------———-- +=)-- - - ><
+-row,column-+

Returns the cursor position in the forw col and optionally moves the cursor to a new location.

Parameters:

row

The row to move to.

col

The column to move to.

Note: Position (0,0) is the upper left corner.

You can call SysCurPos without a column and row position to obtain the cursor position without moving
the cursor.

Example:
/* Code */
call SysCls

parse value SysCurPos() with row col
say "Cursor position is "row", "col

/* Output */
Cursor position is 0, O

363

Chapter 9. Rexx Utilities (RexxUtil)

9.15. SysCurState (Windows only)

>>-SysCurState(state)-——-- - - -

Hides or displays the cursor.

Parameter:

state

The new cursor state. Allowed states are:

nONn

Display the cursor

"OFF"

Hide the cursor

9.16. SysDrivelnfo (Windows only)

364

>>-SysDriveInfo(drive)--- - - - -

Returns drive information in the formrive: free total label.

drive:

is the drive letter identifier.

free

is the drive unused space.

total

is the total size of the drive.

label
is the drive label.
If the drive is not accessible, then SysDrivelnfo returns ™.

Parameter:

drive
The drive of interest, "C:".

Example:
/* Code */

say "Disk="SysDriveInfo("C:")
/* Output */

><

><

Chapter 9. Rexx Utilities (RexxUtil)

Disk=C: 33392640 83687424 TRIGGER_C

9.17. SysDriveMap (Windows only)

>>-SysDriveMap (—+------- e o) e ><
+-drive-+ +-,opt-+

Returns a string listing accessible drives (separated by blanks) in thedorm:

Parameters:

drive

The first drive letter of the drive map. The default is "C:".

opt
The drivemap option. This can be:
"USED"
returns the drives that are accessible or in use, including all local and remote drives. This is the
default.
"FREE"
returns drives that are free or not in use.
"LOCAL"
returns only local drives.
"REMOTE"
returns only remote drives, such as redirected LAN resources or installable file system (IFS)
attached drives.
"REMOVABLE"
returns removable drives.
"CDROM"
returns CD-ROM drives.
"RAMDISK"
returns drives assigned from RAM.
Example:
/* Code */
say "Used drives include:"
say SysDriveMap("C:", "USED")

365

Chapter 9. Rexx Utilities (RexxUtil)

/* Output */
Used drives include:
C: D: E: F: W:

9.18. SysDropFuncs

>>-SysDropFuncs--- - - - - - ><

Drops all RexxUtil functions. After a Rexx program calls SysDropFuncs, the RexxUtil functions are not
available in any operating system sessions.

9.19. SysDropLibrary (Windows only)

>>-SysDropLibrary(dll--+----------- Fomm)mm ><
+--routine--+

Unloads a routine from a DLL library.

Parameter:

dll

The name of the dll containing the function package..

routine
Optional routine containing the drop routine. if not specified, ordinal routine 1 will be used.

Returns:

the routine dropper worked correctly

the loader routine failed

9.20. SysDropRexxMacro

366

>>-SysDropRexxMacro (name) - - - - ><

Removes a routine from the Rexx macrospace. SysDropRexxMacro returns the RexxDropMacro return
code.

Parameter:

Chapter 9. Rexx Utilities (RexxUtil)

name

The name of the function removed from the macrospace.

9.21. SysDumpVariables

>>-SysDumpVariables—+-----=------ Fommmm e - ><
+-(--name--) -+

Dumps all variables in the current scope either to the specifiefilifmame(new data is appended) or to
STDOUT if you omitfilename The format of the data is, with one variable per line:
Name=MYVAR, Value="This is the content of MYVAR"

Parameter:

filename

The name of the file to which variables are appended. The dump is written to STDOUT if you omit
this parameter.

Return codes:

0

Dump completed successfully.
-1

Dump failed.
Example:

Call SysDumpVariables "MyVars.Lst" /* append vars to file */
Call SysDumpVariables /* list vars on STDOUT */

9.22. SysFileCopy (Windows only)

>>-SysFileCopy (source, target)-- - - ><

Copies a file from one location to another. Wildcard file specifications are not allowed.

Parameter:
source
The path/name of the file to be copied.

target
The path/name of the target location where the file is to be copied.

Return codes:

367

Chapter 9. Rexx Utilities (RexxUtil)

0

File copied successfully.

A Windows error code.

Example:

/* Code */
call SysFileCopy "c:\temp\myfile.txt", "d:\myfolder"

9.23. SysFileDelete

>>-SysFileDelete(file)--- - - - - ><

Deletes a file. SysFileDelete does not support wildcard file specifications.

Parameter:

file
The name of the file to be deleted.

Return codes:

0
File deleted successfully.
2
File not found.
3
Path not found.
5
Access denied or busy.
26
Not DOS disk.
32
Sharing violation.
36

Sharing buffer exceeded.

368

Chapter 9. Rexx Utilities (RexxUtil)

87

Does not exist.

206

File name exceeds range error.
Example:
/* Code */

parse arg InputFile OutputFile
call SysFileDelete OutputFile /* unconditionally erase output file */

9.24. SysFileMove (Windows only)

>>-SysFileMove (source, target)-- - -- -- ><

Moves a file from one location to another. Wildcard file specifications are not allowed.

Parameter:

source

The path/name of the file to be moved.

target
The path of the target location where the file is to be moved.

Return codes:

File copied successfully.

A Windows error code.

Example:

/* Code */
call SysFileMove "c:\temp\myfile.txt", "d:\myfolder"

9.25. SysFileSearch

>>—SysFileSearch(target,file,stem——+——— —-—+-=)- - ><
+-,options-+

Finds all file lines containing the target string and returns the file lines in a Rexx stem variable collection.

Parameters:

369

Chapter 9. Rexx Utilities (RexxUtil)

target
The target search string.
file
The searched file.
stem
The result stem variable name. SysFileSearch sets Rexx vasiaite(to the number of lines
returned and stores the individual lines in variatstesn.to stem.n
options

Any combination of the following one-character options:

nen
Conducts a case-sensitive search.

NG
Returns the file line numbers.

The default is a case-insensitive search without line numbers.

Return codes:

0

Successful.
2

Not enough memory.
3

Error opening file.
Example:

/* Find DEVICE statements in CONFIG.SYS */

call SysFileSearch "DEVICE", "C:\CONFIG.SYS", "file."
do i=1 to file.O

say file.i

end

/* Output */

DEVICE=C:\SB16\DRV\CTSB16.SYS /UNIT=0 /BLASTER=A:240 I:5 D:1 H:5
DEVICE=C:\SB16\DRV\CTMMSYS.SYS

rem *kxx DOS SCSI CDROM device drivers sk
DEVICE=C:\SCSI\ASPI8DOS.SYS /D

DEVICE=C:\SCSI\ASPICD.SYS /D:ASPICDO

rem **xx* IDE CDROM device drivers

DEVICE=C:\DOS\HIMEM.SYS

DEVICE=C:\SBCD\DRV\SBIDE.SYS /V /D:MSCD001 /P:1f0,14

370

Chapter 9. Rexx Utilities (RexxUtil)

DEVICE=C:\DOS\SETVER.EXE
DEVICE=C: \WINDOWS\SMARTDRV.EXE /DOUBLE_BUFFER
DEVICE=C: \WINDOWS\IFSHLP.SYS

/* Find DEVICE statements in CONFIG.SYS (along with */

/* line numbers) */
call SysFileSearch "DEVICE", "C:\CONFIG.SYS", "file.", "N"
do i=1 to file.O

say file.i

end

/* Output */

DEVICE=C:\SB16\DRV\CTSB16.SYS /UNIT=0 /BLASTER=A:240 I:5 D:1
:5

DEVICE=C:\SB16\DRV\CTMMSYS.SYS

rem *kkxk DOS SCSI CDROM device drivers **x*
DEVICE=C:\SCSI\ASPI8DOS.SYS /D
DEVICE=C:\SCSI\ASPICD.SYS /D:ASPICDO

rem *xxx IDE CDROM device drivers
DEVICE=C:\DOS\HIMEM.SYS

10 DEVICE=C:\SBCD\DRV\SBIDE.SYS /V /D:MSCD001 /P:1f0,14
13 DEVICE=C:\DOS\SETVER.EXE

16 DEVICE=C:\WINDOWS\SMARTDRV.EXE /DOUBLE_BUFFER

17 DEVICE=C:\WINDOWS\IFSHLP.S3YS

© 00 O O NI

9.26. SysFileSystemType (Windows only)

>>-SysFileSystemType (drive) -—--- - - - ><

Returns the name of the file system used for a drive. If the drive is not accessible, it returns a null string
(Illl).

Parameter:

drive
The drive of interest, for example "C:".

Example:
/* Code */
say "File System="SysFileSystemType("C:")

/* Output */
File System=NTFS

371

Chapter 9. Rexx Utilities (RexxUtil)

9.27. SysFileTree

>>-SysFileTree(filespec,stem—--- -- -- ->
>So—t-- e - - - ———te——=>
T e - - —+-+

+-tattrib-+ +-,-+-————————t-+
+-nattrib-+

>-=)-- -- -- -- -- -- ><

Finds all files that match a file specification. SysFileTree returns the file descriptions (date, time, size,
attributes, and file specification) in a Rexx stem variable collection.

Parameters:

filespec
The search file specification.

stem

The name of a stem variable to be used for storing results. SysFileTree sets Rexx wheia0o
the number of files and directories found and stores individual file descriptions into vastdred
to stem.n

options

A string with any combination of the following:
nen
Search only for files.
"D"
Search only for directories.
g
Search for both files and directories. This is the default.
ng
Search subdirectories recursively.
IITII
Return the time and date in the form YY/MM/DD/HH/MM.
n
Return the time and date in the form YYYY-MM-DD HH:MM:SS.

372

Chapter 9. Rexx Utilities (RexxUtil)

non

Return only the fully-qualified file name. The default is to return the date, time, size, attributes,
and fully-qualified name for each file found.

If both the "L" and "T" options are given then the "T" option will be ignored.

tattrib

The target attribute mask for file specification matches. Only files that match the target mask are
returned. The default mask is "*****"_ This returns all files regardless of the settings (clear or set)
of the Archive, Directory, Hidden, Read-Only, and System attributes. The target mask attributes
must appear in the order "ADHRS".

Target Mask Options

The file attribute may be any state.

The file attribute must be set.

The file attribute must be cleared.
Target Mask Examples
e——
Find all files with the Read-Only attribute set.
R
Find all files with the Read-Only and Archive attributes set.
S
Find all hidden subdirectories.

Find all files with only the Read-Only attribute set.

nattrib

The new attribute mask for setting the attributes of each matching file. The default mask is "*****",
This means not to change the Archive, Directory, Hidden, Read-Only, and System attributes. The
target mask attributes must appear in the order "ADHRS".

New Attribute Mask Options

373

Chapter 9. Rexx Utilities (RexxUtil)

*

Do not change the file attribute.

Set the file attribute.

Clear the file attribute.

New Attribute Mask Examples
e——"
Set the Read-Only attribute on all files.
g
Set the Read-Only attribute and clear the Archive attribute of each file.
Tpr4!

Set all file attributes, except the directory attribute.

Clear all attributes on all files.

Note: You cannot set the directory attribute on non-directory files. SysFileTree returns the file
attribute settings after the new attribute mask has been applied.

Return codes:

0

Successful.
2

Not enough memory.
Examples:

/* Find all subdirectories on C: */
call SysFileTree "c:*.x", "file", "SD"

/* Find all Read-Only files */
call SysFileTree "c:*.*", "file", "S", "sxk+x"

/* Clear Archive and Read-Only attributes of files that have them set */
call SysFileTree "c:*.*", "file", "S", "+kk+x" M—kk—x"

374

Chapter 9. Rexx Utilities (RexxUtil)
/****x<< Sample Code and Output Example.>>¥kk¥**kx/

/* Code */

call SysFileTree "c:\winx.", "file", "B"
do i=1 to file.O

say file.i

end

/* Actual Output */
5:24:95 4:59p 0 -D--- C:\WINDOWS

9.28. SysFork (Linux, AlX, Solaris only)

>>-SysFork () --—--- - - - - — ><

Returns
Returns the process id to the parent process.

Returnso to the spawned process.

9.29. SysFromUnicode (Windows only)

>>-SysFromUnicode--(--string, codepage, mappingflags,--—--—------ >

>--, defaultchar, outstem--)---- - - ><

Maps a UNICODE character string to an ASCII character string. The new character string and additional
information is returned in the outstem.

Parameters:

string

A string containing the UNICODE characters to be mapped.

codepage

Specifies the code page used to perform the conversion. This parameter can be the value of any code
page that is installed or available in the system. The default is the current original equipment
manufacturer (OEM) code-page identifier for the system.

You can also specify one of the following values:

ACP
ANSI code page.

OEMCP
OEM code page.

375

Chapter 9. Rexx Utilities (RexxUtil)

376

SYMBOL
Windows 2000: symbol code page.

THREAD_ACP
Windows 2000: current thread’s ANSI code page.

UTF7
Windows NT 4.0 and Windows 2000: translate using UTF-7.

UTF8

Windows NT 4.0 and Windows 2000: translate using UTF-8. When this isgg@tingflags
must be set.

mappingflags

Specifies the handling of unmapped characters. The function performs more quickly when none of
these flags is set.

The following flags can be used:

COMPOSITECHECK

Converts composite characters to precomposed characters.

SEPCHARS

Generates separate characters during conversion. This is the default conversion behavior.

DISCARDNS

Discards nonspacing characters during conversion.

DEFAULTCHAR
Replaces non-convertible characters with the default character during conversion.

Whencompositecheck is specified, the function converts composite characters to precomposed
characters. A composite character consists of a base character and a nonspacing character, each
having different character values. A precomposed character has a single character value for a
combination of a base and a nonspacing character. In the character €, the "e" is the base character,
and the "grave" accent mark is the nonspacing character.

Whencompositecheck is specified, it can use the last three flags in this tisé€ardns, sepchars,
anddefaultchar) to customize the conversion to precomposed characters. These flags determine
the function’s behavior when there is no precomposed mapping for a combination of a base and a
nonspace character in a Unicode character string. These last three flags can be used only if the
compositecheck flag is set. The function’s default behavior is to generate separate characters
(sepchars) for unmapped composite characters.

Chapter 9. Rexx Utilities (RexxUtil)

defaultchar

Character to be used if a Unicode character cannot be represented in the specified code page. If this
parameter is NULL, a system default value is used. The function is faster > t char iS not
used.

outstem

The name of the stem variable that will contain the converted result. If the conversion was
successful the stem will be composed of the following value(s):

outstem.!USEDDEFAULTchar

This variable will be set to "1" if thelefaultcharwas used during the conversion and "0" if it
was not.

outstem.!TEXT

This variable will contain the converted string.

Return codes:

No errors.

87

Incorrect code page @obdepage Value.

1004

Invalid mapping flags.

9.30. SysGetCollate (Windows only)

>>-SysGetCollate (-—+----- -- -- +===) -- ><
+-—,country-—-—-—+-—-——-—-——-—-—- +

+--,codepage--+
Get the country/code page collating sequence.

Parameters:

country

Requested country. Default is the current country.
codepage

Requested code page. Default is the current codepage.

Returns:

377

Chapter 9. Rexx Utilities (RexxUtil)

Returns a 256 byte string contaning the collating sequence for the speditiattyandcodepage

9.31. SysGetErrortext

>>-SysGetErrortext (errornumber) - - - - ><

Obtains a string describing the system error identified by the error number.
Returns a string with the description of the error, or an empty string if no description is available.

Windows Example:
err=SysMkDir("c:\temp")

if err \= O then
say "Error" err":"SysGetErrortext(err)

Unix Example:

err=SysMkDir (" /home/NotKnown/temp")
if err \= O then
say "Error" err":"SysGetErrortext(err)

9.32. SysGetFileDateTime

378

>>-3ysGetFileDateTime (filename-+-—---—-——---- e ittt ><
+-,--timesel-+

Returns the selected data and time attribute of thdildeameprovided that this is supported by the
operating and file system. FAT, for example, does not support Create/Access. The selector for the time to
be returned can be abbreviated to the first character.

Thefilenamecan also be a directory name.

The file that you want to query must not be opened by another process or must at least allow shared
writes to query the time stamp.

Parameters:

filename

The name of the file to be queried.

timesel
The file time to be queried, namely CREATE, ACCESS, WRITE.
Return codes:

The date and time in the format YYYY-MM-DD HH:MM:SS, or -1 to indicate that the file date and time
query failed

Example:

Chapter 9. Rexx Utilities (RexxUtil)

Say "File creation time:" SysGetFileDateTime("MyFile.Log", "C")
Say "File last access time:" SysGetFileDateTime("MyFile.Log", "A")
Say "File last update time:" SysGetFileDateTime("MyFile.Log", "W")

Say "Directory creation time:" SysGetFileDateTime("C:\MyDir", "C")
/* in Windows NT x/

9.33. SysGetKey

>>-SysGetKey (—+-———-+-) -~ - - - - S<
+-opt-+

Reads and returns the next key from the keyboard buffer. If the keyboard buffer is empty, SysGetKey
waits until a key is pressed. Unlike the CHARIN built-in function, SysGetKey does not wait until the
Enter key is pressed.

Parameter:

opt

An option controlling screen echoing. Allowed values are:

"ECHO"

Echo the pressed key to the screen. This is the default.

"NOECHO"

Do not echo the pressed key.

9.34. SysGetMessage

>>-SysGetMessage (num—-+-- - - ———t—=)————= ><

+--,-—filename-—+----———-——-—-—-- +
I | 4= +
I | v [
| +———= ——str-—+--+
I +

| v | |
+-———- ,——-str-—+------—-——--"--"-"-"--—- +

Retrieves a message from a catalog file and replaces the placeholdiéh the text you specify.
SysGetMessage can replace up to 9 placeholders.

To create catalog files, consult your system documentation.

Parameters:

379

Chapter 9. Rexx Utilities (RexxUtil)

num

The message number.

filename
The name of the catalog file containing the message. The default message catagat.
SysGetMessage searches along the NLSPATH or uses the absolute path name.

str

The test for a placeholder (%) in the message. The message can contain up to 9 placeholders. You
must specify as many strings as there are placeholders in the message.

Example:

/* sample code segment using SysGetMessage */
msg = SysGetMessage(485, "rexx.cat", foo)

say msg

/**x Qutput **x*/

Class "foo" not found.

9.35. SysGetMessageX (Unix only)

>>-SysGetMessageX (set ,num——+---- - - ———+-=)-><

+--,-—filename--+ -+
I |+ +
I | v [
| +-——— ,——stT——+-—+
| 4= +

| v I |
Hmmmme ,==Str——+-—————--- -+

Retrieves a message from a specific set of Unix catalog file and replaces the placghulitlerthe text
you specify. SysGetMessageX can replace up to 9 placeholders.

This utility is implemented for Unix only. Do not use it for platform-independent programs.
To create catalog files, consult your system documentation.

Parameters:
set
The message set.

num

The message number.

filename

The name of the catalog file containing the message. The default message cattagat.
SysGetMessageX searches along the NLSPATH or uses the absolute path name.

380

Chapter 9. Rexx Utilities (RexxUtil)

str

The test for a placeholder (%) in the message. The message can contain up to 9 placeholders. You
must specify as many strings as there are placeholders in the message.

Example:

/* sample code segment using SysGetMessage */
msg = SysGetMessageX(1, 485, "rexx.cat", foo)
say msg

/*** Qutput *x*x*/

Class "foo" not found.

9.36. Sysini (Windows only)

>>-SysIni(-+-—--—----- +-,app,key,val,stem-)-- - ><

+-inifile-+

Allows limited access to INI file variables. Variables are stored in the INI file under Application Names
and their associated key names or keywords. You can use Syslni to share variables between applications
or as a way of implementing GLOBALYV in the Windows operating system. Be careful when changing
application profile information.

Note: Syslni works on all types of data stored in an INI file (text, numeric, or binary).

When SyslIni successfully sets or deletes key values, it returns ™. For a successful query, it returns the
value of the specified application keyword.

Syslni may return the strineRrROR: when an error occurs. Possible error conditions include:

- An attempt was made to query or delete an application/key pair that does not exist.

- An error opening the profile file occurred. You may have specified the current user or system INI file
with a relative file specification. Make sure to use the full file specification (specify drive, path, and
file name).

Parameters:
inifile
The name of the INI file with which you would like to work. The default is WIN.INI.

app

The application name or some other meaningful value with which you want to store keywords
(some sort of data).

key
The name of a keyword to hold data.

381

Chapter 9. Rexx Utilities (RexxUtil)

val
The value to associate with the keyword of the specified application. This cayEtesE: " or
"ALL:".

stem

The name of a Rexx stem variable collection in which to store the resultant information. Syslini sets
Rexx variablestem.Qto the number of elements returned and stores these elemestésririto
stem.n

Sysini has six modes. The modes and the syntax variations are as follows:

>>-SysIni(-+---——----- +-,app,key,val)-- - -><
+-inifile-+

Sets a single key value.

>>-SysIni (—+--—----—- +-,app, key) - - ><
+-inifile-+

Queries a single key value.

>>-SysIni (—+-———---—- +-,app,key--,"DELETE: "-) - ><
+-inifile-+

Deletes a single key.

>>-SysIni(-+-—------- +-,app—+-—-—------—-—- +-) - ><
+-inifile—-+ +-,"DELETE:"-+

Deletes an application and all associated keys.

>>-SysIni(-+--------- +-,app——,"ALL:"--,"stem"-) -——————————————- ><
+-inifile-+

Queries names of all keys associated with a certain application.

>>-8ysIni(-+--------- +-,"ALL:"--,"stem"-)-—- -- -- ><
+-inifile-+

Queries the names of all applications.

Examples:

/* Sample code segments */

/*** Save the user entered name under the key "NAME" of

*x*x* the application "MYAPP". ®okkk [
pull name .

call SysIni , "MYAPP", "NAME", name /* Save the value */
say SysIni(, "MYAPP", "NAME") /* Query the value */
call SysIni , "MYAPP" /* Delete all MYAPP info */
exit

382

Chapter 9. Rexx Utilities (RexxUtil)

/**x%*x Type all WIN.INI file information to the screen *k*x*x*/
call rxfuncadd sysloadfuncs, rexxutil, sysloadfuncs
call sysloadfuncs

call SysIni "WIN.INI", "All:", "Apps."

if Result \= "ERROR:" then

do i =1 to Apps.O

call SysIni "WIN.INI", Apps.i, "All:", "Keys"

if Result \= "ERROR:" then

do j=1 to Keys.O

val = SysIni("WIN.INI", Apps.i, Keys.j)

say left(Apps.i, 20) left(Keys.j, 20),

"Len=x"Left (d2x(length(val)),4) left(val, 20)

end

end

exit

9.37. SysilsFile

>>-SysIsFile(filename)--- - ————— - ><

Checks for the existence of a file. This function does not support wildcard specifications.
On Linux/Unix block devices are also considered to be regular files by this function.

Parameters:

filename
The name of the file to check for the existence of.

Returns:

The file does not exist.

The file exists.

Example:

if SysIsFile(InputFile) then say "File Exists!"
else say "File does not exist."

9.38. SyslisFileCompressed (Windows only)

>>-SysIsFileCompressed(filename) - - - ><

Checks if a file is compressed. This function does not support wildcard specifications.

383

Chapter 9. Rexx Utilities (RexxUtil)

Parameters:

filename
The name of the file to check.

Returns:

The file is not compressed or does not exist.

The file is compressed.

Example:

if SysIsFileCompressed(InputFile) then say "File is compressed!"
else say "File is not compressed or does not exist."

9.39. SysilsFileDirectory

>>-SysIsFileDirectory(dirname)-- - - - ><
Checks for the existence of a subdirectory. This function does not support wildcard specifications.

Parameters:

dirname
The name of the subdirectory to check for the existence of.

Returns:

The subdirectory does not exist.

The subdirectory exists.

Example:

if SysIsFileDirectory(InputFile) then say "Subdirectory Exists!"
else say "Subdirectory does not exist."

9.40. SyslsFileEncrypted (Windows only)

>>-SysIsFileEncrypted(filename)- - - ><

384

Chapter 9. Rexx Utilities (RexxUtil)

Checks if a file is encrypted. This function does not support wildcard specifications.

Parameters:

filename
The name of the file to check.

Returns:

The file is not encrypted or does not exist.

The file is encrypted.

Example:

if SysIsFileEncrypted(InputFile) then say "File is encrypted!"
else say "File is not encrypted or does not exist."

9.41. SyslsFileLink

>>-SysIsFileLink(linkname)------ e - ><

Checks for the existence of a link. This function does not support wildcard specifications.

Parameters:

linkname
The name of the link to check for the existence of.

Returns:

The link does not exist or it is not a link.

The link exists.

Example:

if SysIsFileLink(InputFile) then say "Link Exists!"
else say "Link does not exist."

385

Chapter 9. Rexx Utilities (RexxUtil)

9.42. SyslsFileNotContentindexed (Windows only)

>>-SysIsFileNotContentIndexed(filename) - ><

Checks if a file is flagged to be indexed by the Index Service. This function does not support wildcard
specifications.

Parameters:

filename
The name of the file to check.

Returns:

The file is not flagged to be Indexed or does not exist.

The file is flagged to be Indexed.

Example:

if SysIsFileNotContentIndexed(InputFile) then say "File is flagged to be Indexed!"
else say "File is not flagged to be Indexed."

9.43. SyslsFileOffline (Windows only)

>>-SysIsFileOffline(filename)--- - - - ><

Checks if a file is flagged as Offline. This function does not support wildcard specifications.

Parameters:

filename
The name of the file to check.

Returns:

The file is not flagged as Offline or does not exist.

The file is flagged as Offline.

Example:

if SysIsFileOffline(InputFile) then say "File is flagged as Offline!"
else say "File is not flagged as Offline."

386

Chapter 9. Rexx Utilities (RexxUtil)

9.44. SyslsFileSparse (Windows only)

>>-SysIsFileSparse (filename)---- - - ><
Checks if a file is flagged as Sparse. This function does not support wildcard specifications.

Parameters:

filename
The name of the file, subdirectory or link to check.

Returns:

The file is not flagged as Sparse or does not exist.

The file is flagged as Sparse.

Example:

if SysIsFileSparse(InputFile) then say "File is Sparse!"
else say "File is not Sparse."

9.45. SyslisFileTemporary (Windows only)

>>-SysIsFileTemporary(filename)- - - - ><
Checks if a file is flagged as Temporary. This function does not support wildcard specifications.

Parameters:

filename
The name of the file, subdirectory or link to check.

Returns:

The file is not flagged as Temporary or does not exist.

The file is flagged as Temporary.

Example:

if SysIsFileTemporary(InputFile) then say "File is Temporary!"
else say "File is not Temporary."

387

Chapter 9. Rexx Utilities (RexxUtil)

9.46. SysLoadFuncs

>>-SysLoadFuncs--- - - - ><

Loads all RexxUtil functions. After a Rexx program calls SysLoadFuncs, the RexxUtil functions are
available in all operating system sessions.

9.47. SysLoadRexxMacroSpace

>>-SysLoadRexxMacroSpace (file)-- - - ><

Loads functions from a saved macrospace file. SysLoadRexxMacroSpace returns the
RexxLoadMacroSpace return code.

Parameter:
file

The file used to load functions into the Rexx macrospace. SysSaveRexxMacroSpace must have
created the file.

9.48. SysMapCase (Windows only)

>>-SysMapCase (string——+ mmmmmmm e e R ><
+-—,country-—-—-+-—-—-———-————- +
+--,codepage-—+

Parameter:

string

String to uppercase.
country

requested country code. Default is the current country code.
codepage

requested codepage. Default is the current codepage.

Returns:

The string uppercased according to the specified country and codepage or the null string is returned for
errors.

9.49. SysMKDir

>>-SysMkDir (dirspec) - - - ><

388

Chapter 9. Rexx Utilities (RexxUtil)

Creates a specified directory.

Parameter:

dirspec
The directory to be created.

Return codes:

Directory creation was successful.
File not found.
Path not found.

Access denied.

26
Not a DOS disk.

87

Invalid parameter.

108

Drive locked.

183

Directory already exists.

206
File name exceeds range.

Example:

/* Code */
call SysMkDir "rexx"

9.50. SysNationalLanguageCompare (Windows only)
>>-SysNationalLanguageCompare(stringl, string2------------------ >

>———t- e -- -- -- ><

389

Chapter 9. Rexx Utilities (RexxUtil)

+--country--—+---—-—------- +
+--codepage——+
Compares two strings using the specifeedintryandcodepage

Parameter:

stringl

First string to compare.

string2

Second string to compare.

country

requested country code. Default is the current country code.

codepage
requested codepage. Default is the current codepage.
Returns:

Returen 1 if first string is greater, 0 if strings are equal, -1 if second string is greater. Comparisons are
done using strict comparison rules. Returns the null string for any errors

9.51. SysOpenEventSem

>>-SysOpenEventSem(name) - - e - ><

Opens an event semaphore. SysOpenEventSem returns a handle to the semaphore, or zero if an error
occurred.

Parameter:

name

The name of the event semaphore created by SysCreateEventSem.

9.52. SysOpenMutexSem

390

>>-SysOpenMutexSem (name) - - - - ><

Opens a mutex semaphore. SysOpenMutexSem returns a handle to the semaphore, or zero if an error
occurred.

Parameter:

Chapter 9. Rexx Utilities (RexxUtil)

name

The name of the mutex semaphore created by SysCreateMutexSem.

9.53. SysPostEventSem

>>-SysPostEventSem(handle) -————=——==———=-————————————— oo ><

Posts an event semaphore. SysPostEventSem returns the GetLastError return code of SetEvent.

Parameter:

handle
A handle returned from a previous SysCreateEventSem call.

Return codes:

No errors.

Invalid handle.

9.54. SysProcessType (Windows only)

>>-SysProcessType () - - - - ><

Returns the current process type.

Returns:

Full screen protect mode session.

1

Requires real mode.
2

VIO windowable protect mode session.
3

Presentation Manager protect mode session.

391

Chapter 9. Rexx Utilities (RexxUtil)

4

Detached protect mode process.

9.55. SysPulseEventSem (Windows only)

>>-SysPulseEventSem(handle)----- e - ><

Posts and immediately resets an event semaphore. It sets the state of the event to signaled (available),
releases any waiting threads, and resets it to nonsignaled (unavailable) automatically. If the event is
manual, all waiting threads are released, the event is set to nonsignaled, and PulseEvent returns. If the
event is automatic, a single thread is released, the event is set to nonsignaled, and PulseEvent returns. If
no threads are waiting, or no threads can be released immediately, PulseEvent sets the state of the event
to nonsignaled and returns.

SysPulseEventSem returns GetLastError of PulseEvent.

Parameter:

handle

The handle of an event semaphore previously created by SysCreateEventSem.

9.56. SysQueryProcess

392

Windows

+-PID--—-+
>>-SysQueryProcess (" —+-TID---+- ")--—— - ><
+-PPRIO-+
+-TPRIO-+
+-PTIME-+
+-TTIME-+

Unix

+-PSWAPS---+
+-PRCVDSIG-+

Retrieves information about the current process or Windows thread.

Parameter:

Chapter 9. Rexx Utilities (RexxUtil)

info

The kind of information requested:

PID

Returns the process ID of the current process.

PPID

Returns the parent process ID of the current process.

TID

Returns the thread ID of the current thread.

PPRIO

Returns the priority class of the current process.

TPRIO

Returns the relative priority of the current thread.

PTIME

Returns time information on the current process.

TTIME

Returns time information on the current thread.

PMEM

Returns the maximum memory (RSS) used by the the current process.

PRCVDSIG

Returns the number of signals that have been recieved by the process.

Return codes:

- For PID, PPID or TID: an ID
- For Windows PPRIO: "IDLE", "NORMAL", "HIGH", "REALTIME", or "UNKNOWN"
« For Unix PPRIO: a number from -20 to +20.

« For TPRIO: "IDLE", "LOWEST", "BELOW_NORMAL", "NORMAL", "ABOVE_NORMAL",
"HIGHEST", "TIME_CRITICAL", or "UNKNOWN"

« For Windows PTIME or TTIME: the creation date and time, the amount of time that the process
executed in kernel mode, and the amount of time that the process executed in user mode

- For Unix PTIME: the summary and the duration that the process executed in kernel mode, and the
duration that the process executed in user mode

393

Chapter 9. Rexx Utilities (RexxUtil)

9.57. SysQueryProcessCodePage

>>-SysQueryProcessCodePage () —--- - - ><

Returns the current code page for the process.
Returns:

Returns the current code page for the process.

9.58. SysQueryRexxMacro

>>-SysQueryRexxMacro (name) ————————————————————————————————————— ><

Queries the existence of a macrospace function. SysQueryRexxMacro returns the placement order of the
macrospace function or a null string (") if the function does not exist in the macrospace.

Parameter:

name

The name of a function in the Rexx macrospace.

9.59. SysReleaseMutexSem

394

>>-SysReleaseMutexSem(handle)--- - - ><

Releases a mutex semaphore. SysReleaseMutexSem returns the GetLastError return code of
ReleaseMutex.

Parameter:

handle
A handle returned from a previous SysCreateMutexSem call.

Return codes:

0

No errors.
6

Invalid handle.
105

Owner died.

Chapter 9. Rexx Utilities (RexxUtil)

288

Not owner.

9.60. SysReorderRexxMacro

>>-SysReorderRexxMacro (name,order) ——------=-——————————————————— ><

Reorders a routine loaded in the Rexx macrospace. SysReorderRexxMacro returns the
RexxReorderMacro return code.

Parameters:
name
The name of a function in the macrospace.

order

The new macro search order. The order can be "B" (Before) or "A" (After).

9.61. SysRequestMutexSem

>>-SysRequestMutexSem(handle-+---------- +-)- - ><
+-,timeout-+

Requests a mutex semaphore. SysRequestMutexSem returns the WaitForSingleObject return code.

Parameters:

handle

A handle returned from a previous SysCreateMutexSem call.

timeout
The time, in milliseconds, to wait on the semaphore. The defaétoutis an infinite wait.

Return codes:

0

No errors.
6

Invalid handle.
103

Too many requests.

395

Chapter 9. Rexx Utilities (RexxUtil)

121

Error timeout.

9.62. SysResetEventSem

>>-SysResetEventSem(handle)----- e - ><

Resets an event semaphore. SysResetEventSem returns the GetLastError return code of ResetEvent.

Parameter:

handle
A handle returned from a previous SysCreateEventSem call.

Return codes:

No errors.

Invalid handle.

9.63. SysRmDir

>>-SysRmDir (dirspec) - - - - ><

Deletes a specified file directory without your confirmation.

Parameter:

dirspec
The directory that should be deleted.

Return codes:

0

Directory removal was successful.
2

File not found.
3

Path not found.

396

Chapter 9. Rexx Utilities (RexxUtil)

Access denied or busy.

16

Current directory.

26
Not a DOS disk.

32

Sharing violation.

108

Drive locked.

123

Invalid name.

145

Directory not empty.

146
Is Subst Path.

147
Is Join Path.

206
File name exceeds range.

Example:

/* Code */
call SysRmDir "c:\rexx"

9.64. SysSaveRexxMacroSpace

>>-SysSaveRexxMacroSpace (file)-- - -- -- ><

Saves the Rexx macrospace. SysSaveRexxMacroSpace returns the RexxSaveMacroSpace return code.

Parameter:

397

Chapter 9. Rexx Utilities (RexxUtil)

file

The file used to save the functions in the Rexx macrospace.

9.65. SysSearchPath

>>-SysSearchPath(path,filename-+----------- D ity ><
+-,--option-+

Searches the specified file path for the specified file. If the file is found, the search returns the full file
specification of the first file found within the path, and then stops searching. If the file is not found, the
search returns a null string.

Parameters:

path

An environment variable name. The environment variable must contain a list of file directories.
Examples are "PATH" or "DPATH".

filename

The file for which the path is to be searched.

option
Specifies where the search starts.
nen
Starts the search at the current directory and then along the specified path. This is the default.
NG
Starts the search at the path, not at the current directory.
Example:
/* Code */

fspec = SysSearchPath("PATH", "CMD.EXE")
say "CMD.EXE is located at" fspec

/* Output */
CMD.EXE is located at C:\WIN\CMD.EXE

9.66. SysSetFileDateTime

>>-SysSetFileDateTime (filename—+------— - —+-)-><
-, ——t— B B +-+

+-newdate-+ +-,-—-newtime-+

398

Chapter 9. Rexx Utilities (RexxUtil)

Modifies the "Last Modified" date and time of flidename If no new date or time is specified the file
date or time is set to the current time (TOUCH). If only the date is omitted, the "Last Modified" date
remains unchanged. If only the time is omitted, the "Last Modified" time remains unchanged.

Thefilenamecan also be a directory name.

The file that you want to change must not be opened by another process or must at least allow shared
writes to update the time stamp.

Parameters:

filename

The name of the file to be updated.

newdate
The new date for the file, to be specified in the format YYYY-MM-DD, where YYYY > 1800.

newtime
The new time for the file, to be specified in the format HH:MM:SS (24-hour format).

Return codes:

0

The file date and time were updated correctly.
-1

The update of the file date or time failed.
Example:

Call SysSetFileDateTime "MyFile.Log" /* touch file */

Call SysSetFileDateTime "MyFile.Log", "1998-12-17"

Call SysSetFileDateTime "MyFile.Log", , "16:37:21"

Call SysSetFileDateTime "MyFile.Log", "1998-12-17", "16:37:21"

Call SysSetFileDateTime "C:\MyDir" /* touch dir on Windows NT */

9.67. SysSetPriority

>>-SysSetPriority(class,delta)-- ————m - ><

Changes the priority of the current process. A return code of O indicates no error.

Parameters:

399

Chapter 9. Rexx Utilities (RexxUtil)

class

The new process priority class. The allowed classes are:

O or "IDLE"

Idle time priority

1 or "NORMAL"
Regular priority

2 or "HIGH"

High or time-critical priority

3 or "REALTIME"

Real-time priority

delta

The change applied to the process priority ledeltamust be in the range -15 to +15. It can also be
a symbolic name:

« "IDLE" for -15

+ "LOWEST" for -2

+ "BELOW_NORMAL" for -1
+ "NORMAL" for 0

+ "ABOVE_NORMAL" for 1
+ "HIGHEST" for 2

« "TIME_CRITICAL" for 15

No errors.

307

Invalid priority class.

9.68. SysSetProcessCodePage (Windows only)

>>-SysSetProcessCodePage (codepage) -—--- - - ><

Sets the current code page for the process.

Parameters:

400

Chapter 9. Rexx Utilities (RexxUtil)

codepage
requested codepage
Returns:

The return code from the operting system function.

9.69. SysShutdownSystem (Windows only)

>>-SysShutdownSystem(---- - - — -
>S——t—- - - ——+-)--><
*-computer-+--- - -- e —+
+-,message-+-—---- - —
+-,timeout-+-- —
+-,appclose-+-———----- +

+-,reboot—-+

Shuts down the system.

Parameters:

computer

Name of the remote machine. " = local.

message

message for dialog.

timeout

Time to display message.

appclose

No dialog "save unsaved data".

reboot
1 to reboote the system.
Returns:

Returens for success oo for failure.

9.70. SysSleep

>>-SysSleep(secs)- - - - - — ><

Pauses a Rexx program for a specified time interval.

Parameter:

401

Chapter 9. Rexx Utilities (RexxUtil)

Secs

The number of seconds for which the program is to be paused. You can specify up to seven decimal
places in the number.

Example:

Say "Now paused for 2 seconds ..."

Call SysSleep 2

Say "Now paused for 0.1234567 seconds ..."
Call SysSleep 0.1234567

Call SysSleep 0.12345678 -- Error 40: Incorrect call to routine

9.71. SysStemCopy

>>-SysStemCopy--(--fromstem--,--tostem- - - ->
>——t—- - - - - +--)-><
+-, e — S - -
+-from—+ +-,-—+-———H——t——————— - -+
+-to—+ H—,——t——————- R +—+
+-count—+ +=,=="-—4-I—+-="-+
+-0-+

Copies items from the source stem to the target stem. Iltems in the source stem are copied starting at the
fromindex (default is 1) into the target stem beginning attthéndex (default is 1). The number of items

to be copied to the target stem can be specified with the count. The default is to copy all items in the
source stem.

You can also specify that the items are to be inserted into the target stem at the position and the existing
items are shifted to the end.

This function operates only on stem arrays that specify the number of items in stem.0 and all items must
be numbered from 1 to n without omitting an index.

Parameters:
fromstem
The name of the source stem.

tostem

The name of the target stem.

from

The first index in the source stem to be copied.

to

The position at which the items are to be inserted in the target stem.

402

Chapter 9. Rexx Utilities (RexxUtil)

count

The number of items to be copied or inserted.

insert

Either of the following values:

Insert items.

Overwrite items.

Return codes:

0
The stem was copied successfully.
-1
Copying the stem failed.
Example:
Source.0 = 3
Source.1 = "Hello"
Source.2 = "from"
Source.3 = "Rexx"
Call SysStemCopy "Source.", "Target."
Call SysStemCopy "Source.", "Target.", 1, 5, 2, "I"

9.72. SysStemDelete

>>-SysStemDelete(stem,startitem—+------ ———t=)- - ><
+-,-—-itemcount-+

Deletes the specified item at the indst&rtitemin the stem. If more than one item is to be deleted the
itemcounimust be specified. After deleting the requested items the stem is compacted, which means that
items following the deleted items are moved to the vacant positions.

This function operates only on stem arrays that specify the number of items in stem.0 and all items must
be numbered from 1 to n without omitting an index.

Parameters:

stem

The name of the stem from which the item is to be deleted.

403

Chapter 9. Rexx Utilities (RexxUtil)

startitem

The index of the item to be deleted.

itemcount
The number of items to be deleted if more than one.

Return codes:

0

Deleting was successful.
-1

Deleting failed.
Example:

Call SysStemDelete "MyStem.", 5
Call SysStemDelete "MyStem.", 5, 4

9.73. SysSteminsert

>>-SysStemInsert (stem,position,value)-- - - ><

Inserts a new item giositionin the stem. All items in the stem following this position are shifted down
by one position.

This function operates only on stem arrays that specify the number of items in stem.0 and all items must
be numbered from 1 to n without omitting an index.

Parameters:
stem
The name of the stem in which an item is to be inserted.

position

The index at which the new item is to be inserted.

value
The value of the new item.

Return codes:

Inserting was successful.

404

Chapter 9. Rexx Utilities (RexxUtil)

Inserting failed.

Example:

Call SysStemInsert "MyStem.", 5, "New value for item 5"

9.74. SysStemSort

+-A-+ +-C—+ +-1-———- +
>>-SysStemSort--(--stem--,-="-—+-D-+-="-= —="——t-T—+-="—— ——t+-start-+-->
$=lommmmmee +
>--,--end--,--+-firstcol-+--,--lastcol--)--- - - ><

Sorts all or the specified items in the stem. The items can be sorted in ascending or descending order and
the case of the strings being compared can be respected or ignored. Sorting can be further narrowed by
specifying the first and last item to be sorted or the columns used as sort keys. Because the sort uses a
quick-sort algorithm, the order of sorted items according to the sort key is undetermined.

This function operates only on stems that specify the number of items in stem.0 and all items must be
numbered from 1 to n without omitting an index. A value of 0 in stem.0 is also valid but no sort will be
performed.

Parameters:
stem
The name of the stem to be sorted.

order

Either "A" for ascending or "D" for descending. The default is "A".

type
The type of comparison: either "C" for case or "I" for ignore. The default is "C".

start

The index at which the sort is to start. The default is 1.

end

The index at which the sort is to end. The default is the last item.

firstcol

The first column to be used as sort key. The default is 1.

lastcol

The last column to be used as sort key. The default is the last column.

405

Chapter 9. Rexx Utilities (RexxUtil)

Return codes:

0

The sort was successful.
-1

The sort failed.
Example:

/* sort all elements descending, use cols 5 to 10 as key */
Call SysStemSort "MyStem.", "D", , , ,5, 10

/* sort all elements ascending, ignore the case */
Call SysStemSort "MyStem.", "A", "I"

/* sort elements 10 to 20 ascending, use cols 1 to 10 as key */
Call SysStemSort "MyStem.", , ,10, 20, 1, 10

9.75. SysSwitchSession (Windows only)

>>-SysSwitchSession(name) - ————m - ><

Makes the named application the foreground application. SysSwitchSession returns GetLastError of
SetForegroundWindow.

Parameter:

name

The name of the application you want to be the foreground application.

9.76. SysSystemDirectory (Windows only)

>>-SysSystemDirectory () -— - - - ><

Returns the Windows system directory.

9.77. SysTempFileName

>>-SysTempFileName (template—+--—------ +-)-—- - - ><
+-,filter-+

Returns a unique name for a file or directory that does not currently exist. If an error occurs or
SysTempFileName cannot create a unique name from the template, it returns a null string ("").
SysTempFileName is useful when a program requires a temporary file.

406

Chapter 9. Rexx Utilities (RexxUtil)

Parameters:

template

The location and base form of the temporary file or directory nametdielateis a valid file or
directory specification with up to five filter characters.

filter

The filter character used template SysTempFileName replaces each filter characterimplate
with a numeric value. The resulting string represents a file or directory that does not exist. The
default filter character is ?.

Examples:

/* Code */

say SysTempFileName ("C:\TEMP\MYEXEC.?7?77")
say SysTempFileName ("C:\TEMP\?7MYEXEC.?777")
say SysTempFileName ("C:\MYEXEC@.Q@Q", "@")

/* Output */
C:\TEMP\MYEXEC.251
C:\TEMP\10MYEXEC. 392
C:\MYEXEC6.019

SysTempFileName generates the filter character replacements with a random number algorithm. If the
resulting file or directory already exists, SysTempFileName increments the replacement value until all
possibilities have been exhausted.

Note on Unix/Linux behaviour: ~ On Unix/Linux the returned path/filename will be longer than the
original input template. Additional characters are appended to the end of the filename and a path
may be prepended to the beginning of the returned string.

9.78. SysTextScreenRead (Windows only)

>>-SysTextScreenRead (-row, column-—+------ +--) - ><
+-,len-+

Reads characters from a specified screen location. These include any carriage return and linefeed
characters if the number of character reads spans multiple lines.

Parameters:

row

The row from which to start reading.

col

The column from which to start reading.

407

Chapter 9. Rexx Utilities (RexxUtil)

len
The number of characters to read. The default is to read to the end of the screen.

Limitations: This function reads in only screen characters and does not consider the color attributes of
each character read. When restoring a character string to the screen with SAY or the CHAROUT built-in
function, the previous color settings are lost.

Examples:

/* Reading the entire screen */
screen = SysTextScreenRead(0, 0)

/* Reading one line */
line = SysTextScreenRead(2, 0, 80)

9.79. SysTextScreenSize (Windows only)

>>-SysTextScreenSize () --— - - - ><

Returns the size of the screen in the formzati col.

Example:

/* Code */

call RxFuncAdd "SysTextScreenSize", "RexxUtil", "SysTextScreenSize"
parse value SysTextScreenSize() with row col

say "Rows="row", Columns="col

9.80. SysToUnicode (Windows only)

>>-SysToUnicode--(--string, codepage, translateflags, outstem—-)-><

Maps a character string to a UNICODE string.

Parameters:

string

A string containing the UNICODE characters to be mapped.

codepage

Specifies the code page used to perform the conversion. This parameter can be the value of any code
page that is installed or available in the system. The default is the current original equipment
manufacturer (OEM) code-page identifier for the system.

You can also specify one of the following values:

408

Chapter 9. Rexx Utilities (RexxUtil)

ACP
ANSI code page.

OEMCP
OEM code page.

SYMBOL
Windows 2000: symbol code page.

THREAD_ACP
Windows 2000: current thread’s ANSI code page.

UTF7
Windows NT 4.0 and Windows 2000: translate using UTF-7.

UTF8

Windows NT 4.0 and Windows 2000: translate using UTF-8. When this is&etslateflags
must be set.

translateflags

Indicates whether to translate to precomposed or composite-wide characters (if a composite form
exists), whether to use glyph characters in place of control characters, and how to deal with invalid
characters.

You can specify a combination of the following flags:

PRECOMPOSED
Always use precomposed characters, that is, characters in which a base character and a
nonspacing character have a single character value. This is the default translation option.
Cannot be used with COMPOSITE.
COMPOSITE
Always use composite characters, that is, characters in which a base character and a
nonspacing character have different character values. Cannot be used with PRECOMPOSED.
ERR_INVALID_CHARS

If the function encounters an invalid input character, it fails and returns "1113".

USEGLYPHCHARS
Use glyph characters instead of control characters.

A composite character consists of a base character and a nonspacing character, each having different
character values. A precomposed character has a single character value for a base-nonspacing
character combination. In the character ¢, the "e" is the base character and the "grave" accent mark

409

Chapter 9. Rexx Utilities (RexxUtil)

is the nonspacing character. The function’s default behavior is to translate to the precomposed form.
If a precomposed form does not exist, the function attempts to translate to a composite form.

The flags PRECOMPOSED and COMPOSITE are mutually exclusive. The USEGLYPHCHARS
flag and the ERR_INVALID_CHARS can be set regardless of the state of the other flags.

outstem

The name of the stem variable that will contain the converted result. If the conversion was
successful the stem will be composed of the following value(s):

outstem.!'TEXT

This variable will contain the converted string.

Return codes:

No errors.

87

Incorrect code page @bdepage value.

1004

Invalid translate flags.

1113

No mapping for the Unicode character exists in the target code page.

9.81. SysuUtilVersion

>>-8ysUtilVersion() - - - ><

Returns a version number that identifies the current level of the Rexx Utilities package. It can be used to
verify the availability of certain functions.

Return code: The REXXUTIL version number in the formatm.
Examples:

Because this function was not part of the original packaging, a sample logic to check for a certain level
of RexxUTIL can look as follows:

If RxFuncQuery("SysUtilVersion") =1 |,
SysUtilVersion() < "2.00" Then
Say "Your RexxUTIL.DLL is not at the current level"

410

Chapter 9. Rexx Utilities (RexxUtil)

If a specific function should be used that was added at a later REXXUTIL level a similar check can be
performed by querying this function as follows:

If RxFuncQuery("SysSetFileDateTime") = 1 Then
Say "Your REXXUTIL.DLL is not at the current level"

9.82. SysVersion

>>-SysVersion()--- - - - ><

Returns a string to identify the operating system and version. The first word of the returned string
contains the identifier for the operating system and the second word the versiasisNT x.xx or
Windows95 x.xx.

Return code: The operating system and version. Possible output for operating systems supported by
Object Rexx are:

Say SysVersion() -> "WindowsNT 4.00"
Say SysVersion() -> "WindowsNT 5.00"

Note: This function can be used to replace the operating-system-specific functions SysOS2Ver(),
SysWinVer(), and SysLinVer().

9.83. SysVolumeLabel (Windows only)

>>-SysVolumeLabel("drive")------ - - - ><

Returns the label of the specified or the current drive.

Parameter:

drive

The drive letter in the formp:. If omitted, the letter of the current drive is assumed.

9.84. SysWait (AIX only)

>>-SysWait () ---—-—--—--—--- - S, __ S<¢

Waits for all child processes to end.
Returns:

The exit code from the child process.

411

Chapter 9. Rexx Utilities (RexxUtil)

9.85. SysWaitEventSem

>>-SysWaitEventSem(handle-+---------- +=)———- - ><
+-,timeout-+

Waits on an event semaphore. SysWaitEventSem returns the WaitForSingleObject return code.

Parameters:

handle

A handle returned from a previous SysCreateEventSem call.

timeout
The time, in milliseconds, to wait on the semaphore. The defaétoutis an infinite wait.

Return codes:

0

No errors.
6

Invalid handle.
121

Timeout.

9.86. SysWaitNamedPipe (Windows only)

>>-SysWaitNamedPipe (name-+---------- +-) - - ><
+-,timeout-+

Performs a timed wait on a named pipe and returns the WaitNamedPipe return code.

Parameters:
name
The name of the pipe in the form "\\servername\pipe\pipename."

timeout

The number of microseconds to be waited. If you atiniteoutor specify 0, SysWaitNamedPipe
uses the default timeout value. To wait until the pipe is no longer busy, you can use a value of -1.

9.87. SysWinDecryptFile (Windows only)

>>-SysWinDecryptFile (filename)-— - - - ><

412

Chapter 9. Rexx Utilities (RexxUtil)

Decrypts a given file (Windows 2000 only).

Parameter:

filename
The file to be decrypted.

Return codes:

0
Decryption was successful.
2
File not found.
4
Cannot open file.
5
Access denied.
82

Cannot decrypt.

9.88. SysWinEncryptFile (Windows only)

>>-SysWinEncryptFile (filename)-- - - - ><

Encrypts a given file (Windows 2000 only).

Parameter:

filename
The file to be encrypted.

Return codes:

0

Encryption was successful.
2

File not found.
4

Cannot open file.

413

Chapter 9. Rexx Utilities (RexxUtil)

5

Access denied.

82

Cannot encrypt.

9.89. SysWinGetDefaultPrinter (Windows only)

>>-SysWinGetDefaultPrinter------ -- -- -- ><

Returns the current default printer in the form "Printername,Drivername,Porthame".

9.90. SysWinGetPrinters (Windows only)

>>-SysWinGetPrinters(stem.)-—--- Rt ><

Fills a stem with the available printer descriptions.

Parameters:

stem.0

The number of entries

stem.i
Entry
Each entry is of the form "Printername,Drivername,Portname”.

Return codes:

Success

Failure

9.91. SysWinSetDefaultPrinter (Windows only)

>>-SysWinSetDefaultPrinter(description) - - ><

Sets the default printer.

Parameter:

414

Chapter 9. Rexx Utilities (RexxUtil)

description
Must have the form "Printername,Drivername,Portname".

Return codes:

Success

non-zero
System error codes (use SysGetErrortext() to get a description of the error)

Example:

/* set default printer */

default = SysWinGetDefaultPrinter()
parse var default default",".

if SysWinGetPrinters(list.) == 0 then do
say "List of available printers (* = default):"
do i=1 to 1list.O
parse var list.i pname",".
if pname == default then
say i list.i "*"
else
say i list.i
end
say
say "Please enter number of new default printer (0 = keep default)"
pull i
if i > 0 then call SysWinSetDefaultPrinter(list.i)
end
exit

9.92. SysWinVer Windows only)

>>-SysWinVer) ——-- -- - - - - ><

Returns a string specifying the Windows operating system version information in the fexn

415

Chapter 9. Rexx Utilities (RexxUtil)

416

Chapter 10. Parsing

The parsing instructions are ARG, PARSE, and PULL &B&, PARSE andPULL).

The data to be parsed is a source string. Parsing splits the data in a source string and assigns pieces of it
to the variables named in a template. A template is a model specifying how to split the source string. The
simplest kind of template consists of a list of variable names. Here is an example:

variablel variable2 variable3

This kind of template parses the source string into blank-delimited words. More complicated templates
contain patterns in addition to variable names:

String patterns
Match the characters in the source string to specify where it is to be splitTébeglates
Containing String Patterrfer details.)

Positional patterns

Indicate the character positions at which the source string is to be splitT€gaates Containing
Positional (Numeric) Patterrier details.)

Parsing is essentially a two-step process:

1. Parse the source string into appropriate substrings using patterns.

2. Parse each substring into words.

10.1. Simple Templates for Parsing into Words
Here is a parsing instruction:

parse value "time and tide" with varl var2 var3

The template in this instruction isar1 var2 var3. The data to be parsed is between the keywords
PARSE VALUE and the keyword'1TH, the source stringime and tide. Parsing divides the source string
into blank-delimited words and assigns them to the variables named in the template as follows:

varl="time"
var2="and"
var3="tide"

In this example, the source string to be parsed is a literal sttiir@, and tide. In the next example, the
source string is a variable.

/* PARSE VALUE using a variable as the source string to parse */

string="time and tide"
parse value string with varl var2 var3 /* same results */

417

Chapter 10. Parsing

418

PARSE VALUE does not convert lowercase in the source string to uppercase. If you want to
convert characters to uppercase, use PARSE UPPER VALURJSeg UPPER, LOWER, and
CASELESSfor a summary of the effect of parsing instructions on the case.

Note that if you specify the CASELESS option on a PARSE instruction, the string comparisons during
the scanning operation are made independently of the alphabetic case. That is, a letter in uppercase is
equal to the same letter in lowercase.

All of the parsing instructions assign the parts of a source string to the variables named in a template.
There are various parsing instructions because of the differences in the nature or origin of source strings.
For a summary of all the parsing instructions, Beesing Instructions Summary

The PARSE VAR instruction is similar to PARSE VALUE except that the source string to be parsed is
always a variable. In PARSE VAR, the name of the variable containing the source string follows the
keywordspARSE VAR. In the next example, the variabdears contains the source string. The template is

starl star2 star3.

/* PARSE VAR example */
stars="Sirius Polaris Rigil"
parse var stars starl star2 star3 /* staril="Sirius" */

/* star2="Polaris" */
/* star3="Rigil" */

All variables in a template receive new values. If there are more variables in the template than words in
the source string, the leftover variables receive null (empty) values. This is true for the entire parsing: for
parsing into words with simple templates and for parsing with templates containing patterns. Here is an
example of parsing into words:

/* More variables in template than (words in) the source string */
satellite="moon"

parse var satellite Earth Mercury /* Earth="moon" */
/* Mercury="" */

If there are more words in the source string than variables in the template, the last variable in the
template receives all leftover data. Here is an example:

/* More (words in the) source string than variables in template */
satellites="moon Io Europa Callisto..."

parse var satellites Earth Jupiter /* Earth="moon" */
/* Jupiter="Io Europa Callisto..."*/

Parsing into words removes leading and trailing blanks from each word before it is assigned to a
variable. The exception to this is the word or group of words assigned to the last variable. The last
variable in a template receives leftover data, preserving extra leading and trailing blanks. Here is an
example:

/* Preserving extra blanks */
solarb5="Mercury Venus Earth Mars Jupiter "

parse var solarb5 varl var2 var3 var4

/* varl ="Mercury" */
/* var2 ="Venus" */
/* var3 ="Earth" */
/* vard =" Mars Jupiter " */

Chapter 10. Parsing

In the source stringEarth has two leading blanks. Parsing removes both of them (the word-separator
blank and the extra blank) before assigniag3="Earth". Mars has three leading blanks. Parsing

removes one word-separator blank and keeps the other two leading blanks. It also keeps all five blanks
betweernars andJupiter and both trailing blanks aftefupiter.

Parsing removes no blanks if the template contains only one variable. For example:

parse value " Pluto " with varl /* varl=" Pluto "x/

10.1.1. The Period as a Placeholder

A period in a template is a placeholder. It is used instead of a variable name, but it receives no data. It is
useful as a "dummy variable" in a list of variables or to collect unwanted information at the end of a
string. And it saves the overhead of unneeded variables.

The period in the first example is a placeholder. Be sure to separate adjacent periods with spaces;
otherwise, an error results.

/* Period as a placeholder */
stars="Arcturus Betelgeuse Sirius Rigil"

parse var stars . . brightest . /* brightest="Sirius" */
/* Alternative to period as placeholder */

stars="Arcturus Betelgeuse Sirius Rigil"
parse var stars drop junk brightest rest /* brightest="Sirius" */

10.2. Templates Containing String Patterns

A string pattern matches characters in the source string to indicate where to split it. A string pattern can
be either of the following:

Literal string pattern

One or more characters within quotation marks.

Variable string pattern

A variable within parentheses with no plug,(minus ¢), or equal sign<) before the left
parenthesis. (Seearsing with Variable Patterrigr details.)

Here are two templates, a simple template and a template containing a literal string pattern:

varl var?2 /* simple template */
varl ", " var2 /* template with literal string pattern */

The literal string pattern is:, ". This template puts characters:

- From the start of the source string up to (but not including) the first character of the match (the
comma) intovari

419

Chapter 10. Parsing

« Starting with the character after the last character of the match (the character after the blank that
follows the comma) and ending with the end of the string intee

A template with a string pattern can omit some of the data in a source string when assigning data to
variables. The next two examples contrast simple templates with templates containing literal string
patterns.

/* Simple template */
name="Smith, John"

parse var name 1ln fn /* Assigns: ln="Smith," */
/* fn="John" x/

Notice that the comma remains (the variablecontains'smith, "). In the next example the template is
1n ", " fn. This removes the comma.

/* Template with literal string pattern */
name="Smith, John"
parse var name 1ln ", " fn /* Assigns: 1n="Smith" */
/* fn="John" %/
First, the language processor scans the source string for ", ". It splits the source string at that point. The

variablein receives data starting with the first character of the source string and ending with the last
character before the match. The variableeceives data starting with the first character after the match
and ending with the end of string.

A template with a string pattern omits data in the source string that matches the pattern. (There is a
special case (se@ombining String and Positional Patteyirs which a template with a string pattern
does not omit matching data in the source string.) The pattern(with a blank) is used instead of "

(no blank) because, without the blank in the pattern, the variableceives " John" (including a blank).

If the source string does not contain a match for a string pattern, any variables preceding the unmatched
string pattern get all the data in question. Any variables after that pattern receive the null string.

A null string is never found. It always matches the end of the source string.

10.3. Templates Containing Positional (Numeric) Patterns

420

A positional pattern is a number that identifies the character position at which the data in the source
string is to be split. The number must be a whole number.

An absolute positional pattern is:

« A number with no plus+«) or minus ¢) sign preceding it or with an equal sigs) (preceding it.

- Avariable in parentheses with an equal sign before the left parenthesig?¢8aeg with Variable
Patterndor details on variable positional patterns.)

The number specifies the absolute character position at which the source string is to be split.

Here is a template with absolute positional patterns:

variablel 11 variable2 21 variable3

Chapter 10. Parsing

The numbers1 and21 are absolute positional patterns. The numterefers to the 11th position in the
input string,21 to the 21st position. This template puts characters:

1 through 10 of the source string intariablel

+ 11 through 20 intarariable2

« 21tothe end int@ariable3

Positional patterns are probably most useful for working with a file of records, such as:

character positions:
1 11 21 40

and of

FIELDS: | LASTNAME] FIRST PSEUDONYM i

The following example uses this record structure:

/* Parsing with absolute positional patterns in template */
record.1="Clemens Samuel Mark Twain "

record.2="Evans Mary Ann George Eliot "

record.3="Munro H.H. Saki "

do n=1 to 3

parse var record.n lastname 11 firstname 21 pseudonym
If lastname="Evans" & firstname="Mary Ann" then say "By George!"
end /* Says "By George!" after record 2 */

The source string is split at character position 11 and at position 21. The language processor assigns
characters 1 to 10 thastname, characters 11 to 20 thirstname, and characters 21 to 40 $eeudonym.

The template could have been:

1 lastname 11 firstname 21 pseudonym
instead of

lastname 11 firstname 21 pseudonym

Specifying1 is optional.

Optionally, you can put an equal sign before a number in a template. An equal sign is the same as no
sign before a number in a template. The number refers to a particular character position in the source
string. These two templates are equal:

lastname 11 first 21 pseudonym

lastname =11 first =21 pseudonym

A relative positional pattern is a number with a plus+f or minus €) sign preceding it. It can also be a
variable within parentheses, with a plug 6r minus €) sign preceding the left parenthesis; for details
seeParsing with Variable Patterns

The number specifies the relative character position at which the source string is to be split. The plus or
minus indicates movement right or left, respectively, from the start of the string (for the first pattern) or

421

Chapter 10. Parsing

422

from the position of the last match. The position of the last match is the first character of the last match.
Here is the same example as for absolute positional patterns done with relative positional patterns:

/* Parsing with relative positional patterns in template */
record.1="Clemens Samuel Mark Twain "

record.2="Evans Mary Ann George Eliot "

record.3="Munro H.H. Saki "

do n=1 to 3

parse var record.n lastname +10 firstname + 10 pseudonym
If lastname="Evans" & firstname="Mary Ann" then say "By George!"
end /* same results */

Blanks between the sign and the number are insignificant. Therefarand+ 10 have the same
meaning. Note that +0 is a valid relative positional pattern.

Absolute and relative positional patterns are interchangeable except in the speci@laadiing

String and Positional Pattefnghen a string pattern precedes a variable name and a positional pattern
follows the variable name. The templates from the examples of absolute and relative positional patterns
give the same results.

lastnames 11 firstnama 21 pseudonym
lasthams + 10 firstnames + 10 pseudonym
{Implied Put charactars Put characters Put charactars
starting 1 through 10 11 through 20 21 though
point is in lasthams. in firsthams. end of string
position 1) (Mon-inclusive (Mon-inclusive in pseudonym.
stopping point stopping point

is 11 (1+10)) is 21 (11+10).)

With positional patterns, a matching operation can back up to an earlier position in the source string.
Here is an example using absolute positional patterns:

/* Backing up to an earlier position (with absolute positional) */
string="astronomers"

parse var string 2 varl 4 1 var2 2 4 var3 5 11 var4

say string "study" varl||var2||var3||vard

/* Displays: "astronomers study stars" */

The absolute positional pattetrbacks up to the first character in the source string.

With relative positional patterns, a number preceded by a minus sign backs up to an earlier position. Here
is the same example using relative positional patterns:

/* Backing up to an earlier position (with relative positional) */
string="astronomers"

parse var string 2 varl +2 -3 var2 +1 +2 var3 +1 +6 vard

say string "study" varll|var2||var3||var4 /* same results */

In the previous example, the relative positional patterbacks up to the first character in the source
string.

Chapter 10. Parsing

The templates in the previous two examples are equivalent.

2 yarit 4 i yarz 2 4ygr3 & 11 vard
2 Varl +z2 -3 WaErz2 +1 +2 WErs +1 +8 Ward
Star Mon- Goto 1. Mon- Goto 4 Goto 11
at 2. inclugive (4-3=1) inclusive (2+2=4) (5+E=11).
stopping stopping Mon-inclusive
point is 4 pointis 2 stopping point
[2+2=4] (1+1=21. ig 5 (4+1=5)

You can use templates with positional patterns to make several assignments:

/* Making several assignments */
books="Silas Marner, Felix Holt, Daniel Deronda, Middlemarch"

parse var books 1 Eliot 1 Evans

/* Assigns the (entire) value of books to Eliot and to Evans. */

10.3.1. Combining Patterns and Parsing into Words

If a template contains patterns that divide the source string into sections containing several words, string
and positional patterns divide the source string into substrings. The language processor then applies a
section of the template to each substring, following the rules for parsing into words.

/* Combining string pattern and parsing into words */
name=" John Q. Public"

parse var name fn init "." 1n /* Assigns: fn="John" */
/* init=" Q" */
/* In=" Public" */

The pattern divides the template into two sections:

e fn init
e 1n

The matching pattern splits the source string into two substrings:

n John Q "

" Public"

The language processor parses these substrings into words based on the appropriate template section.

John has three leading blanks. All are removed because parsing into words removes leading and trailing
blanks except from the last variable.

qQ has six leading blanks. Parsing removes one word-separator blank and keeps the restihec#ise
the last variable in that section of the template.

423

Chapter 10. Parsing

For the substring public", parsing assigns the entire string intowithout removing any blanks. This
is becausen is the only variable in this section of the template. (For details about treatment of blanks,
seeSimple Templates for Parsing into Worlls

/* Combining positional patterns with parsing into words */
string="R E X X"
parse var string varl var2 4 var3 6 var4 /* Assigns: varl="R" */

/* var2="E" */
/* var3=" X" */
/* var4=" X" */

The pattern divides the template into three sections:

e varl var2
¢ var3
¢ varéd

The matching patterns split the source string into three substrings that are individually parsed into words:

« "R E"
« MoxXn
o M XM

The variablevari receives'r"; var2 receives'e". Bothvar3 andvar4 receive" x" (with a blank before
thex) because each is the only variable in its section of the template. (For details on treatment of blanks,
seeSimple Templates for Parsing into Worlls

10.4. Parsing with Variable Patterns

424

You might want to specify a pattern by using the value of a variable instead of a fixed string or number.
You do this by placing the name of the variable in parentheses. This is a variable reference. Blanks are
not necessary inside or outside the parentheses, but you can add them if you wish.

The template in the next parsing instruction contains the following literal string pattern
parse var name fn init ". " I1n

Here is how to specify that pattern as a variable string pattern:

strngptrn=". "

parse var name fn init (strngptrn) 1n

If no equal, plus, or minus sign precedes the parenthesis that is before the variable name, the character
string value of the variable is then treated as a string pattern. The variable can be one that has been set
earlier in the same template.

Example:

/* Using a variable as a string pattern */

Chapter 10. Parsing

/* The variable (delim) is set in the same template */
SAY "Enter a date (mm/dd/yy format). =====> " /% assume 11/15/98 %/
pull date

parse var date month 3 delim +1 day +2 (delim) year
/* Sets: month="11"; delim="/"; day="15"; year="98" x/

If an equal, a plus, or a minus sign precedes the left parenthesis, the value of the variable is treated as an
absolute or relative positional pattern. The value of the variable must be a positive whole number or zero.

The variable can be one that has been set earlier in the same template. In the following example, the first
two fields specify the starting-character positions of the last two fields.

Example:
/* Using a variable as a positional pattern */
dataline = "12 26 Samuel ClemensMark Twain"

parse var dataline posl pos2 6 =(posl) realname =(pos2) pseudonym
/* Assigns: realname="Samuel Clemens"; pseudonym="Mark Twain" */

The positional pattera is needed in the template for the following reason: Word parsing occurs after the
language processor divides the source string into substrings using patterns. Therefore, the positional
pattern=(pos1) cannot be correctly interpreted &= until after the language processor has split the
string at column 6 and assigned the blank-delimited wapdsnd26 to pos1 andpos2, respectively.

10.5. Using UPPER, LOWER, and CASELESS

Specifying UPPER on any of the PARSE instructions converts lowetcade uppercase-z before
parsing.

The ARG instruction is a short form of PARSE UPPER ARG. The PULL instruction is a short form of
PARSE UPPER PULL. If you do not desire uppercase translation, use PARSE ARG instead of ARG or
PARSE UPPER ARG, and PARSE PULL instead of PULL or PARSE UPPER PULL.

Specifying LOWER on any of the PARSE instructions converts uppetrcade lowercase-z before
parsing.

Specifying CASELESS means the comparisons during parsing are independent of the case--that is, a
letter in uppercase is equal to the same letter in lowercase.

10.6. Parsing Instructions Summary

All parsing instructions assign parts of the source string to the variables named in the template. The
following table summarizes where the source string comes from.

Table 10-1. Parsing Source Strings

Instruction Where the source string comes from

ARG Arguments you list when you call the program g
arguments in the call to a subroutine or functiorn.

=

425

Chapter 10. Parsing

Instruction Where the source string comes from

PARSE ARG Arguments you list when you call the program gr
arguments in the call to a subroutine or function.

PARSE LINEIN Next line in the default input stream.

PULL The string at the head of the external data queue.

(If the queue is empty, it uses default input,
typically the terminal.)

PARSE PULL The string at the head of the external data queue.

(If the queue is empty, it uses default input,
typically the terminal.)

PARSE SOURCE System-supplied string giving information about
the executing program.

PARSE VALUE Expression between the keywords VALUE and
WITH in the instruction.

PARSE VARname Parses the value olame

PARSE VERSION System-supplied string specifying the language,

language level, and (three-word) date.

10.7. Parsing Instructions Examples

All examples in this section parse source strings into words.

ARG

/* ARG with source string named in Rexx program invocation */
/* Program name is PALETTE. Specify 2 primary colors (yellow, */
/* red, blue) on call. Assume call is: palette red blue */
arg varl var2 /* Assigns: varl="RED"; var2="BLUE" */

If varl<>"RED" & varl<>"YELLOW" & var1<>"BLUE" then signal err
If var2<>"RED" & var2<>"YELLOW" & var2<>"BLUE" then signal err
total=length(varl)+length(var2)
SELECT;

When total=7 then new="purple"

When total=9 then new="orange"

When total=10 then new="green"

Otherwise new=varl /* entered duplicates */
END
Say new; exit /* Displays: "purple" */
Err:

say 'Input error--color is not "red" or "blue" or "yellow"'; exit

ARG converts alphabetic characters to uppercase before parsing. An example of ARG with the
arguments in the CALL to a subroutine isBarsing Several Strings

PARSE ARG is similar to ARG except that PARSE ARG does not convert alphabetic characters to
uppercase before parsing.

426

Chapter 10. Parsing

PARSE LINEIN

parse linein "a=" numl "c=" num2 /* Assume: 8 and 9 */

sum=numl+num?2 /* Enter: a=8 b=9 as input */

say sum /* Displays: "17" */

PARSE PULL

PUSH "80 7" /* Puts data on queue */

parse pull fourscore seven /* Assigns: fourscore="80"; seven="7" */

SAY fourscoret+seven /* Displays: "87" */

PARSE SOURCE

parse source sysname .

Say sysname /* Possibly Displays: */
/* "Windows" */

PARSE VALUE

PARSE VAR examples are throughout the chapter, starting Ratising
PARSE VERSION

parse version . level .
say level /* Displays: "Oryx 3.00 Jun 9 1993" */

PULL is similar to PARSE PULL except that PULL converts alphabetic characters to uppercase before
parsing.

10.8. Advanced Topics in Parsing

This section includes parsing several strings and flow charts illustrating a conceptual view of parsing.

10.8.1. Parsing Several Strings

Only ARG and PARSE ARG can have more than one source string. To parse several strings, you can
specify several comma-separated templates. Here is an example:

parse arg templatel, template2, template3

This instruction consists of the keywords PARSE ARG and three comma-separated templates. For an
ARG instruction, the source strings to be parsed come from arguments you specify when you call a
program or CALL a subroutine or function. Each comma is an instruction to the parser to move on to the
next string.

Example:
/* Parsing several strings in a subroutine */
num="3"

musketeers="Porthos Athos Aramis D'Artagnan"
CALL Sub num,musketeers /* Passes num and musketeers to sub */

427

Chapter 10. Parsing

428

SAY total; say fourth /* Displays: "4" and " D'Artagnan" */
EXIT
Sub:

parse arg subtotal, . . . fourth

total=subtotal+1l

RETURN

Note that when a Rexx program is started as a command, only one argument string is recognized. You
can pass several argument strings for parsing if:

« One Rexx program calls another Rexx program with the CALL instruction or a function call
- Programs written in other languages start a Rexx program

If there are more templates than source strings, each variable in a leftover template receives a null string.
If there are more source strings than templates, the language processor ignores leftover source strings. If
a template is empty (two subsequent commas) or contains no variable names, parsing proceeds to the
next template and source string.

10.8.2. Combining String and Positional Patterns

There is a special case in which absolute and relative positional patterns do not work identically. Parsing
with a template containing a string pattern skips the data in the source string that matches the pattern (see
Templates Containing String PatteynBut a template containing the sequence string pattern, variable

name, and relative position pattern does not skip the matching data. A relative positional pattern moves
relative to the first character matching a string pattern. As a result, assignment includes the data in the
source string that matches the string pattern.

/* Template containing string pattern, then variable name, then */
/* relative positional pattern does not skip any data. */
string="REstructured eXtended eXecutor"

parse var string varl 3 junk "X" var2 +1 junk "X" var3 +1 junk

say varl||var2||var3 /* Concatenates variables; displays: "Rexx" */

Here is how this template works:

Chapter 10. Parsing

|var1 3| ‘junk'X' | |var2+1 | ‘junk'X' | |var3+1 | ‘ junk |

Put Starting Starting Starting Starting Starting
characters at 3, put with first with char- with with char-
1 through characters X' put1 acter after second'X' acter
2invari. up to (not (+1) first "X’ put 1 (+1) after
(Stopping including) character put up to character second X'
pointis 3.) first'X' in var2, second X' invar3. put rest

in junk. in junk. in junk.
vari='RE' junk= var2="X' junk= var3="X' junk=

'structured ‘tended ' 'ecutor’

o

10.8.3. Conceptual Overview of Parsing

The following figures are to help you understand the concept of parsing.

The figures include the following terms:

string start

is the beginning of the source string (or substring).

string end

is the end of the source string (or substring).

length

is the length of the source string.

match start

is in the source string and is the first character of the match.

match end
is in the source string. For a string pattern, it is the first character after the end of the match. For a
positional pattern, it is the same as match start.

match position

is in the source string. For a string pattern, it is the first matching character. For a positional pattern,
it is the position of the matching character.

token

is a distinct syntactic element in a template, such as a variable, a period, a pattern, or a comma.

value

is the numeric value of a positional pattern. This can be either a constant or the resolved value of a
variable.

429

Chapter 10. Parsing

430

Figure 10-1. Conceptual Overview of Parsing

b

START

Token is first one in template.
Length=length{source string)
Match start=1. Match end=1.

>y

End of template?

yes
[

Parsing complats .

¢no

CALL Find MNext
Pattern.

:

CALL Word Parsing.

v

step to next token.

y

yas

loken & comma?

no

setnext source
string and template.

Chapter 10. Parsing

Figure 10-2. Conceptual View of Finding Next Pattern

v

Stad: String stan=matc h and.
End of Ei Matc h stat=kngth + 1
template? latc h end=kngth + 1. Return
no
¥
Takan pariod | Y55 | Step to next token. (-
ar varabla? =
no
h A
Tokena plus? Y55 | varable | Y55| Resohe || String start=match start.
form? itz valua, hlatch stat=min(langth + 1,
matc h stad + valua)
no no Match end=matc h start. Feturn.
¥
Tokan a Y2 | viariable | Y55 [Resohe | String start=match star.
minus? ©| form? "l itzvalue. | &" | Match stat=max{1, makch
start - wvalua)
na na hlatch end=match statt. Raturn.
v
Tokan an YeE [varable | Y92 | Resohe W String start=match end.
oqual? 7| form? 7 itz valua. 7| Match start=min{length + 1, valus)
T hlatch end=match stant. Raturn.
no no
v
Toka yo | String start=matc h end.
nﬁn‘l tr,'g?.-!. ® Mateh stat=min(langth + 1, valus)
hlatz h end=matz h =tart. Return.
no
b
Token a litora| 5
=tring?
no
¥ b4 String start=rmate b and.
Tokan avar Ei Fieen hic w| Match found inE., hiateh start=matc b position.
iable =tring? it walus. | re=tof string? Match end=match position +
pattarn langth. Raturn.
no no
b J
String start=rmatch and.
Match start=langth +1.
hatch end=kngth + 1. Return
¥
Tokana [i=3 hlatch start=length +1.
comma? ™| hiatch and=kngth + 1. Return

431

Chapter 10. Parsing

432

Figure 10-3. Conceptual View of Word Parsing

Start: Matcheand ==
String start?

no

¥

¥

e

String end=

kEngth + 1.

¥

Strirg end=matsh s&rt.

Substring=substrizourss STing,sting star, isting end -=tring star))
TokerFprevious pattam.

v #

Ay mom tokens?

v

¥ ez

Sep to next token?

v

pariod ?

Tokena varshlaor

¥ eE

Ay mom tokans?

==
¥
Mext token & warsbke or
period ?
e
¥

Ay =ubstring left?

¥

¥ e

Strip amy keading blarks.

¥

Ay =ubstring left?

¥

¥ ez

Blark found in=uwbstring

¥

¥ e

no
¥
no
*| Rotum.
no
b4
nD Ins- . - .
®| A==ign re=tof substhng to wariabl.
I .
fi-
no
®| A==ign null =tring to vanshls,
| s
|l
noo
®| A==ign null =tring to vansbls,
I 2
i
noo
®| A==ign restof substring to xrzariabh|.
I .
i

Asz=gn word fom suwbetring © wanable and step past blank.

Note: The figures do not include error cases.

Chapter 11. Numbers and Arithmetic

This chapter gives an overview of the arithmetic facilities of the Rexx language.

Numbers can be expressed flexibly. Leading and trailing blanks are permitted, and exponential notation
can be used. Valid numbers are, for example:

12 /* a whole number x/
"-76" /* a signed whole number */
12.76 /* decimal places */
"+ 0.003 " /* blanks around the sign and so forth */
17. /* same as 17 */
.5 /* same as 0.5 */
4E9 /* exponential notation */
0.73e-7 /* exponential notation */

A number in Rexx is defined as follows:

S>—pmmm— Fm— +-—+-digits-—-—----- Fm— >
+-blanks-+ +-sign--+--—------ +-+ +-digits.digits-+
+-blanks-+ +-.digits———-—--- +
+-digits.-—-————- +

So—pmm oo et - - - - - ><

+-blanks—+

blanks
are one or more spaces.
sign
is either+ or -.
digits
are one or more of the decimal digits.

Note that a single period alone is not a valid number.

The arithmetic operators include additior),(subtraction €), multiplication), power §x), division

(/), prefix plus ¢), and prefix minus+). In addition, it includes integer dividé), which divides and
returns the integer part, and remaindef)(which divides and returns the remainder. For examples of the
arithmetic operators, s&@perator Examples

The result of an arithmetic operation is formatted as a character string according to specific rules. The
most important rules are:

- Results are calculated up to a maximum number of significant digits. The defapifflisyou can alter
it with the NUMERIC DIGITS instruction. Thus, if a result requires more than 9 digits, it is rounded
to 9 digits. For example, the division of 2 by 3 results in 0.666666667.

- Except for division and power, trailing zeros are preserved. For example:
2.40 + 2 -> 4.40

433

Chapter 11. Numbers and Arithmetic

2.40 - 2 -> 0.40
2.40 * 2 -> 4.80
2.40 / 2 -> 1.2

If necessary, you can remove trailing zeros with the STRIP methodS(EBR&), the STRIP function
(seeSTRIP), or by division by 1.

- A zeroresult is always expressed as the single digit

- Exponential form is used for a result depending on its value and the setting of NUMERIC DIGITS
(the default i). If the number of places needed before the decimal point exceeds the NUMERIC
DIGITS setting, or the number of places after the point exceeds twice the NUMERIC DIGITS setting,
the number is expressed in exponential notation:

le6 * 1le6 -> 1E+12 /* not 1000000000000 */
1 / 3E10 -> 3.33333333E-11 /* not 0.0000000000333333333 */

11.1. Precision

Precision is the maximum number of significant digits that can result from an operation. This is
controlled by the instruction:

>>-NUMERIC DIGITS--+----—---—--- +-—; - - - ><
+-expression-+

Theexpressions evaluated and must result in a positive whole number. This defines the precision
(number of significant digits) of a calculation. Results are rounded to that precision, if necessary.

If you do not specifyexpressionn this instruction, or if no NUMERIC DIGITS instruction has been
processed since the start of a program, the default precision is used. The Rexx standard for the default
precision iso.

NUMERIC DIGITS can set values smaller than nine. However, use small values with care because the
loss of precision and rounding affects all Rexx computations, including, for example, the computation of
new values for the control variable in DO loops.

11.2. Arithmetic Operators

434

Rexx arithmetic is performed by the operaters-, *, /, %, //, and *x (add, subtract, multiply, divide,
integer divide, remainder, and power).

Before every arithmetic operation, the terms operated upon have leading zeros removed (noting the
position of any decimal point, and leaving only one zero if all the digits in the number are zeros). They
are then truncated, if necessary, to DIGITS + 1 significant digits before being used in the computation.
The extra digit improves accuracy because it is inspected at the end of an operation, when a number is
rounded to the required precision. When a number is truncated, the LOSTDIGITS condition is raised if a
SIGNAL ON LOSTDIGITS condition trap is active. The operation is then carried out under up to double
that precision. When the operation is completed, the result is rounded, if necessary, to the precision
specified by the NUMERIC DIGITS instruction.

The values are rounded as follows: 5 through 9 are rounded up, and 0 through 4 are rounded down.

Chapter 11. Numbers and Arithmetic

11.2.1. Power

The ** (power) operator raises a number to a power, which can be positive, negativg rer power

must be a whole number. The second term in the operation must be a whole number and is rounded to
DIGITS digits, if necessary, as described undienits and Errors when Rexx Uses Numbers Direcly
negative, the absolute value of the power is used, and the result is inverted (that is, the number 1 is
divided by the result). For calculating the power, the number is multiplied by itself for the number of
times expressed by the power. Trailing zeros are then removed as though the result were divided by 1.

11.2.2. Integer Division

The % (integer divide) operator divides two numbers and returns the integer part of the result. The result
is calculated by repeatedly subtracting the divisor from the dividend as long as the dividend is larger than
the divisor. During this subtraction, the absolute values of both the dividend and the divisor are used: the
sign of the final result is the same as that which would result from regular division.

If the result cannot be expressed as a whole number, the operation is in error and fails--that is, the result
must not have more digits than the current setting of NUMERIC DIGITS. For exanque)000000%3

requires 10 digits for the result (3333333333) and would, therefore, faiHRIC DIGITS 9 were in

effect.

11.2.3. Remainder

The // (remainder) operator returns the remainder from an integer division and is defined to be the
residue of the dividend after integer division. The sign of the remainder, if nonzero, is the same as that of
the original dividend.

This operation fails under the same conditions as integer division, that is, if integer division on the same
two terms fails, the remainder cannot be calculated.

11.2.4. Operator Examples

/* With: NUMERIC DIGITS 5 */

12+7.00 -> 19.00
1.3-1.07 -> 0.23
1.3-2.07 -> -0.77
1.20%3 -> 3.60
7*3 -> 21
0.9%0.8 -> 0.72
1/3 -> 0.33333
2/3 -> 0.66667
5/2 -> 2.5
1/10 -> 0.1
12/12 -> 1

8.0/2 -> 4

2%%3 -> 8

2%*—-3 -> 0.125

435

Chapter 11. Numbers and Arithmetic

1.7%%8 -> 69.758
2%3 -> 0
2.1//3 -> 2.1
10%3 -> 3
10//3 -> 1
-10//3 -> -1
10.2//1 -> 0.2
10//0.3 -> 0.1
3.6//1.3 -> 1.0

11.3. Exponential Notation

436

For both large and small numbers, an exponential notation can be useful. For example:

numeric digits 5
say 54321%54321

would display2950800000 in the long form. Because this is misleading, the result is expressed as
2.9508E+9 instead.

The definition of numbers is, therefore, extended as follows:

D B bt +-—+-digits-------- to—m >
+-blanks-+ +-sign--+-------- +-+ +-digits.digits-+
+-blanks-+ +-.digits--—--——-- +
+-digits.—————-- +
D i +- - ><
+-E-—+------+--digits-+ +-blanks-+
+-sign-+

The integer following the& represents a power of ten that is to be applied to the numbek Tae be in
uppercase or lowercase.

Certain character strings are humbers even though they do not appear to be numericosuzh(8s
raised to the 123 power) and342 (1 raised to the 342 power). Also, a comparison SUCVEaS3=0E567
gives a true result of (0 is equal to 0). To prevent problems when comparing nonnumeric strings, use
the strict comparison operators.

Here are some examples:

12E7 = 120000000 /* Displays "1" #*/
12E-56 = 0.00012 /* Displays "1" */
-12e4 = -120000 /* Displays "1" */
0el123 = 0e456 /* Displays "1" */
0el23 == 0e456 /* Displays "O" */

The results of calculations are returned in either conventional or exponential form, depending on the
setting of NUMERIC DIGITS. If the number of places needed before the decimal point exceeds
DIGITS, or the number of places after the point exceeds twice DIGITS, the exponential form is used.
The exponential form the language processor generates always has a sign folloveing itherove

Chapter 11. Numbers and Arithmetic

readability. If the exponent i, the exponential part is omitted--that is, an exponential patofs not
generated.

You can explicitly convert numbers to exponential form, or force them to be displayed in the long form,
by using the FORMAT built-in function (s6e€ORMAT).

Scientific notation is a form of exponential notation that adjusts the power of ten so that the number
contains only one nonzero digit before the decimal point. Engineering notation is a form of exponential
notation in which up to three digits appear before the decimal point, and the power of ten is always a
multiple of three. The integer part can, therefore, range frahrough999. You can control whether
scientific or engineering notation is used with the following instruction:

+-SCIENTIFIC--——------—- +
>>-NUMERIC FORM--+ -- -t -- ><
+-ENGINEERING--—-------- +
R +--expression-+
+-VALUE-+

Scientific notation is the default.

/* after the instruction */
Numeric form scientific

123.45 * lell -> 1.2345E+13

/* after the instruction */
Numeric form engineering

123.45 x 1lell -> 12.345E+12

11.4. Numeric Comparisons

The comparison operators are listeddamparisonYou can use any of them for comparing numeric
strings. However, you should not use \==, —==, >> \>> —>>, <<, \<<, and-<< for comparing
numbers because leading and trailing blanks and leading zeros are significant with these operators.

Numeric values are compared by subtracting the two numbers (calculating the difference) and then
comparing the result with 0. That is, the operation:

A?Z
where? is any humeric comparison operator, is identical with:
(A - Z) 7 nOn

Itis, therefore, the difference between two numbers, when subtracted under Rexx subtraction rules, that
determines their equality.

Fuzz affects the comparison of two numbers. It controls how much two numbers can differ and still be
considered equal in a comparison. The FUZZ value is set by the following instruction:

>>-NUMERIC FUZZ-—+------------ +mm o - - ><

437

Chapter 11. Numbers and Arithmetic
+-expression-+

expressiomust result in a positive whole number or zero. The default is

Fuzz is to temporarily reduce the value of DIGITS. That is, the numbers are subtracted with a precision
of DIGITS minus FUZZ digits during the comparison. The FUZZ setting must always be less than
DIGITS.

If, for example, DIGITS =9 and FUZZ = 1, the comparison is carried out to 8 significant digits, just as
thoughNUMERIC DIGITS 8 had been putin effect for the duration of the operation.

Example:

Numeric digits 5
Numeric fuzz 0O

say 4.9999 = 5 /* Displays "O" */
say 4.9999 < 5 /* Displays "1" */
Numeric fuzz 1

say 4.9999 =5 /* Displays "1" */
say 4.9999 < 5 /* Displays "0" */

11.5. Limits and Errors when Rexx Uses Numbers
Directly

When Rexx uses numbers directly, that is, numbers that have not been involved in an arithmetic
operation, they are rounded, if necessary, according to the setting of NUMERIC DIGITS.

The following table shows which humbers must be whole numbers and what their limits are:

Table 11-1. Whole Number Limits

Power values (right-hand operand of the power| 999999999

operator)

Values ofexprr andexprf in the DO instruction | The current numeric precision (up to 999999999)
Values given for DIGITS or FUZZ in the 999999999 (Note: FUZZ must always be less than
NUMERIC instruction DIGITS.)

Positional patterns in parsing templates 999999999

Number given fooptionin the TRACE instruction 999999999

When Rexx uses numbers directly, the following types of errors can occur:

« Overflow or underflow.

This error occurs if the exponential part of a result exceeds the range that the language processor can
handle, when the result is formatted according to the current settings of NUMERIC DIGITS and
NUMERIC FORM. The language defines a minimum capability for the exponential part, namely the
largest number that can be expressed as an exact integer in default precision. Because the default

438

Chapter 11. Numbers and Arithmetic

precision is9, you can use exponents in the rarge999999 through999999999.

Because this allows for (very) large exponents, overflow or underflow is treated as a syntax error.

- Insufficient storage.

Storage is needed for calculations and intermediate results, and if an arithmetic operation fails because
of lack of storage. This is considered as a terminating error.

439

Chapter 11. Numbers and Arithmetic

440

Chapter 12. Conditions and Condition Traps

A condition is an event or state that CALL ON or SIGNAL ON can trap. A condition trap can modify the
flow of execution in a Rexx program. Condition traps are turned on or off using the ON or OFF
subkeywords of the SIGNAL and CALL instructions (S8ALL andSIGNAL).

S>>t =CAL L e >
+-SIGNAL-+

>--+-0FF--+-condition--——-----—-- tomm s +-—y = ><
| +-USER--usercondition-+
+-0N--+-condition----- to—tmm e +-+

+-USER--usercondition-+ +-NAME--trapname-+

condition userconditionandtrapnameare single symbols that are taken as constants. Following one of
these instructions, a condition trap is set to either ON (enabled) or OFF (disabled). The initial setting for
all condition traps is OFF.

If a condition trap is enabled and the specifieshditionor userconditioroccurs, control passes to the
routine or labetrapnamef you have specifietrapname Otherwise, control passes to the routine or
labeluserconditioror condition CALL or SIGNAL is used, depending on whether the most recent trap
for the condition was set using CALL ON or SIGNAL ON, respectively.

Note: If you use CALL, the trapname can be an internal label, a built-in function, or an external
routine. If you use SIGNAL, the trapname can only be an internal label.

The conditions and their corresponding events that can be trapped are:

ANY

traps any condition that a more specific condition trap does not trap. For example, if NOVALUE is
raised and there is no NOVALUE trap enabled, but there is a SIGNAL ON ANY trap, the ANY trap
is called for the NOVALUE condition. For example, a CALL ON ANY trap is ignored if
NOVALUE is raised because CALL ON NOVALUE is not allowed.

ERROR

raised if a command indicates an error condition upon return. It is also raised if any command
indicates failure and none of the following is active:

« CALL ON FAILURE

+ SIGNAL ON FAILURE
- CALL ON ANY

+ SIGNAL ON ANY

The condition is raised at the end of the clause that called the command but is ignored if the
ERROR condition trap is already in the delayed state. The delayed state is the state of a condition
trap when the condition has been raised but the trap has not yet been reset to the enabled (ON) or
disabled (OFF) state.

441

Chapter 12. Conditions and Condition Traps

442

FAILURE

raised if a command indicates a failure condition upon return. The condition is raised at the end of
the clause that called the command but is ignored if the FAILURE condition trap is already in the
delayed state.

An attempt to enter a command to an unknown subcommand environment also raises a FAILURE
condition.

HALT

raised if an external attempt is made to interrupt and end execution of the program. The condition is
usually raised at the end of the clause that was processed when the external interruption occurred.
When a Rexx program is running in a full-screen or command prompt session, the Ctrl+Break key
combination raises the halt condition. However, if Ctrl+Break is pressed while a command or
non-Rexx external function is processing, the command or function ends.

Notes:

1. Application programs that use the Rexx language processor might use the RXHALT exit or the
RexxStart programming interface to halt the execution of a Rexx macro. (S€p#reObject
Rexx: Programming Guidfr details about exits.)

2.0nly SIGNAL ON HALT or CALL ON HALT can trap error 4, described fppendix C. Error
Numbers and Messages

LOSTDIGITS
raised if a number used in an arithmetic operation has more digits than the current setting of
NUMERIC DIGITS. Leading zeros are not counted in this comparison. You can specify the
LOSTDIGITS condition only for SIGNAL ON.
NOMETHOD
raised if an object receives a message for which it has no method defined, and the object does not
have an UNKNOWN method. You can specify the NOMETHOD condition only for SIGNAL ON.
NOSTRING
raised when the language processor requires a string value from an object and the object does not
directly provide a string value. S&equired String Valuefor more information. You can specify
the NOSTRING condition only for SIGNAL ON.
NOTREADY
raised if an error occurs during an input or output operation.E3s@'s during Input and Output
This condition is ignored if the NOTREADY condition trap is already in the delayed state.
NOVALUE
raised if an uninitialized variable is used as:

« Aterm in an expression

Chapter 12. Conditions and Condition Traps

« Thenamefollowing the VAR subkeyword of a PARSE instruction

« A variable reference in a parsing template, an EXPOSE instruction, a PROCEDURE instruction,
or a DROP instruction

- A method selection override specifier in a message term

Note: SIGNAL ON NOVALUE can trap any uninitialized variables except tails in compound variables.

/* The following does not raise NOVALUE. */
signal on novalue

a.=0

say a.z

say "NOVALUE is not raised."

exit

novalue:
say "NOVALUE is raised."

You can specify this condition only for SIGNAL ON.

SYNTAX

raised if any language-processing error is detected while the program is running. This includes all
kinds of processing errors:

« True syntax errors

« "Run-time" errors (such as attempting an arithmetic operation on honnumeric terms)
« Syntax errors propagated from higher call or method invocation levels

- Untrapped HALT conditions

« Untrapped NOMETHOD conditions

You can specify this condition only for SIGNAL ON.

Notes:

1. SIGNAL ON SYNTAX cannot trap the errors 3 and 5.

2. SIGNAL ON SYNTAX can trap the errors 6 and 30 only if they occur during the execution of
an INTERPRET instruction.

For information on these errors, referoror Numbers and Messages

USER

raised if a condition specified on the USER option of CALL ON or SIGNAL ON occurs. USER
conditions are raised by a RAISE instruction that specifies a USER option with the same
userconditiomame. The specifiedserconditiorcan be any symbol, including those specified as
possible values forondition

Any ON or OFF reference to a condition trap replaces the previous state (ON, OFF, or DELAY, and any
trapnam@ of that condition trap. Thus, a CALL ON HALT replaces any current SIGNAL ON HALT

443

Chapter 12. Conditions and Condition Traps

(and a SIGNAL ON HALT replaces any current CALL ON HALT), a CALL ON or SIGNAL ON with a
new trap hame replaces any previous trap name, and any OFF reference disables the trap for CALL or
SIGNAL.

12.1. Action Taken when a Condition Is Not Trapped

When a condition trap is currently disabled (OFF) and the specified condition occurs, the default action
depends on the condition:

« For HALT and NOMETHOD, a SYNTAX condition is raised with the appropriate Rexx error number.

« For SYNTAX conditions, the clause in error is terminated, and a SYNTAX condition is propagated to
each CALL instruction, INTERPRET instruction, message instruction, or clause with function or
message invocations active at the time of the error, terminating each instruction if a SYNTAX trap is
not active at the instruction level. If the SYNTAX condition is not trapped at any of the higher levels,
processing stops, and a message seer Numbers and Messagetescribing the nature of the event
that occurred usually indicates the condition.

- For all other conditions, the condition is ignored and its state remains OFF.

12.2. Action Taken when a Condition Is Trapped

When a condition trap is currently enabled (ON) and the specified condition occurs, at@fdiame
or SIGNAL trapnameinstruction is processed automatically. You can specifytidggnameafter the
NAME subkeyword of the CALL ON or SIGNAL ON instruction. If you do not speciffrapname the
name of the condition itself (for example, ERROR or FAILURE) is used.

For example, the instructiotall on error enables the condition trap for the ERROR condition. If the
condition occurred, then a call to the routine identified by the name ERROR is made. The instruction
call on error name commanderror Would enable the trap and call the routine COMMANDERROR if
the condition occurred, and the caller usually receives an indication of failure.

The sequence of events, after a condition has been trapped, varies depending on whether a SIGNAL or
CALL is processed:

- If the action taken is a SIGNAL, execution of the current instruction ceases immediately, the condition
is disabled (set to OFF), and SIGNAL proceeds as usually$s8alAL).

If any new occurrence of the condition is to be trapped, a new CALL ON or SIGNAL ON instruction
for the condition is required to re-enable it when the label is reached. For example, if SIGNAL ON
SYNTAX is enabled when a SYNTAX condition occurs, a usual syntax error termination occurs if the
SIGNAL ON SYNTAX label name is not found.

- Ifthe action taken is a CALL, theALL trapnameproceeds in the usual way (S€ALL) when the
instruction completes. The call does not affect the special variable RESULT. If the routine should
RETURN any data, that data is ignored.

444

Chapter 12. Conditions and Condition Traps

When the condition is raised, and before the CALL is made, the condition trap is put into a delayed
state. This state persists until the RETURN from the CALL, or until an explicit CALL (or SIGNAL)
ON (or OFF) is made for the condition. This delayed state prevents a premature condition trap at the
start of the routine called to process a condition trap. When a condition trap is in the delayed state, it
remains enabled, but if the condition is raised again, it is either ignored (for ERROR and FAILURE)
or (for the other conditions) any action (including the updating of the condition information) is
delayed until one of the following events occurs:

1. A CALL ON or SIGNAL ON for the delayed condition is processed. In this case, a CALL or
SIGNAL takes place immediately after the new CALL ON or SIGNAL ON instruction has been
processed.

2.A CALL OFF or SIGNAL OFF for the delayed condition is processed. In this case, the condition
trap is disabled and the default action for the condition occurs at the end of the CALL OFF or
SIGNAL OFF instruction.

3. A RETURN is made from the subroutine. In this case, the condition trap is no longer delayed and
the subroutine is called again immediately.

On RETURN from the CALL, the original flow of execution is resumed, that is, the flow is not
affected by the CALL.

Notes:

1.In all cases, the condition is raised immediately upon detection. If SIGNAL ON traps the
condition, the current instruction is ended, if necessary. Therefore, the instruction during which an
event occurs can only be partly processed. For example, if SYNTAX is raised during the
evaluation of the expression in an assignment, the assignment does not take place. Note that the
CALL for traps for which CALL ON is enabled can only occur at clause boundaries. If these
conditions arise in the middle of an INTERPRET instruction, execution of INTERPRET can be
interrupted and resumed later. Similarly, other instructions, for example DO or SELECT, can be
temporarily interrupted by a CALL at a clause boundary.

2. The state (ON, OFF, or DELAY, and amapnamé of each condition trap is saved on entry to a
subroutine and is then restored on RETURN. This means that CALL ON, CALL OFF, SIGNAL
ON, and SIGNAL OFF can be used in a subroutine without affecting the conditions set up by the
caller. SeeCALL for details of other information that is saved during a subroutine call.

3. The state of condition traps is not affected when an external routine is called by a CALL, even if
the external routine is a Rexx program. On entry to any Rexx program, all condition traps have an
initial setting of OFF.

4. While user input is processed during interactive tracing, all condition traps are temporarily set
OFF. This prevents any unexpected transfer of control--for example, should the user accidentally
use an uninitialized variable while SIGNAL ON NOVALUE is active. For the same reason, a
syntax error during interactive tracing does not cause the exit from the program but is trapped
specially and then ignored after a message is given.

5. The system interface detects certain execution errors either before the execution of the program
starts or after the program has ended. SIGNAL ON SYNTAX cannot trap these errors.

Note that a label is a clause consisting of a single symbol followed by a colon. Any number of
successive clauses can be labels; therefore, several labels are allowed before another type of clause.

445

Chapter 12. Conditions and Condition Traps

12.3. Condition Information

446

When a condition is trapped and causes a SIGNAL or CALL, this becomes the current trapped condition,
and certain condition information associated with it is recorded. You can inspect this information by
using the CONDITION built-in function (seEONDITION).

The condition information includes:

« The name of the current trapped condition

« The name of the instruction processed as a result of the condition trap (CALL or SIGNAL)
- The status of the trapped condition

- A descriptive string (sePescriptive Stringsassociated with that condition

- Optional additional object information (séelditional Object Informatioh

The current condition information is replaced when control is passed to a label as the result of a
condition trap (CALL ON or SIGNAL ON). Condition information is saved and restored across
subroutine or function calls, including one because of a CALL ON trap and across method invocations.
Therefore, a routine called by CALL ON can access the appropriate condition information. Any previous
condition information is still available after the routine returns.

12.3.1. Descriptive Strings

The descriptive string varies, depending on the condition trapped:

ERROR

The string that was processed and resulted in the error condition.

FAILURE

The string that was processed and resulted in the failure condition.

HALT

Any string associated with the halt request. This can be the null string if no string was provided.

LOSTDIGITS
The number with excessive digits that caused the LOSTDIGITS condition.

NOMETHOD

The name of the method that could not be found.

NOSTRING

The readable string representation of the object causing the NOSTRING condition.

Chapter 12. Conditions and Condition Traps

NOTREADY

The name of the stream being manipulated when the error occurred and the NOTREADY condition
was raised. If the stream was a default stream with no defined name, then the null string might be
returned.

NOVALUE

The derived name of the variable whose attempted reference caused the NOVALUE condition.

SYNTAX

Any string the language processor associated with the error. This can be the null string if you did
not provide a specific string. Note that the special variables RC and SIGL provide information on
the nature and position of the processing error. You can enable the SYNTAX condition trap only by
using SIGNAL ON.

USER

Any string specified by the DESCRIPTION option of the RAISE instruction that raised the
condition. If a description string was not specified, a null string is used.

12.3.2. Additional Object Information

The language processor can provide additional information, depending on the condition trapped:

NOMETHOD
The object that raised the NOMETHOD condition.

NOSTRING
The object that caused the NOSTRING condition.

NOTREADY
The stream object that raised the NOTREADY condition.

SYNTAX

An array containing the objects substituted into the secondary error message (if any) for the syntax
error. If the message did not contain substitution values, a zero element array is used.

USER

Any object specified by an ADDITIONAL or ARRAY option of the RAISE instruction that raised
the condition.

12.3.3. The Special Variable RC

When an ERROR or FAILURE condition is trapped, the Rexx special variable RC is set to the command
return code before control is transferred to the target label (whether by CALL or by SIGNAL).

447

Chapter 12. Conditions and Condition Traps

448

Similarly, when SIGNAL ON SYNTAX traps a SYNTAX condition, the special variable RC is set to the
syntax error number before control is transferred to the target label.

12.3.4. The Special Variable SIGL

Following any transfer of control because of a CALL or SIGNAL, the program line number of the clause
causing the transfer of control is stored in the special variable SIGL. If the transfer of control is because
of a condition trap, the line number assigned to SIGL is that of the last clause processed (at the current
subroutine level) before the CALL or SIGNAL took place. The setting of SIGL is especially useful after

a SIGNAL ON SYNTAX trap when the number of the line in error can be used, for example, to control a
text editor. Typically, code following the SYNTAX label can PARSE SOURCE to find the source of the
data and then call an editor to edit the source file, positioned at the line in error. Note that in this case you
might have to run the program again before any changes made in the editor can take effect.

Alternatively, SIGL can help determine the cause of an error (such as the occasional failure of a function
call) as in the following example:

signal on syntax

a=a+1 /* This is to create a syntax error */
say "SYNTAX error not raised"

exit

/* Standard handler for SIGNAL ON SYNTAX */

syntax:

say "Rexx error" rc "in line" sigl":" "ERRORTEXT"(rc)
say "SOURCELINE" (sigl)

trace ?r; nop

This code first displays the error code, line number, and error message. It then displays the line in error,
and finally drops into debug mode to let you inspect the values of the variables used at the line in error.

12.3.5. Condition Objects

A condition object is a directory returned by the Object option of the CONDITION built-in function.

This directory contains all information currently available on a trapped condition. The information varies
with the trapped condition. The NIL object is returned for any entry not available to the condition. The
following entries can be found in a condition object:

ADDITIONAL

The additional information object associated with the condition. This is the same object that the
Additional option of the CONDITION built-in function returns. The ADDITIONAL information
may be specified with the ADDITIONAL or ARRAY options of the RAISE instruction.

DESCRIPTION

The string describing the condition. The Description option of the CONDITION built-in function
also returns this value.

Chapter 12. Conditions and Condition Traps

INSTRUCTION

The keyword for the instruction executed when the condition was trapped, eittieor SIGNAL.
The Instruction option of the CONDITION built-in function also returns this value.

CONDITION

The name of the trapped condition. The Condition name option of the CONDITION built-in
function also returns this value.

RESULT
Any result specified on the RETURN or EXIT options of a RAISE instruction.

RC
The major Rexx error number for a SYNTAX condition. This is the same error number assigned to
the special variable RC.

CODE
The detailed identification of the error that caused a SYNTAX condition. This number is a
nonnegative number in the forrm.nnn The integer portion is the Rexx major error number (the
same value as the RC entry). The fractional portion is a subcode that gives a precise indication of
the error that occurred.

ERRORTEXT
The primary error message for a SYNTAX condition. This is the same message available from the
ERRORTEXT built-in function.

MESSAGE
The secondary error message for a SYNTAX condition. The message also contains the content of
the ADDITIONAL information.

POSITION
The line number in source code at which a SYNTAX condition was raised.

PROGRAM
The name of the program where a SYNTAX condition was raised.

TRACEBACK
A single-index list of formatted traceback lines.

PROPAGATED

The valueo (false) if the condition was raised at the same level as the condition trap or thetvalue
(true) if the condition was reraised with RAISE PROPAGATE.

449

Chapter 12. Conditions and Condition Traps

450

Chapter 13. Concurrency

Conceptually, each Rexx object is like a small computer with its own processor to run its methods, its
memory for object and method variables, and its communication links to other objects for sending and
receiving messages. This is object-based concurrency. It lets more than one method run at the same time.
Any number of objects can be active (running) at the same time, exchanging messages to communicate
with, and synchronize, each other.

13.1. Early Reply

Early reply provides concurrent processing. A running method returns control, and possibly a result, to
the point from which it was called; meanwhile it continues running. The following figure illustrates this
concept.

Figure 13-1. Early Reply

MWethod & Method B Possible output:
o > Hello
do 3 Hello
say 'Hello : Goodbye
o Hello
. Goodbye
Heply earlyrasult Goodbys
do 3
say 'Goodbye’
and

Method A includes a call to Method B. Method B contains a REPLY instruction. This returns control and
a result to method A, which continues processing with the line after the call to Method B. Meanwhile,
Method B also continues running.

The chains of execution represented by method A and method B are called activities. An activity is a
thread of execution that can run methods concurrently with methods on other activities.

An activity contains a stack of invocations that represent the Rexx programs running on the activity. An
invocation can be a main program invocation, an internal function or subroutine call, an external function
or subroutine call, an INTERPRET instruction, or a message invocation. An invocation is activated when
an executable unit is invoked and removed (popped) when execution completestarlthBeply

figure, the programs begins with a single activity. The activity contains a single invocation, method A.
When method A invokes method B, a second invocation is added to the activity.

When method B issues a REPLY, a new activity is created (activity 2). Method B’s invocation is removed
from activity 1, and pushed on to activity 2. Because activities can execute concurrently, both method A
and method B continue processing. The following figures illustrate this concept.

451

Chapter 13. Concurrency

452

Figure 13-2. Before REPLY

Method &
y~B
do 3

say 'Hello'
end

Mathod B

Reply sarlyresult
do 3

say 'Goodbys'
and

Figure 13-3. After REPLY

Sctivity 1 Activity 2
Method & Method B
v~B
do 3
say 'Hello' ;
end Heply sarlyrasult
do 3
say "Goodbys!
end

Here is an example of using early reply to run methods concurrently.
/* Example of early reply */

objectl = .example“new
object2 = .example“new

say objectl~repeat(10, "Object 1 running")
say object2”repeat(10, "Object 2 running")
say "Main ended."

Chapter 13. Concurrency
exit

::class example
::method repeat
use arg reps,msg
reply "Repeating" msg"," reps "times."
do reps
say msg
end

13.2. Message Obijects

A message object (s@the Message Claks an intermediary between two objects that enables
concurrent processing. All objects inherit the START method (g&g&from the object class. To obtain

a message object, an object sends a START message to the object to which the message object will
convey a message. The message is an argument to the START message as in the following example:

a=p~start ("REVERSE")

This line of code creates a message objecdnd sends it a start message. The message object then sends
the REVERSE message to objecObjectp receives the message, performs any needed processing, and
returns a result to message objecMeanwhile the object that obtained message ohjecntinues its
processing. When message objectturns, it does not interrupt the object that obtained it. It waits until
this object requests the information. Here is an example of using a message object to run methods
concurrently.

/* Example of using a message object */

objectl = .example“new

object2 = .example“new

a = objectl”start ("REPEAT",10,"Object 1 running")
b = object2”start ("REPEAT",10,"Object 2 running")

say a"result

say b result

say "Main ended."
exit

::class example
::method repeat
use arg reps,msg
do reps
say msg
end
return "Repeated" msg"," reps "times."

453

Chapter 13. Concurrency

13.3. Default Concurrency

454

The instance methods of a class use the EXPOSE instruction to define a set of object variables. This
collection of variables belonging to an object is called its object variable pool. The methods a class

defines and the variables these methods can access is called a scope. Rexx’s default concurrency exploits
the idea of scope. The object variable pool is a set of object subpools, each representing the set of
variables at each scope of the inheritance chain of the class from which the object was created. Only
methods at the same scope can access object variables at any particular scope. This prevents any name
conflicts between classes and subclasses, because the object variables for each class are in different
scopes.

If you do not change the defaults, only one method of a given scope can run on a single object at a time.
Once a method is running on an object, the language processor blocks other methods on other activities
from running in the same object at the same scope until the method that is running completes. Thus, if
different activities send several messages within a single scope to an object the methods run sequentially.

The next example shows how the default concurrency works.

/* Example of default concurrency for methods of different scopes */
objectl = .subexample“new

say objectl"repeat(8, "Object 1 running call 1") /x These calls run */
say objectl”repeater(8, "Object 1 running call 2") /* concurrently */
say "Main ended."

exit

::class example
::method repeat
use arg reps,msg
reply "Repeating" msg"," reps "times."
do reps
say msg
end

::class subexample subclass example
::method repeater
use arg reps,msg
reply "Repeating" msg"," reps "times."
do reps

say msg
end

The preceding example produces output such as the following:

Repeating Object 1 running call 1, 8 times.
Object 1 running call 1

Repeating Object 1 running call 2, 8 times.
Object 1 running call 1

Object 1 running call 2

Main ended.

Object 1 running call 1

Chapter 13. Concurrency

Object 1 running call 2
Object 1 running call 1
Object 1 running call 2
Object 1 running call 1
Object 1 running call 2
Object 1 running call 1
Object 1 running call 2
Object 1 running call 1
Object 1 running call 2
Object 1 running call 1
Object 1 running call 2
Object 1 running call 2

The following example shows that methods of the same scope do not run concurrently by default.

/* Example of methods with the same scope not running concurrently*/
objectl = .example“new

say objectl"repeat(10,"Object 1 running call 1") /* These calls */
say objectl”repeat(10,"Object 1 running call 2") /* cannot run x/
say "Main ended." /* concurrently. */
exit

::class example
::method repeat
use arg reps,msg
reply "Repeating" msg"," reps "times."
do reps
say msg
end

The REPEAT method includes a REPLY instruction, but the methods for the two REPEAT messages in
the example cannot run concurrently. This is because REPEAT is called twice at the same scope and
requires exclusive access to the object variable pool. The REPLY instruction causes the first REPEAT
message to transfer its exclusive access to the object variable pool to a new activity and continue
execution. The second REPLY message also requires exclusive access and waits until the first method
completes.

If the original activity has more than one method active (nested method calls) with exclusive variable
access, the first REPLY instruction is unable to transfer its exclusive access to the new activity and must
wait until the exclusive access is again available. This may allow another method on the same object to
run while the first method waits for exclusive access.

13.3.1. Sending Messages within an Activity

Whenever a message is invoked on an object, the activity acquires exclusive access (a lock) for the
object’s scope. Other activities that send messages to the same object that required the locked scope
waits until the first activity releases the lock.

Suppose object A is running method Y, which includes:

455

Chapter 13. Concurrency
self~z

Sequential processing does not allow method Z to begin until method Y has completed. However,

method Y cannot complete until method Z runs. A similar situation occurs when a subclass’s overriding
method does some processing and passes a message to its superclasses’ overriding method. Both cases
require a special provision: If an invocation running on an activity sends another message to the same
object, this method is allowed to run because the activity has already acquired the lock for the scope.

This allows nested, nonconcurrent method invocations on a single activity without causing a deadlock
situation. The language processor regards these additional messages as subroutine calls.

Here is an example showing the special treatment of single activity messages. The REPEATER and
REPEAT methods have the same scope. REPEAT runs on the same object at the same time as the
REPEATER method because a message to SELF runs the REPEAT method. The language processor
treats this as a subroutine call rather than as concurrently running two methods.

/* Example of sending message to SELF x/

objectl
object2 = .example“new

.example new

say objectl"repeater(10, "Object 1 running")
say object2 repeater(10, "Object 2 running")

say "Main ended."
exit

::class example
::method repeater
use arg reps,msg
reply "Entered repeater."
say self”repeat(reps,msg)
::method repeat
use arg reps,msg
do reps
say msg
end
return "Repeated" msg"," reps "times."

The activity locking rules also allow indirect object recursion. The following figure illustrates indirect
object recursion.

456

Chapter 13. Concurrency

Figure 13-4. Indirect Object Recursion

Method N
B~ P Mathod M

471 A~O

Method M in object A sends object B a message to run method N. Method N sends a message to object
A, asking it to run method O. Meanwhile, method M is still running in object A and waiting for a result
from method N. A deadlock would result. Because the methods are all running on the same activity, no
deadlock occurs.

13.4. Using Additional Concurrency Mechanisms

Rexx has additional concurrency mechanisms that can add full concurrency so that more than one
method of a given scope can run in an object at a time:

« The SETUNGUARDED method of the Method class and the UNGUARDED option of the METHOD
directive provide unconditional concurrency

« GUARD OFF and GUARD ON control a method'’s exclusive access to an object’s scope

13.4.1. SETUNGUARDED Method and UNGUARDED Option

The SETUNGUARDED method of the Method class and the UNGUARDED option of the ::METHOD
directive control locking of an object’s scope when a method is invoked. Both let a method run even if
another method is active on the same object.

Use the SETUNGUARDED method or UNGUARDED option only for methods that do not need
exclusive use of their object variable pool, that is, methods whose execution can interleave with another
method’s execution without affecting the object’s integrity. Otherwise, concurrent methods can produce
unexpected results.

To use the SETUNGUARDED method for a method you have created with the NEW method of the
Method class, you specify:

methodname ~SETUNGUARDED

(SeeSETUNGUARDEDfor details about SETUNGUARDED.)

457

Chapter 13. Concurrency

458

Alternately, you can define a method with the ::METHOD directive, specifying the UNGUARDED
option:

: :METHOD methodname UNGUARDED

13.4.2. GUARD ON and GUARD OFF

You might not be able to use the SETUNGUARDED method or UNGUARDED option in all cases. A
method might need exclusive use of its object variables, then allow methods on other activities to run,
and perhaps later need exclusive use again. You can use GUARD ON and GUARD OFF to alternate
between exclusive use of an object’s scope and allowing other activities to use the scope.

By default, a method must wait until a currently running method is finished before it begins. GUARD
OFF lets another method (running on a different activity) that needs exclusive use of the same object
variables become active on the same object. @gARD for more information.

13.4.3. Guarded Methods

Concurrency requires the activities of concurrently running methods to be synchronized. Critical data
must be safeguarded so diverse methods on other activities do not perform concurrent updates. Guarded
methods satisfy both these needs.

A guarded method combines the UNGUARDED option of the ::METHOD directive or the
SETUNGUARDED method of the Method class with the GUARD instruction.

The UNGUARDED option and the SETUNGUARDED method both provide unconditional concurrency.
Including a GUARD instruction in a method makes concurrency conditional:

GUARD ON WHEN ezpression

If the expressioron the GUARD instruction evaluates tdqtrue), the method continues to run. If the
expressioron the GUARD instruction evaluates ¢qfalse), the method does not continue running.
GUARD reevaluates thexpressiorwhenever the value of an exposed object variable changes. When the
expression evaluates tothe method resumes running. You can use GUARD to block running any
method when proceeding is not safe. (82¢ARD for details about GUARD.)

Note: It is important to ensure that you use an expression that can be fulfilled. If the condition
expression cannot be met, GUARD ON WHEN puts the program in a continuous wait condition. This
can occur in particular when several activities run concurrently. In this case, a second activity can
make the condition expression invalid before GUARD ON WHEN can use it.

To avoid this, ensure that the GUARD ON WHEN statement is executed before the condition is set to
true. Keep in mind that the sequence of running activities is not determined by the calling sequence, so it
is important to use a logic that is independent of the activity sequence.

Chapter 13. Concurrency

13.4.4. Additional Examples

The following example uses REPLY in a method for a write-back cache.

/* Method Write_Back */
use arg data /* Save data to be written */
reply 0 /* Tell the sender all was 0K */
self~disk_write(data) /* Now write the data */

The REPLY instruction returns control to the point at which method Write_Back was called, returning
the resulo. The caller of method Write_Back continues processing from this point; meanwhile, method
Write_Back also continues processing.

The following example uses a message object. It reads a line asynchronously into the vasitilge:

mymsg = infile~start("READLINE") /* Gets message object to carry */

/* message to INFILE */
/* do other work */
nextline=mymsg result /* Gets result from message object */

This creates a message object that waits for the read to finish while the sender continues with other work.
When the line is read, th@msg message object obtains the result and holds it until the sender requests it.

Semaphores and monitors (bounded buffers) synchronize concurrency processes. Giving readers and
writers concurrent access is a typical concurrency problem. The following sections show how to use
guarded methods to code semaphore and monitor mechanisms and to provide concurrency for readers
and writers.

13.4.4.1. Semaphores

A semaphore is a mechanism that controls access to resources, for example, preventing simultaneous
access. Synchronization often uses semaphores. Here is an example of a semaphore class:

Figure 13-5. Example of a Rexx Semaphore Class

/***/

/* A Rexx Semaphore Class. */
/* */
/* This file implements a semaphore class in Rexx. The class is defined to */
/* the Global Rexx Environment. The following methods are defined for */
/* this class: */
/* init - Initializes a new semaphore. Accepts the following positional */
/* parameters: */
/* 'name' - global name for this semaphore */
/* if named default to set name in */
/% the class semDirectory */
/* noshare - do not define named semaphore */
/* in class semDirectory */
/* Initial state (0 or 1) */
/* setInitialState - Allow for subclass to have some post-initialization, */
/* and do setup based on initial state of semaphore */
/* Waiting - Is the number of objects waiting on this semaphore. */
/* Shared - Is this semaphore shared (Global). */

459

Chapter 13. Concurrency

460

/* Named - Is this semaphore named. */
/* Name - Is the name of a named semaphore. */
/* setSem - Sets the semaphore and returns previous state. */
/* resetSem - Sets state to unSet. */
/* querySem - Returns current state of semaphore. */
/* */
/* SemaphoreMeta - Is the metaclass for the semaphore classes. This class is */
/* set up so that when a namedSemaphore is shared, it maintains these */
/* named/shared semaphores as part of its state. These semaphores are */
/* maintained in a directory, and an UNKNOWN method is installed on the */
/* class to forward unknown messages to the directory. In this way the */
/* class can function as a class and "like" a directory, so [] syntax can */
/* be used to retrieve a semaphore from the class. */
/* */
/* */
/* The following are in the subclass EventSemaphore. */
/* */
/* Post - Posts this semaphore. */
/* Query - Queries the number of posts since the last reset. */
/* Reset - Resets the semaphore. */
/* Wait - Waits on this semaphore. */
/* */
/* */
/* The following are in the subclass MutexSemaphore */
/* */
/* requestMutex - Gets exclusive use of semaphore. */
/* releaseMutex - Releases to allow someone else to use semaphore. */
/* NOTE: Currently anyone can issue a release (need not be the owner). */
//rskokokskok kskskok ok sk kok sk skl sk ok stk sk ok sk sk ke skskok stk s ok sk ksl skl ok stk sk sk sk ok skskosk ok sk sk ok skok ki sk sk ok ok skok ok /
/* */
/* === Start of Semaphore class. ===== %/
/* */
::class SemaphoreMeta subclass class
::method init
expose semDict
/* Be sure to initialize parent x/
.message new(self, .array~of ("INIT", super), "a", arg(l,"a")) send
semDict = .directory™new
::method unknown
expose semDict
use arg msgName, args
/* Forward all unknown messages */
/* to the semaphore dictionary x/

.message new(semDict, msgName, "a", args) send
if var("RESULT") then

return result
else

return

::class Semaphore subclass object metaclass SemaphoreMeta

::method init

expose sem waits shared name

use arg semname, shr, state

waits = 0
name = ""
shared = 0

sem = 0

if state = 1 Then
sem = 1

if VAR("SEMNAME") & semname \= "" Then Do

name = semname

if shr \= "NOSHARE" Then Do

shared = 1
self~class[name] = self
End

End
self~setInitialState(sem)

::method setInitialState

nop

::method setSem
expose sem
oldState = sem
sem = 1

return oldState

::method resetSem
expose sem

sem = 0

return O

::method querySem
expose sem
return sem

: :method shared
expose shared
return shared

: :method named
expose name

if name = "" Then return O
Else return 1

/*
/*
/*
/*
/*
/*
/*
/*

/*
/*

/*

/*
/*

/*

/*

/*
/*
/*

Chapter 13. Concurrency

No one waiting

Assume unnamed

Assume not shared

Default to not posted

Should initial state be set?
Was a name specified?

Yes, so set the name

Do we want to share this sem?

Yes, mark it shared
Shared add to semDict

Initialize initial state

This method intended to be
overridden by subclasses

Set new state to 1

Return true 1 or false 0

Does semaphore have a name?
No, not named
Yes, it is named

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

*/

*/
*/

*/

*/

*/
*/
*/

461

Chapter 13. Concurrency

: :method name
expose name
return name /* Return name or "" */

::method incWaits
expose waits
waits = waits + 1 /* One more object waiting */

::method decWaits
expose Waits
waits = waits - 1 /* One object less waiting x/

::method Waiting
expose Waits

return waits /* Return number of objects waiting */
/* */
/* === Start of EventSemaphore class. === x/
/* */

::class EventSemaphore subclass Semaphore public
::method setInitialState

expose posted posts

use arg posted

if posted then posts =1
else posts = 0

::method post
expose posts posted

self“setSem /* Set semaphore state */
posted = 1 /* Mark as posted x/
reply

posts = posts + 1 /* Increase the number of posts x/

::method wait
expose posted

self~incWaits /* Increment number waiting x/
guard off

guard on when posted /* Now wait until posted x/
reply /* Return to caller x/
self“decWaits /* Cleanup, 1 less waiting */

: :method reset
expose posts posted

posted = self resetSem /* Reset semaphore x/
reply /* Do an early reply x/
posts = 0 /* Reset number of posts */

::method query
expose posts

462

Chapter 13. Concurrency

/* Return number of times x/

return posts /* Semaphore has been posted x/
/* */
/* === Start of MutexSemaphore class. === x/
/* */

:class MutexSemaphore subclass Semaphore public

::method setInitialState
expose owned
use arg owned

::method requestMutex
expose Owned

Do forever /* Do until we get the semaphore */
owned = self”setSem
if Owned = 0 /* Was semaphore already set? x/
Then leave /* Wasn't owned; we now have it */
else Do
self“incWaits
guard off /* Turn off guard status to let */
/* others come in */
guard on when \Owned /* Wait until not owned and get */
/* guard x/
self“decWaits /* One less waiting for MUTEX */
End

/* Go up and see if we can get it */
End

::method releaseMutex
expose owned
owned = self”resetSem /* Reset semaphore x/

Note: There are functions available that use system semaphores. See SysCreateEventSem, and
SysCreateMutexSem.

13.4.4.2. Monitors (Bounded Buffer)

A monitor object consists of a number of client methods, WAIT and SIGNAL methods for client
methods to use, and one or more condition variables. Guarded methods provide the functionality of
monitors. Do not confuse this with the Monitor class ($&e Monitor Clask

::method init

/* Initialize the bounded buffer */
expose size in out n

use arg size

463

Chapter 13. Concurrency

::method append unguarded

/* Add to the bounded buffer if not full */
expose n size b. in

guard on when n < size

use arg b.in

in = in//size+1

n = n+l

::method take

/* Remove from the bounded buffer if not empty */
expose n b. out size

guard on when n > O

reply b.out

out = out//size+l

n = n-1

13.4.4.3. Readers and Writers

The concurrency problem of the readers and writers requires that writers exclude writers and readers,
whereas readers exclude only writers. The UNGUARDED option is required to allow several concurrent
readers.

::method init

expose readers writers
readers = 0

writers = 0

::method read unguarded

/* Read if no one is writing */
expose writers readers

guard on when writers = 0
readers = readers + 1

guard off

/* Read the data */

say "Reading (writers:" writers", readers:" readers")."
guard on

readers = readers - 1

::method write unguarded

/* Write if no-one is writing or reading */
expose writers readers

guard on when writers + readers = 0

writers = writers + 1

/* Write the data */
say "Writing (writers:" writers", readers:" readers")."

464

Chapter 13. Concurrency

writers = writers - 1

465

Chapter 13. Concurrency

466

Chapter 14. The Security Manager

The security manager provides a special environment that is safe even if agent programs try to perform
unexpected actions. The security manager is called if an agent program tries to:

+ Call an external function

+ Use a host command

« Use the ::REQUIRES directive

« Access the .LOCAL directory

« Access the .ENVIRONMENT directory

« Use a stream name in the input and output built-in functions (CHARIN, CHAROUT, CHARS,
LINEIN, LINEOUT, LINES, and STREAM)

14.1. Calls to the Security Manager

When the language processor reaches any of the defined security checkpoints, it sends a message to the
security manager for the particular checkpoint. The message has a single argument, a directory of
information that pertains to the checkpoint. If the security manager chooses to handle the action instead
of the language processor, the security manager uses the checkpoint information directory to pass
information back to the language processor.

Security manager methods must return a value of eittoert to the language processor. A valueoof

indicates that the program is authorized to perform the indicated action. In this case, processing
continues as usual. A value oindicates that the security manager performed the action itself. The

security manager sets entries in the information directory to pass results for the action back to the
language processor. The security manager can also use the RAISE instruction to raise a program error for
a prohibited access. Error message 98.948 indicates authorization failures.

The defined checkpoints, with their arguments and return values, are:

CALL

sent for all external function calls. The information directory contains the following entries:

NAME

The name of the invoked function.

ARGUMENTS
An array of the function arguments.

When the CALL method returns indicating that it handled the external call, the security
manager places the function result in the information directory as the entry RESULT.

467

Chapter 14. The Security Manager

COMMAND

sent for all host command instructions. The information directory contains the following entries:

COMMAND

The string that represents the host command.

ADDRESS
The name of the target ADDRESS environment for the command.

When the COMMAND method returns indicating that it handled the command, the security
manager uses the following information directory entries to return the command results:

RC

The command return code. If the entry is not set, a return codeésafised.

FAILURE

If a FAILURE entry is added to the information directory, a Rexx FAILURE condition is
raised.

ERROR

If an ERROR entry is added to the information directory, a Rexx ERROR condition is
raised. The ERROR condition is raised only if the FAILURE entry is not set.

REQUIRES

sent whenever a ::REQUIRES directive in the file is processed. The information directory contains
the following entry:

NAME
The name of the file specified on the ::REQUIRES directive.

When the REQUIRES method returngindicating that it handled the request, the entry NAME in

the information directory is replaced with the name of the actual file to load for the request. The
REQUIRES method can also provide a security manager to be used for the program loaded by the
:REQUIRES directive by setting the information direction entry SECURITYMANAGER into the
desired security manager object.

LOCAL

sent whenever Rexx is going to access an entry in the .LOCAL directory as part of the resolution of
the environment symbol name. The information directory contains the following entry:

NAME

The name of the target directory entry.

468

Chapter 14. The Security Manager

When the LOCAL method returns indicating that it handled the request, the information directory
entry RESULT contains the directory entry. When RESULT is not set and the method retthiss

is the same as a failure to find an entry in the .LOCAL directory. Rexx continues with the next step
in the name resolution.

ENVIRONMENT

sent whenever Rexx is going to access an entry in the .ENVIRONMENT directory as part of the
resolution of the environment symbol name. The information directory contains the following entry:

NAME
The name of the target directory entry.

When the ENVIRONMENT method returnsindicating that it handled the request, the

information directory entry RESULT contains the directory entry. When RESULT is not set and the
method returns, this is the same as a failure to find an entry in the .ENVIRONMENT directory.
Rexx continues with the next step in the name resolution.

STREAM

sent whenever one of the Rexx input and output built-in functions (CHARIN, CHAROUT, CHARS,
LINEIN, LINEOUT, LINES, or STREAM) needs to resolve a stream name. The information
directory contains the following entry:

NAME
The name of the target stream.

When the STREAM method returnsthe information directory STREAM must be set to an object
to be used as the stream target. This should be a stream object or another object that supports the
Stream class methods.

METHOD
sent whenever a secure program attempts to send a message for a protected method (see the
::METHOD directive::METHOD) to an object. The information directory contains the following
entries:
OBJECT
The object the protected method is issued against.
NAME

The name of the protected method.

ARGUMENTS
An array containing the method arguments.

When the METHOD method returnsindicating that it handled the external call, the function
result can be placed in the information directory as the method RESULT.

469

Chapter 14. The Security Manager

470

14.1.1. Example

The following agent program includes all the actions for which the security manager defines checkpoints
(for example, by calling an external function).

Figure 14-1. Agent Program

/* Agent */

interpret "echo Hello There"

"dir foo.bar"

call rxfuncadd sysloadfuncs, rexxutil, sysloadfuncs
say result

say syssleep(1)

say linein("c:\profile")

say .array

.object“setmethod ("SETMETHOD")

::requires agent2.cmd

The following server implements the security manager with three levels of security. For each action the
security manager must check (for example, by calling an external routine):

1. The audit manager (Dumper class) writes a record of the event but then permits the action.
2. The closed cell manager (noWay class) does not permit the action to take place and raises an error.

3. The replacement execution environment (Replacer class, a subclass of the noWay class) replaces the
prohibited action with a different action.

Figure 14-2. Example of Server Implementing Security Manager

/* Server implements security manager */
parse arg program

method = .method™newfile(program)
say "Calling program" program "with an audit manager:"
pull

method~setSecurityManager (.dumper~“new(.output))

.go"new” “run(method)

say "Calling program" program "with a function replacement execution environment:"
pull

method~setSecurityManager (.replacer “new)

.go"new” “run(method)

say "Calling program" program "with a closed cell manager:"
pull

signal on syntax

method~setSecurityManager (.noWay new)

.go"new” “run(method)

exit

syntax:
say "Agent program terminated with an authorization failure"

exit

::class go subclass object

::method run
use arg m
self~“run:super (m)

:class dumper
::method init

expose stream

use arg stream
::method unknown

expose stream

use arg name, args

stream™lineout (time() date() "Called

stream”lineout ("Arguments are:")
info = args[1]
do name over info

Chapter 14. The Security Manager

-- this is a NON-PRIVATE method!

—- a PRIVATE method is called here!

/* target stream for output

/* hook up the output stream

/* generic unknown method

/* need the global stream

/* get the message and arguments
/* write out the audit event

for event" name)

/* write out the arguments

/* info directory is the first arg
/* dump the info directory

stream”lineout ("Item" name":" info[name])
end
return 0O /* allow this to proceed

::class noWay
: :method unknown

/* everything trapped by unknown
/* and everything is an error

raise syntax 98.948 array("You didn't say the magic word!")
/* inherit restrictive UNKNOWN methodx*/

::class replacer subclass noWay
::method command

use arg info

info“rc = 1234

info“fajilure = .true

return 1
::method call

use arg info

info~setentry("RESULT","uh, uh, uh..

return 1
::method stream
use arg info

info~stream = .stream™new("c:\sample.

return 1

::method local

return 1
::method environment

return 1
: :method method
use arg info

info~setentry ("RESULT","uh, uh, uh..

return 1

/* issuing commands

/* access the directory

/* set the command return code

/* raise a FAILURE condition

/* return "handled" return value
/* external function/routine call
/* access the directory

/* all results are the same

you didn't say the magic word")
/* return "handled" return value
/* I/0 function stream lookup

/* access the directory

/* replace with a different stream
txt")

/* return "handled" return value
/* .LOCAL variable lookup

/* no value returned at all

/* return "handled" return value
/* .ENVIRONMENT variable lookup
/* no value returned at all

/* return "handled" return value
/* protected method invocation
/* access the directory

/* all results are the same

.you didn't say the magic word")

/* return "handled" return value

*/
*/
*/
*/
*/
*/

*/
*/
*/

*/

*/
*/

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

471

Chapter 14. The Security Manager

::method requires /* REQUIRES directive
use arg info /* access the directory
/* switch to load a different file
info"name = "c:\samples\agent.cmd"
info~securitymanager = self /* load under this authority
return 1 /* return "handled" return value

472

Chapter 15. Input and Output Streams

Rexx defines Stream class methods to handle input and output and maintains the 1/O functions for input
and output externals. Using a mixture of Rexx I/0 methods and Rexx I/O functions can cause
unpredictable results. For example, using the LINEOUT method and the LINEOUT function on the same
persistent stream object can cause overlays.

When a Rexx I/O function creates a stream object, the language processor maintains the stream object.
When a Rexx I/0 method creates a stream object, it is returned to the program to be maintained. Because
of this, when Rexx I/O methods and Rexx I/O functions referring to the same stream are in the same
program, there are two separate stream objects with different read and write pointers. The program needs
to synchronize the read and write pointers of both stream objects, or overlays occur.

To obtain a stream object (for examp@&FIL), you could use:

MyStream = .stream™new("MYFIL")

You can manipulate stream objects with character or line methods:

nextchar = MyStream”charin()
nextline = MyStream~linein()

In addition to stream objects, the language processor defines an external data queue object for
interprogram communication. This queue object understands line functions only.

A stream object can have a variety of sources or destinations including files, serial interfaces, displays, or
networks. It can be transient or dynamic, for example, data sent or received over a serial interface, or
persistent in a static form, for example, a disk file.

Housekeeping for stream objects (opening and closing files, for example) is not explicitly part of the
language definition. However, Rexx provides methods, such as CHARIN and LINEIN, that are
independent of the operating system and include housekeeping. The COMMAND method provides the
stream_commandrgument for those situations that require more granular access to operating system
interfaces.

15.1. The Input and Output Model

The model of input and output for Rexx consists of the following logically distinct parts:

« One or more input stream objects
- One or more output stream objects
- One or more external data queue objects

The Rexx methods, instructions, and built-in routines manipulate these elements as follows.

473

Chapter 15. Input and Output Streams

474

15.1.1. Input Streams

Input to Rexx programs is in the form of a serial character stream generated by user interaction or has the
characteristics of one generated this way. You can add characters to the end of some stream objects
asynchronously; other stream objects might be static or synchronous.

The methods and instructions you can use on input stream objects are:

« CHARIN method--reads input stream objects as characters.
- LINEIN method--reads input stream objects as lines.

« PARSE PULL and PULL instructions--read the default input stream objectipgT), if the external
data queue is empty. PULL is the same as PARSE UPPER PULL except that uppercase translation
takes place for PULL.

« PARSE LINEIN instruction--reads lines from the default input stream object regardless of the state of
the external data queue. Usually, you can use PULL or PARSE PULL to read the default input stream
object.

In a persistent stream object, the Rexx language processor maintains a current read position. For a
persistent stream:

. The CHARS method returns the number of characters currently available in an input stream object
from the read position through the end of the stream (including any line-end characters).

- The LINES method determines if any data remains between the current read position and the end of
the input stream object.

« You can move the read position to an arbitrary point in the stream object with:
- The SEEK or POSITION method of the Stream class
- The COMMAND method’s SEEK or POSITION argument
. Thestartargument of the CHARIN method
.« Theline argument of the LINEIN method
When the stream object is opened, this position is the start of the stream.

In a transient stream, no read position is available. For a transient stream:

« The CHARS and LINES methods attempt to determine if data is present in the input stream object.
These methods return the valuéor a device if data is waiting to be read or a determination cannot be
made. Otherwise, these methods return

. The SEEK and POSITION methods of the Stream class and the COMMAND metrad'sind
POSITION arguments are not applicable to transient streams.

15.1.2. Output Streams

Output stream methods provide for output from a Rexx program. Output stream methods are:

« SAY instruction--writes to the default output stream objecu{pur).

Chapter 15. Input and Output Streams

« CHAROUT method--writes in character form to either the default or a specified output stream object.
« LINEOUT method--writes in lines to either the default or a specified output stream object.

LINEOUT and SAY write the new-line character at the end of each line. Depending on the operating
system or hardware, other modifications or formatting can be applied; however, the output data remains a
single logical line.

The Rexx language processor maintains the current write position in a stream. It is separate from the
current read position. Write positioning is usually at the end of the stream (for example, when the stream
object is first opened), so that data can be appended to the end of the stream. For persistent stream
objects, you can set the write position to the beginning of the stream to overwrite existing data by giving
a value oft for the CHAROUTstart argument or the LINEOUTine argument. You can also use the
CHAROUT startargument, the LINEOUTine argument, the SEEK or POSITION method, or the
COMMAND method’SSEEK Or POSITION Stream_commantb direct sequential output to some arbitrary
point in the stream.

Note: Once data is in a transient output stream object (for example, a network or serial link), it is no
longer accessible to Rexx.

15.1.3. External Data Queue

Rexx provides queuing services entirely separate from interprocess communications queues.

The external data queue is a list of character strings that only line operations can access. It is external to
Rexx programs in that other Rexx programs can have access to the queue.

The external data queue forms a Rexx-defined channel of communication between programs. Data in the
gueue is arbitrary; no characters have any special meaning or effect.

Apart from the explicit Rexx operations described here, no detectable change to the queue occurs while a
Rexx program is running, except when control leaves the program and is manipulated by external means
(such as when an external command or routine is called).

There are two kinds of queues in Rexx. Both kinds are accessed and processed by name.

15.1.3.1. Unnamed Queues

One unnamed queue is automatically provided for each Rexx program in operation. Its name is always
"QUEUE:", and the language processor creates it when Rexx is called and no queue is currently

available. All processes that are children of the process that created the queue can access it as long as the
process that created it is still running. However, other processes cannot share the same unnamed queue.
The queue is deleted when the process that created it ends.

15.1.3.2. Named Queues

Your program creates (and deletes) named queues. You can name the queue yourself or leave the naming
to the language processor. Your program must know the name of the queue to use a named queue. To
obtain the name of the queue, use the RXQUEUE function:

475

Chapter 15. Input and Output Streams

previous_queue=rxqueue ("set" ,newqueuename)

This sets the new queue name and returns the name of the previous queue.

The following Rexx instructions manipulate the queue:

« PULL or PARSE PULL--reads a string from the head of the queue. If the queue is empty, these
instructions take input from .INPUT.

« PUSH--stacks a line on top of the queue (LIFO).
+ QUEUE--adds a string to the tail of the queue (FIFO).

Rexx functions that manipulate QUEUE: as a device name are:

« LINEIN("QUEUE:")--reads a string from the head of the queue. If the queue is empty the program
waits for an entry to be placed on the queue.

« LINEOUT("QUEUE:","string")--adds a string to the tail of the queue (FIFO).
+ QUEUED--returns the number of items remaining in the queue.

Here is an example of using a queue:

Figure 15-1. Sample Rexx Procedure Using a Queue

/* */
/* push/pull WITHOUT multiprogramming support x/
/* */
push date() time() /* push date and time */
do 1000 /* let's pass some time x/

nop /* doing nothing */
end /* end of loop x/
pull a b /* pull them x/
say "Pushed at " a b ", Pulled at " date() time() /* say now and then x/
/* */
/* push/pull WITH multiprogramming support x/
/* (no error recovery, or unsupported environment tests) */
/* */
newq = RXQUEUE("Create") /* create a unique queue */
oq = RXQUEUE("Set",newq) /* establish new queue x/
push date() time() /* push date and time x/
do 1000 /* let's spend some time x/

nop /* doing nothing x/
end /* end of loop */
pull a b /* get pushed information */
say "Pushed at " a b ", Pulled at " date() time() /* tell user */
call RXQUEUE "Delete",newq /* destroy unique queue created */
call RXQUEUE "Set",oq /* reset to default queue (not required) */

Special considerations:

- External programs that must communicate with a Rexx procedure through defined data queues can use
the Rexx-provided queue or the queue that QUEUE: references (if the external program runs in a child

476

Chapter 15. Input and Output Streams

process), or they can receive the data queue name through some interprocess communication
technique, including argument passing, placement on a prearranged logical queue, or the use of usual
interprocess communication mechanisms (for example, pipes, shared memory, or IPC queues).

- Named queues are available across the entire system. Therefore, the names of queues must be unique
within the system. If a queue nameslyque exists, using the following function:

newqueue = RXQUEUE("Create", "ANYQUE")

results in an error.

15.1.3.3. Multiprogramming Considerations

The top-level Rexx program in a process tree owns an unnamed queue. However, any child process can
modify the queue at any time. No specific process or user owns a named queue. The operations that
affect the queue are atomic--the subsystem serializes the resource so that no data integrity problems can
occur. However, you are responsible for the synchronization of requests so that two processes accessing
the same queue get the data in the order it was placed on the queue.

A specific process owns (creates) an unnamed queue. When that process ends, the language processor
deletes the queue. Conversely, the named queues createxk@ithe ("Create", queuename) €Xist

until you explicitly delete them. The end of a program or procedure that created a named queue does not
force the deletion of the private queue. When the process that created a queue ends, any data on the
gueue remains until the data is read or the queue is deleted. (The function call

RxQueue ("Delete", queuename) deletes a queue.)

If a data queue is deleted by its creator, a procedure, or a program, the items in the queue are also deleted.

15.1.4. Default Stream Names

A stream name can be a file, a queue, a pipe, or any device that supports character-based input and
output. If the stream is a file or device, the name can be any valid file specification.

Windows and *nix define three default streams:

- stdin (file descriptor 0) - standard input
- stdout (file descriptor 1) - standard output
- stderr (file descriptor 2) - standard error (output)

Rexx provides .INPUT and .OUTPUT public objects. They default to the default input and output
streams of the operating system. The appropriate default stream object is used when the call to a Rexx
I/O function includes no stream name. The following Rexx statements write a line to the default output
stream of the operating system:

Lineout (,"Hello World")
.Output”lineout ("Hello World")

477

Chapter 15. Input and Output Streams

Rexx reserves the namg®DdIN, STDOUT, andSTDERR to allow Rexx functions to refer to these stream

objects. The checks for these names are not case-sensitive; for exsrnpie stdin, andsTdIn all refer

to the standard input stream object. If you need to access a file with one of these names, qualify the name
with a directory specification, for examphestdin.

Rexx also provides access to arbitrary file descriptors that are already open when Rexx is called. The
stream name used to access the stream objastiisE: x. x is the number of the file descriptor you wish

to use. You can USEANDLE: x as any other stream name; it can be the receiver of a Stream class method.
If the value ofx is not a valid file descriptor, the first I/O operation to that object fails.

Notes:

1. Once you close BANDLE: x Stream object, you cannot reopen it.

2.HANDLE:x is reserved. If you wish to access a file or device with this name, include a directory
specification before the name. For exampANDLE: x accesses the file HANDLE:x in the current
directory.

3. Programs that use the .INPUT and .OUTPUT public objects are independent of the operating
environment.

15.1.5. Line versus Character Positioning

Rexx lets you move the read or write position of a persistent stream object to any location within the
stream. You can specify this location in terms of characters or lines.

Character positioning is based upon the view of a stream as a simple collection of bytes of data. No
special meaning is given to any single character. Character positioning alone can move the stream
pointer. For example:

MyStream~charin(10,0)

moves the stream pointer so that the tenth character in MyStream is the next character read. But this does
not return any data. If MyStream is opened for reading or writing, any output that was previously written
but is still buffered is eliminated. Moving the write position always causes any buffered output to be
written.

Line positioning views a stream as a collection of lines of data. There are two ways of positioning by
lines. If you open a stream in binary mode and specify a record lengtbmothe open, a line break
occurs everyx characters. Line positioning in this case is an extension of character positioning. For
example, if you open a stream in binary mode with record length 80, then the following two lines are
exactly equivalent.

MyStream”command (position 5 read line)
MyStream”command (position 321 read char)

Remember that streams and other Rexx objects are indexed starting with one rather than zero.

The second way of positioning by lines is for non-binary streams. New-line characters separate lines in
non-binary streams. Because the line separator is contained within the stream, ensure accurate line
positioning. For example, it is possible to change the line number of the current read position by writing

478

Chapter 15. Input and Output Streams

extra new-line characters ahead of the read position or by overwriting existing new-line characters. Thus,
line positioning in a non-binary stream object has the following characteristics:

- To do line positioning, it is necessary to read the stream in circumstances such as switching from
character methods to line methods or positioning from the end of the stream.

- If you rewrite a stream at a point prior to the read position, the line number of the current read position
could become inaccurate.

Note that for both character and line positioning, the index starts with one rather than zero. Thus,
character position 1 and line position 1 are equivalent, and both point to the top of the persistent stream
object. The Rexx I/O processing uses certain optimizations for positioning. These require that no other
process is writing to the stream concurrently and no other program uses or manipulates the same
low-level drive, directory specification, and file name that the language processor uses to open the file. If
you need to work with a stream in these circumstances, use the system 1/O functions.

15.2. Implementation

Usually, the dialog between a Rexx program and you as the user takes place on a line-by-line basis and
is, therefore, carried out with the SAY, PULL, or PARSE PULL instructions. This technique considerably
enhances the usability of many programs, because they can be converted to programmable dialogs by
using the external data queue to provide the input you generally type. Use the PARSE LINEIN
instruction only when it is necessary to bypass the external data queue.

When a dialog is not on a line-by-line basis, use the serial interfaces the CHARIN and CHAROUT
methods provide. These methods are important for input and output in transient stream objects, such as
keyboards, printers, or network environments.

Opening and closing of persistent stream objects, such as files, is largely automatic. Generally the first
CHARIN, CHAROUT, CHARS, LINEIN, LINEOUT, or LINES message sent to a stream object opens
that stream object. It remains open until you explicitly close it with a CHAROUT or LINEOUT or until
the program ends. Using the LINEOUT method with only the name of a stream object (and no output
string or line) closes the named stream object. The Stream class also provides OPEN and CLOSE
methods and the COMMAND method, which can explicitly open or close a stream object.

If you open a stream with the CHARIN, CHAROUT, LINEIN, or LINEOUT methods, it is opened for
both reading and writing, if possible. You can use the OPEN method or the COMMAND method to open
a stream for read-only or write-only operations.

15.3. Operating System Specifics

The COMMAND method of the Stream class determines the state of an input or output stream object
and carries out specific operations (S&@MMAND). It allows Rexx programs to open and close

selected stream objects for read-only, write-only, or read and write operations, to move the read and write
position within a stream object, to control the locking and buffering characteristics, and to obtain
information (such as the size and the date of the last update).

479

Chapter 15. Input and Output Streams

15.4. Examples of Input and Output

480

In most circumstances, communication with a user running a Rexx program uses the default input and
output stream objects. For a question and answer dialog, the recommended technique is to use the SAY
and PULL instructions on the .INPUT and .OUTPUT objects. (You can use PARSE PULL if
case-sensitive input is needed.)

It is generally necessary to write to, or read from, stream objects other than the default. For example, the
following program copies the contents of one stream to another.

/* FILECOPY.CMD */

/* This routine copies, as lines, the stream or */
/* file that the first argument names to the stream */
/* or file the second argument names. It is assumed */
/* that the name is not an object, as it could be */
/* if it is passed from another Rexx program. */

parse arg inputname, outputname

inputobject = .stream™new(inputname)
outputobject = .stream™new(outputname)

signal on notready

do forever

outputobject~lineout (inputobject~linein)
end
exit

notready:
return

As long as lines remain in the named input stream, a line is read and is then immediately written to the
named output stream. This program is easy to change so that it filters the lines before writing them.

The following example illustrates how character and line operations can be mixed in a communications
program. It converts a character stream into lines.

/* COLLECT.CMD */
/* This routine collects characters from the stream */

/* the first argument names until a line is */
/* complete, and then places the line on the x/
/* external data queue. */
/* The second argument is a single character that */
/* identifies the end of a line. */
parse arg inputname, lineendchar

inputobject = .stream™new(inputname)

buffer="" /* zero-length character accumulator */

do forever
nextchar=inputobject”charin
if nextchar=lineendchar then leave
buffer=buffer| |nextchar /* add to buffer */

Chapter 15. Input and Output Streams

end
queue buffer /* place it on the external data queue */

Here each line is built up in a variable callggFrer. When the line is complete (for example, when the
user presses the Enter key) the loop ends and the language processor places the cenrertsaf the
external data queue. The program then ends.

15.5. Errors during Input and Output

The Rexx language offers considerable flexibility in handling errors during input or output. This is
provided in the form of a NOTREADY condition that the CALL ON and SIGNAL ON instructions can
trap. The STATE and DESCRIPTION methods can elicit further information.

When an error occurs during an input or output operation, the function or method called usually
continues without interruption (the output method returns a nonzero count). Depending on the nature of
the operation, a program has the option of raising the NOTREADY condition. The NOTREADY
condition is similar to the ERROR and FAILURE conditions associated with commands in that it does
not cause a terminating error if the condition is raised but is not trapped. After NOTREADY has been
raised, the following possibilities exist:

- If the NOTREADY condition is not trapped, processing continues without interruption. The
NOTREADY condition remains in the OFF state.

- If SIGNAL ON NOTREADY traps the NOTREADY condition, the NOTREADY condition is raised.
Processing of the current clause stops immediately, and the SIGNAL takes place as usual for condition
traps.

« If CALL ON NOTREADY traps the NOTREADY condition, the NOTREADY condition is raised, but
execution of the current clause is not halted. The NOTREADY condition is put into the delayed state,
and processing continues until the end of the current clause. While processing continues, input
methods that refer to the same stream can return the null string and output methods can return an
appropriate count, depending on the form and timing of the error. At the end of the current clause, the
CALL takes place as usual for condition traps.

- If the NOTREADY condition is in the DELAY state (CALL ON NOTREADY traps the NOTREADY
condition, which has already been raised), processing continues, and the NOTREADY condition
remains in the DELAY state.

After the NOTREADY condition has been raised and is in DELAY state"theoption of the
CONDITION function returns the stream object being processed when the stream error occurred.

The STATE method of the Stream class returns the stream object SEREORSNOTREADY, Or UNKNOWN.
You can obtain additional information by using the DESCRIPTION method of the Stream class.

Note: sAY .0UTPUT and PULL .INPUT never raise the NOTREADY condition. However, the STATE and
DESCRIPTION methods can return NOTREADY.

481

Chapter 15. Input and Output Streams

15.6. Summary of Rexx I/O Instructions and Methods

The following lists Rexx I/O instructions and methods:

« CHARIN (seeCHARIN)

« CHAROUT (seeCHAROUT)

« CHARS (seeCHARS

+ CLOSE (se€CLOSH

« COMMAND (seeCOMMAND)
- DESCRIPTION (se®ESCRIPTION
+ FLUSH (seeFLUSH)

« INIT (seeINIT)

« LINEIN (seeLINEIN)

« LINEOUT (seeLINEQOUT)

+ LINES (seeLINES)

« MAKEARRAY (see MAKEARRAY)
- OPEN (seOPEN

« PARSE LINEIN (se€’ARSH
« PARSE PULL (se®ARSH

« POSITION (sed’OSITION

« PULL (seePULL)

« PUSH (sed”USH

+ QUALIFY (seeQUALIFY)

+ QUERY (seeQUERY)

+ QUEUE (se€QUEUE)

+ QUEUED (seeQUEUED)

« SAY (seeSAY)

+ SEEK (seeSEEK)

. STATE (seeSTATE)

482

Chapter 16. Debugging Aids

In addition to the TRACE instruction describedRACE, there are the following debugging aids.

16.1. Interactive Debugging of Programs

The debug facility permits interactively controlled execution of a program. Adding the prefix character ?
to the TRACE instruction or the TRACE function (for exampigACE 71 or TRACE(7I)) turns on

interactive debugging and indicates to the user that interactive debugging is active. Further TRACE
instructions in the program are ignored, and the language processor pauses after nearly all instructions
that are traced at the console (&bugging Aidgor the exceptions). When the language processor
pauses, the following debug actions are available:

- Entering a null line causes the language processor to continue with the execution until the next pause
for debugging input. Repeatedly entering a null line, therefore, steps from pause point to pause point.
ForTRACE 74, for example, this is equivalent to single-stepping through the program.

- Entering an equal sign (=) with no blanks causes the language processor to reexecute the clause last
traced. For example, if an IF clause is about to take the wrong branch, you can change the value of the
variables on which it depends, and then reexecute it.

Once the clause has been reexecuted, the language processor pauses again.

- Anything else entered is treated as a line of one or more clauses, and processed immediately (that is,
as though DO; line; END; had been inserted in the program). The same rules apply as for the
INTERPRET instruction (for example, DO-END constructs must be complete). If an instruction
contains a syntax error, a standard message is displayed and you are prompted for input again.
Similarly, all other SIGNAL conditions are disabled while the string is processed to prevent
unintentional transfer of control.

During interpretation of the string, no tracing takes place, except that nonzero return codes from
commands are displayed. The special variable RC and the environment symbol .RS are not set by
commands executed from the string. Once the string has been processed, the language processor
pauses again for further debugging input.

Interactive debug is turned off in either of the following cases:

- A TRACE instruction uses the ? prefix while interactive debug is in effect

- Atany time, if TRACE 0 or TRACE with no options is entered

16.2. Debugging Aids

The numeric form of the TRACE instruction can be used to allow sections of the program to be executed
without pause for debugging inpaRACE n (that is, a positive result) allows execution to continue,

483

Chapter 16. Debugging Aids

484

skipping the nexh pauses (when interactive debugging is or becomes actvE -n (thatis, a

negative result) allows execution to continue without pause and with tracing inhibitecfamuses that
would otherwise be traced. The trace action a TRACE instruction selects is saved and restored across
subroutine calls. This means that if you are stepping through a program (for example, aftaruasing

7R to trace results) and then enter a subroutine in which you have no interest, you carr&tees to

turn off tracing. No further instructions in the subroutine are traced, but on return to the caller, tracing is
restored.

Similarly, if you are interested only in a subroutine, you can prE 7R instruction at its start.
Having traced the routine, the original status of tracing is restored and, if tracing was off on entry to the
subroutine, tracing and interactive debugging are turned off until the next entry to the subroutine.

Because any instructions can be executed in interactive debugging you have considerable control over
the execution.

The following are some examples:

Say expr /* displays the result of evaluating the */
/* expression */
name=expr /* alters the value of a variable */
Trace 0 /* (or Trace with no options) turns off */
/* interactive debugging and all tracing */
Trace 7A /* turns off interactive debugging but */
/* continues tracing all clauses */
exit /* terminates execution of the program */

do i=1 to 10; say stem.i; end
/* displays ten elements of the array stem. */

Exceptions: Some clauses cannot safely be reexecuted, and therefore the language processor does not
pause after them, even if they are traced. These are:

- Any repetitive DO clause, on the second or subsequent time around the loop.

+ Al END clauses.

« Al THEN, ELSE, OTHERWISE, or null clauses.

« AIlRETURN and EXIT clauses.

- All SIGNAL clauses (but the language processor pauses after the target label is traced).

« Any clause that causes a syntax error. They can be trapped by SIGNAL ON SYNTAX, but cannot be
reexecuted.

A pause occurs after a REPLY instruction, but the REPLY instruction cannot be reexecuted.

Chapter 16. Debugging Aids
16.3. RXTRACE Variable

When the interpreter starts the interpretation of a Rexx procedure it checks the setting of the special
environment variableRXTRACEIf RXTRACHEhas been set tav (not case-sensitive), the interpreter
starts in interactive debug mode as if the Rexx instructiwee '7R' had been the first interpretable

instruction. All other settings dRXTRACEare ignoredRXTRACHS only checked when starting a new
Rexx procedure.

Use the SET command to set or query an environment variable or query all environment variables. To
delete an environment variable, use SEfiable=.

485

Chapter 16. Debugging Aids

486

Chapter 17. Reserved Keywords

Keywords can be used as ordinary symbols in many unambiguous situations. The precise rules are given
in this chapter.

The free syntax of Rexx implies that some symbols are reserved for use by the language processor in
certain contexts.

Within particular instructions, some symbols can be reserved to separate the parts of the instruction.
These symbols are referred to as keywords. Examples of Rexx keywords are the WHILE keyword in a
DO instruction and the THEN keyword, which acts as a clause terminator in this case, following an IF or
WHEN clause.

Apart from these cases, only simple symbols that are the first token in a clause and that are not followed
by an "=" or ":" are checked to see if they are instruction keywords. The symbols can be freely used
elsewhere in clauses without being understood as keywords.

Be careful with host commands or subcommands with the same name as Rexx keywords. To avoid
problems, enclose at least the command or subcommand in quotation marks. For example:

"DELETE" Fn"."Ext

You can then also use the SIGNAL ON NOVALUE condition to check the integrity of an executable.

Alternatively, you can precede such command strings with two adjacent quotation marks to concatenate
the null string to the beginning. For example:

""Erase Fn"."Ext
A third option is to enclose the entire expression, or the first symbol, in parentheses. For example:

(Erase Fn"."Ext)

487

Chapter 17. Reserved Keywords

488

Chapter 18. Special Variables

A special variable can be set automatically during processing of a Rexx program. There are five special
variables:

RC

is set to the return code from any executed command (including those submitted with the
ADDRESS instruction). After the trapping of ERROR or FAILURE conditions, it is also set to the
command return code. When the SYNTAX condition is trapped, RC is set to the syntax error
number (1-99). RC is unchanged when any other condition is trapped.

Note: Commands executed manually during interactive tracing do not change the value of RC.

RESULT

is set by a RETURN instruction in a subroutine that has been called, or a method that was activated
by a message instruction, if the RETURN instruction specifies an expressiore XSEeREPLY,
andRETURN) If the RETURN instruction has no expression, RESULT is dropped (becomes
uninitialized). Note that an EXIT or REPLY instruction also sets RESULT.

SELF

is set when a method is activated. Its value is the object that forms the execution context for the
method (that is, the receiver object of the activating message). You can use SELF to:

« Run a method in an object in which a method is already running. For example, a Find_Clues
method is running in an object called Mystery Novel. When Find_Clues finds a clue, it sends a
Read_Last Page message to Mystery Novel:

self"Read_Last_Page
« Pass references about an object to the methods of other objects. For example, a Sing method is

running in object Song. The codenger2-Duet (self) would give the Duet method access to the
same Song.

SIGL

is set to the line number of the last instruction that caused a transfer of control to a label (that is, any
SIGNAL, CALL, internal function call, or trapped condition). S€ke Special Variable SIGL

SUPER

is set when a method is activated. Its value is the class object that is the usual starting point for a
superclass method lookup for the SELF object. This is the first immediate superclass of the class
that defined the method currently running. (83asses and Instancgs

The special variable SUPER lets you call a method in the superclass of an object. For example, the
following Savings class has INIT methods that the Savings class, Account class, and Object class
define.

::class Account

489

Chapter 18. Special Variables

490

::method INIT

expose balance

use arg balance

self~init:super /* Forwards to the Object INIT method */

::method TYPE
return "an account"

::method name attribute
::class Savings subclass Account

::method INIT

expose interest_rate

use arg balance, interest_rate

self~init:super(balance) /* Forwards to the Account INIT method */

::method type
return "a savings account"

When the INIT method of the Savings class is called, the variable SUPER is set to the Account
class object. The instruction:

self~init:super(balance) /* Forwards to the Account INIT method */

calls the INIT method of the Account class rather than recursively calling the INIT method of the
Savings class. When the INIT method of the Account class is called, the variable SUPER is
assigned to the Object class.

self“init:super /* Forwards to the Object INIT method */

calls the INIT method that the Object class defines.

You can alter these variables like any other variable, but the language processor continues to set RC,
RESULT, and SIGL automatically when appropriate. The EXPOSE, PROCEDURE, USE and DROP
instructions also affect these variables.

Rexx also supplies functions that indirectly affect the execution of a program. An example is the name
that the program was called by and the source of the program (which are available using the PARSE
SOURCE instruction). In addition, PARSE VERSION makes available the language version and date of
Rexx implementation that is running. The built-in functions ADDRESS, DIGITS, FUZZ, FORM, and
TRACE return other settings that affect the execution of a program.

Chapter 19. Useful Services

The following section describes useful commands and services.

19.1. Windows Commands

COPY

copies files.

DELETE

deletes files.

DIR

displays disk directories.

ERASE

erases files.

MODE

controls input and output device characteristics.

PATH

defines or displays the search path for commands and Rexx programs. Sgeaalso Order

SET

displays or changes Windows environment variables. See/AlsDE .

19.2. Linux Commands
Most Commonly used commands are:
cp
copies files and directories.

mv

moves files and directories.

m

removes files and directories.

491

Chapter 19. Useful Services

Is

displayes files and directories.

echo $path

defines or displays the search path for commands and Rexx programs. SsealsoOrder

env
displays or changes Linux environment variables.

Any other Linux command can be used. For a description of these commands, see the respective Linux
documentation (for example, man-pages).

19.3. Subcommand Handler Services

492

For a complete subcommand handler description, se®pie® Object Rexx: Programming Guide

19.3.1. The RXSUBCOM Command

The RXSUBCOM command registers, drops, and queries Rexx subcommand handlers. A Rexx
procedure or script file can use RXSUBCOM to register dynamic-link library subcommand handlers.
Once the subcommand handler is registered, a Rexx program can send commands to the subcommand
handler with the Rexx ADDRESS instruction. For example, Rexx Dialog Manager programs use
RXSUBCOM to register the ISPCIR subcommand handler.

"RXSUBCOM REGISTER ISPCIR ISPCIR ISPCIR"
Address ispcir

SeeADDRESSTfor details of the ADDRESS instruction.

19.3.1.1. RXSUBCOM REGISTER

RXSUBCOM REGISTER registers a dynamic-link library subcommand handler. This command makes
a command environment available to Rexx.

>-RXSUBCOM--REGISTER--envname--dllname--procname----—-------—-- ><
Parameters:

envname

The subcommand handler name. The Rexx ADDRESS instructioremsaaméo send commands
to the subcommand handler.

dliname

The name of the dynamic-link library file containing the subcommand handler routine.

Chapter 19. Useful Services

procname

The name of the dynamic-link library procedure withiltnamethat Rexx calls as a subcommand
handler.

Return codes:

The command environment has been registered.

10

A duplicate registration has occurred. Anvnameubcommand handler in a different dynamic-link
library has already been registered. Both the new subcommand handler and the existing
subcommand handler can be used.

30

The registration has failed. Subcommand handiemamen library dlinameis already registered.

1002

RXSUBCOM was unable to obtain the memory necessary to register the subcommand handler.

A parameter is missing or incorrectly specified.

19.3.1.2. RXSUBCOM DROP
RXSUBCOM DROP deregisters a subcommand handler.

>>-RXSUBCOM--DROP--envname——+-——------- +o——— - ><
+-dllname-+

Parameters:
envname
The name of the subcommand handler.

dliname
The name of the dynamic-link file containing the subcommand handler routine.

Return codes:

The subcommand handler was successfully deregistered.

30

The subcommand handler does not exist.

493

Chapter 19. Useful Services

494

40
The environment was registered by a different process as RXSUBCOM_NONDROP.

A parameter is missing or specified incorrectly.

19.3.1.3. RXSUBCOM QUERY
RXSUBCOM QUERY checks the existence of a subcommand handler. The query result is returned.

>>-RXSUBCOM--QUERY--envname——+-—-—-————---— +-——= - - ><
+-dllname-+

Parameters:
envname
The name of the subcommand handler.

dliname
The name of the dynamic-link file containing the subcommand handler routine.

Return codes:

0

The subcommand handler is registered.
30

The subcommand handler is not registered.
-1

A parameter is missing or specified incorrectly.

19.3.1.4. RXSUBCOM LOAD
RXSUBCOM LOAD loads a subcommand handler dynamic-link library.

>>-RXSUBCOM--LOAD--envname--+--------- tom e ><
+-dllname-+

Parameters:

envname

The name of the subcommand handler.

Chapter 19. Useful Services

libname
The name of the dynamic-link file containing the subcommand handler routine.

Return codes:

0

The dynamic-link library was located and loaded successfully.
50

The dynamic-link library was not located or could not be loaded.
-1

A parameter is missing or incorrectly specified.

19.3.2. The RXQUEUE Filter

>>-RXQUEUE-—+---————-—-— p——tp———— PR —— ><
+-queuename-+ +-/FIF0--+
+-/LIF0--+
+-/CLEAR-+

The RXQUEUE filter usually operates on the default queue named SESSION. However, if an
environment variable named RXQUEUE exists, the RXQUEUE value is used for the queue name.

For a full description of Rexx queue services for applications programmingdgseenal Data Queue

Parameters:

gueuenamélFO

stacks items from STDIN last in, first out (LIFO) on a Rexx queue.

gueuenamé&IFO

gueues items from STDIN first in, first out (FIFO) on a Rexx queue.

gueuenam€LEAR
removes all lines from a Rexx queue.

RXQUEUE takes output lines from another program and places them on a Rexx queue. A Rexx
procedure can use RXQUEUE to capture operating system command and program output for processing.
RXQUEUE can direct output to any Rexx queue, either FIFO (first in, first out) or LIFO (last in, first

out).

RXQUEUE uses the environment variable RXQUEUE for the default queue name. When RXQUEUE
does not have a value, RXQUEUE uses SESSION for the queue name.

The following example obtains the Windows version number with RXQUEUE:

/* Sample program to show simple use of RXQUEUE */

495

Chapter 19. Useful Services

/* Find out the Windows version number, using the */
/* VER command. VER produces two lines of */
/* output; one blank line, and one line with the*/

/* format "The Windows Version is n.nn" */
"VER |RXQUEUE" /* Put the data on the Queue */
pull . /* Get and discard the blank line */

Pull . "VERSION" number "]" /* The bracket is required for
Windows 95, not for Windows NT */
Say "We are running on Windows Version" number

Note that the syntax of the version string that is returned by Windows can vary, so the parsing syntax for
retrieving the version number may be different.

The following example processes output from the DIR command:

/* Sample program to show how to use the RXQUEUE filter */
/* This program filters the output from a DIR command, */

/* ignoring small files. It displays a list of the */
/* large files, and the total of the sizes of the large */
/* files. */
size_limit = 10000 /* The dividing line */
/* between large and smallx*/

size_total = 0 /* Sum of large file sizes*/
NUMERIC DIGITS 12 /* Set up to handle very */
/* large numbers */

/* Create a new queue so that this program cannot */

/* interfere with data placed on the queue by another */
/* program. */

queue_name = rxqueue("Create")
Call rxqueue "Set", queue_name

"DIR /N | RXQUEUE" queue_name

/* DIR output starts with five header lines */
Do 5

Pull . /* discard header line */
End

/* Now all the lines are file or directory lines, */
/* except for omne at the end. */
Do queued() - 1 /* loop for lines we want */
Parse Pull . . size . name ./* get one name and size */

/* If the size field says "<DIR>", we ignore this */
/* line. */

If size <> "<DIR>" Then

/* Now check size, and display x/

If size > size_limit Then Do
Say format(size,12) name
size_total = size_total + size

496

Chapter 19. Useful Services

End
End

Say "The total size of those files is" size_total

/* Now we are done with the queue. We delete it, which */
/* discards the line remaining in it. */

Call rxqueue "DELETE", queue_name

19.4. Distributing Programs without Source

Open Object Rexx comes with a utility called RexxC. You can use this utility to produce versions of your
programs that do not include the original program source. You can use these programs to replace any
Rexx program file that includes the source, with the following restrictions:

1. The SOURCELINE built-in function returrsfor the number of lines in the program and raises an
error for all attempts to retrieve a line.

2. A sourceless program may not be traced. The TRACE instruction runs without error, but no tracing
of instruction lines, expression results, or intermediate expression values occurs.

The syntax of the RexxC utility is:

>>-RexxC--inputfile-—+--—--------- e -- ><
+-outputfile-+ +-/s-+

If you specify theoutputfile the language processor processesrtpatfileand writes the executable
version of the program to thautputfile If the outputfilealready exists, it is replaced.

If the language processor detects a syntax error while processing the program, it reports the error and
stops processing without creating a new output file. If you omibtitputfile the language processor
performs a syntax check on the program without writing the executable version to a file.

You can use thés option to suppress the display of the information about the interpreter used.

Note: You can use the in-storage capabilities of the RexxStart programming interface to process the
file image of the output file.

With version 2.1, the tokenized form has changed. All Open Object Rexx editions contain a utility called
RxMigrate that can be used to change old tokenized forms to the new one. The recommended procedure
is to create a new tokenized file from the original source with the new version of Open Object Rexx.
However, if the source code is no longer available, RxMigrate can be used to convert the old tokenized
file. The syntax of the RxMigrate utility is:

>>-RxMigrate-—inputfile--outputfile---- - - ><

497

Chapter 19. Useful Services

498

Chapter 20. Windows Scripting Host Engine

This chapter describes the use of Object Rexx as a Windows Scripting Host (WSH) engine.

20.1. Object Rexx as a Windows Scripting Host Engine

Object Rexx is automatically enabled as an engine for Windows Scripting Host at installation. This
chapter gives a brief description of WSH and how Object Rexx interacts with it, and shows you how you
can best use this feature.

The easiest part of this feature to understand and to become immediately productive with is its ability to
use Object Rexx as a scripting language for Microsoft's Web browser, Internet Explorer. To go quickly to
using this technique, seevocation by the Browser

20.1.1. Windows Scripting Host Overview

Windows Scripting Host (WSH) is a unified scripting environment for all Microsoft products. It is usable
by any macro language that follows its specification. WSH is the mechanism that allows users to
customize and dynamically control the products that support its hosting standard.

The Windows Scripting Host engine for Object Rexx enables users to drive Microsoft's products, notably
Internet Explorer. Other products that can be driven include the components of the Office suite, like
Word, Excel, and so on.

The difference between WSH and the OLE support that Object Rexx provides is the context in which the
script resides. OLE scripts are exterior to the product, and WSH scripts can be embedded in the files that
the product uses. The advantage of embedding the script is that the user has fewer files to manage. The
Object Rexx engine for WSH enables users to accomplish this in a seamless fashion.

There are two components to WSH. The first is the host - the product that can be scripted. The second is
the engine - the product that interprets the script.

Object Rexx supplies the engine component of WSH.

20.1.1.1. The Gestation of WSH

As with many new technologies today, WSH introduces several new concepts and terms. The best way to
describe these is to start with an overview of the problem that WSH addresses, and its history.

Until recently, Microsoft provided users simply with a COM (Common Object Model) interface to their
office products. COM is a binary, as opposed to text, command input system. These commands drove the
product - by, for example, telling Microsoft Word to print the current document - and did not contain any
logic or decision-making capabilities. Users who wanted such capabilities developed them in programs
external to the COM object. Accessing the interface required the user to develop the logic to drive the
COM object at first in C++, then later in Visual Basic. The investment for the user, in development time,
was quite significant.

In order to satisfy customer demand, a particular version of a scripting language (based on Visual Basic)
was developed for each Microsoft product. In addition, the emergence of scripting languages such as

499

Chapter 20. Windows Scripting Host Engine

JavaScript™, with their ability to dynamically control Web browsers, led Microsoft to develop two more
scripting languages, VBScript and JScript.

WSH is a consolidation of the scripting language proliferation. Borrowing heavily from the browser
paradigm, the host interprets a language-independent XML file that contains one or more scripts where
each script is encapsulated in a script (script tag) that denotes the language of the script, and any other
necessary environmental parameters. The host extracts the script from the file, and passes it to the
appropriate interpreter.

20.1.1.2. Hosts Provided by Microsoft

Microsoft provides three fully-implemented scripting hosts. They are Microsoft Internet Explorer,
CScript, and WScript. As an expansion on the concept of using a scripting language to drive external
products, CScript and WScript were developed to control the Windows operating system. The two
modules are so similar that they are sometimes referred to as C/WScript. CScript is intended to be
used from the command line, and WScript is best used in the Windows environment. Both provide their
services to the script through the WScript object. Using the default method for aigtpupt “Echo (),

CScript sends the output to a console screen in the same manner as the Object Rexx cespmand
whereasiScript~Echo () in a script controlled by WScript will create a pop-up box in which the user
must click the OK button to make it disappear.

20.2. Scripting in the Windows Style

500

Each flavor of WSH has an associated file type. This section gives a brief example of scripting for each
file type, and suggestions that are appropriate in each case. If you need to, see the appropriate
documentation for the exact syntax of WSH’s XML format, and the syntax of an HTML file.

20.2.1. Invocation by the Browser

Invocation by the Web browser is probably the easiest scripting technique to illustrate, and the most
familiar use of WSH. The following is a small HTML file that shows Object Rexx as the scripting
language. There are three paragraphs that have the animating power of Object Rexx behind them. Each
uses an Internet Explorer pop-up window to denote a particular mouse action. The appropriate activity
takes place when the mouse is rolled over the first paragraph, when it leaves the second, and when it is
used to click the third.

<HTML>

<!--

[kokskok sk sk ok sk sk ok sk ok sk ok sk sk ok sk ok sk sk ok sk ok sk sk ok sk sk sk ok sk ok sk sk sk ok sk sk sk ok sk sk sk ok sk sk sk ok ok sk sk ok ok sk ok /
/* DISCLAIMER OF WARRANTIES. The following [enclosed] x/
/* code is sample code created by Rexx Language Association. This */
/* sample code is not part of any standard or RexxLA x/
/* product and is provided to you solely for the */
/* purpose of assisting you in the development of your x/
/* applications. The code is provided "AS IS", without */

Chapter 20. Windows Scripting Host Engine

/* warranty of any kind. RexxLA shall not be liable for */

/* any damages arising out of your use of the sample x/

/* code, even if they have been advised of the */

/* possibility of such damages. x/

KKk ok ok ok ok sk ook ok ok Kok oK ok oK ok ok o ok o ok oK oK K ok oK ok K ok ok o sk oK oK oK K ok oK ok K o ok ook oK oK ok Kok ok ok ok ok
1-->

<HEAD>

<TITLE>A simple event</TITLE>

<script language="Object Rexx" >

Routine Display Public

Window~Alert (Arg(1))

Return "something to keep the mouseover function call happy"
</script>

< /HEAD>

<BODY BGCOLOR="#ffffff">

<H1>How to use events</H1>

<P>Moving the cursor over the following paragraphs will cause two

events, respectively: one when you move onto the text, and one when

you leave it. At both times a pop-up message will inform you about this.</P>

<!-- in both cases the "alert" function of the object "window" is called !'-->

<P onmouseout="alert("Cursor left paragraph")" LANGUAGE="Object Rexx">

Event takes place when cursor leaves this paragraph.</P>

<P onmouseover="a = Display('Cursor is over paragraph')"

LANGUAGE="0Object Rexx">
Event takes place when cursor moves over this paragraph.</P>

<P>The following paragraph reacts when you click it:</P>

<P onclick="call Display "Thank you! The current time is" time()"," date()"
LANGUAGE="0Object Rexx">Click me!</P>

</BODY>

</HTML>

The important things to note in this example are:

TheLANGUAGE="0Object Rexx" attribute on each tag that contains code.

The <script> tag in the<HEAD> section defines a function that can be called from any other code
section in this HTML file.

501

Chapter 20. Windows Scripting Host Engine

502

« The Object Rexx keyworduBLIC must be on the :ROUTINE statement, or Object Rexx will not be
able to make that name accessible outside of that script block.

- Thewindow Object is accessible, even though it was not declared and Ho8TINE statements have
the variable scope of an external routine.

- Some text was put on ttRETURN statement simply as a precaution. Those familiar with Object Rexx
know that routines called as functions demand a return value.

« All of the code for thenouseout= is completely contained within thep> and</p> tags.

- Also note the lack of the leadingiindow~" on the Alert(). Se€€hanges in Object Rexx due to
WSH.

- The second event references the routine that was defined earlier as a function. The return value is
assigned to the variable "a", and discarded as soon as the event finishes processing. Unlike the situation
in JScript, function return values in WSH must be used in an expression, or assigned to a variable.

« The third event also references the routine that was defined earlier, but this time as a procedure and not
as a function. TheaLL statement forces this kind of access.

- CALL statements do not produce an error if no value is returned. If a value is returnedLandas
used to activate the routine, the value can be obtained from the special varstile.

Additional examples can be found in the Samples\WSH subdirectory of your Object Rexx for Windows
installation directory.

20.2.2. WSH File Types and Formats

Two main file types are used by WSH. Both follow an XML format that wraps the script code. The XML
tags are interpreted by C/WScript, and direct it to the correct scripting engine to process the code inside.
The file type.wsf is used to define scripts that are executed as commands. This is similar to the
conventional way of invoking Object Rexx in the Windows environment. The file typeis used to

define scripts that are treated as COM objects. The XML tags here denote the properties, methods, and
events of the COM object, as well as the correct engine to invoke for scripts.

Note that these XML files are well formed, but not valid. There is no associated Document Type
Definition (DTD).

20.2.2.1. .wsf

The .wsf file type is as easy to invoke as HTML, and is very similar in appearance, with only minor
differences. Thewst file is used to drive the operating system in the same way that an HTML file is
used to drive the browser. The file is an Object Rexx script file with an XML wrapper.

The following sample prints the version of the JScript engine and the version of the scripting host. If this
file had the namesimpleORexx.wst", the command to invoke it would b&Script //nologo
SimpleORexx.wsf", OF "WScript //nologo SimpleORexx.wsf".

<7xml version="1.0"7>
<7job error="true" debug="true" 7>

Chapter 20. Windows Scripting Host Engine

<package id="wstest">

<!l--
[kokskok sk ok sk sk ok sk ok sk ok sk sk ok sk ok sk sk ok sk sk sk ok sk sk sk ok sk ok sk ok sk ok sk sk sk ok sk ke sk sk ok sk sk sk ok sk sk sk ok ok sk ok /
/* DISCLAIMER OF WARRANTIES. The following [enclosed] x/
/* code is sample code created by Rexx Language Association. This */
/* sample code is not part of any standard or RexxLA x/
/* product and is provided to you solely for the */
/* purpose of assisting you in the development of your x/
/* applications. The code is provided "AS IS", without */
/* warranty of any kind. RexxLA shall not be liable for x/
/* any damages arising out of your use of the sample x/
/* code, even if they have been advised of the */
/* possibility of such damages. x/
[/ skskokokskok kst ok sk ok ok sk skl sk ok stk ok sk sk ok skskosk ok stk sk ok sk ki ok skl sk ok stk sk sksk sk skl sk ok sk sk ok skok /
1==>
<!-- Just a small file to demonstrate the *.wsf file format, and
--- what Windows provides by default.
-—>

<job idid="RunByDefault">

<l---
--- These functions are provided by WSH.
-—>

<script language="JScript"><![CDATA[

function GetScriptEngineInfo(){

var s;
s = ""; // Build string with necessary info.
s += ScriptEngine() + " Version "; // Except this function. It can

// only be accessed from JScript
// or VBscript.

s += ScriptEngineMajorVersion() + ".";

s += ScriptEngineMinorVersion() + ".";

s += ScriptEngineBuildVersion();

return(s);

}

11></script>
<!---
--— Not all of the script needs to be within one tag, or use the
--- same language.
-=>
<script language="Object Rexx"><![CDATA[

Say "This is "GetScriptEngineInfo()

Ver = "Accessing the version info from Object Rexx yields"

Ver = Ver ScriptEngineMajorVersion()"."

Ver = Ver||ScriptEngineMinorVersion()"."ScriptEngineBuildVersion()
Say Ver

503

Chapter 20. Windows Scripting Host Engine

504

WS

1]

cript~Echo("Done!")

></script>

</job>

</package>

The important things to note in this example are:

Accept the two XML tags{? ... 7>) at the beginning as boilerplate, although daeug="true" can
also bedebug="false" without any detrimental effect.

All XML tag names and attributes are in lower case.

All XML tags have a beginning and an end tag. The beginning tag looksdikg>, and the end tag
</tag>. Where the tag contains only attributes, and there is no content between the beginning and the
end tag, it is acceptable to abbreviateag attribute=""></tag>t0 <tag attribute=""/>.

Comments are the same as in HTML.

Following the<script> tag is the tag< ! [CDATA[, and preceding the script/> tag is]I>. This tells
the XML parser to ignore this text. If this is not done, many of the operators and special characters in
the script will confuse the XML parser, and it will abort the script.

There are severatscript> tags; here Object Rexx is invoking a JScript function.

The functions that begin witbcriptEngine. .. and the WScript object are not declared, yet Object
Rexx finds them. They are implicit, and their scope is global.

Additional examples can be found in the Samples\WSH subdirectory of your Object Rexx for Windows
installation directory.

20.2.2.2. .wscC

The .wsc file type is much more elaborate than thef type. Since awsc file is used as a COM object,
the XML must describe the object in a way that is independent of the script language. Consider the
following example.

<?7xml version="1.0"7>

<?component error="true" debug="true" 7>

<package id="SimpleObjectRexxCOMScriptTest">

<t--

/*
/*
/*
/*
/*
/*
/*
/*
/*

stk kb sk ok stk ok stk ok sk sk ok sksksk stk ok sk skl sk stk sk ok stk koksksk stk stk sk ok ksl sk stk sk okok /
DISCLAIMER OF WARRANTIES. The following [enclosed] x/
code is sample code created by Rexx Language Association. This */
sample code is not part of any standard or RexxLA x/
product and is provided to you solely for the */
purpose of assisting you in the development of your x/
applications. The code is provided "AS IS", without */
warranty of any kind. RexxLA shall not be liable for x/
any damages arising out of your use of the sample x/

Chapter 20. Windows Scripting Host Engine

/* code, even if they have been advised of the */
/* possibility of such damages. x/
[F KRR K oK KoK KK oK K K ok KoK K oK K ok KoK ok oK K ok KK ook K ok KK ook kK ok Kok K ok
1-—>

<1---

--- An example script to demonstrate the features provided by the
--- COM structure. Register our own typelib, create methods,
--- and create a property.

-—= This section registers the script as a COM
--- object when Register is chosen from the list of commands
--- that appear when this file is right-clicked.

-—= The value of progid= is how the world will find us.
--- Two GUID's are needed, one for the COM object, and one
--- for the Typelib that will be generated. The routine's
--- Register and Unregister mimic those required in a COM
--— *.dll. Even within these routines, there is full
--— Object Rexx capability.
1==>
<component id="SimpleORexxCOM">
<registration
progid="SimpleObjectRexx.Com"
description="Test of the COM scriptlet interface as seen by Object
Rexx."
version="1.0"
clsid="{6550bac9-b31d-11d4-9306-b9d506515£14}">
<script language="Object Rexx"><![CDATA[
::Routine Register Public
Shell = .0LEObject~New("WScript.Shell")
Typelib = .0LEObject”New("Scriptlet.TypeLib")
Shell"Popup("We are registering, now")
/*
* Please note that the name that follows must match
* our file name exactly, or this fails when registering
* with an "OLE exception", Code 800C0005 or Code 800C0009.
*/
Typelib~AddURL("SimpleORexxCOM.wsc")
Typelib“Path= "SimpleORexxCOM.t1b"
Typelib™Doc = "Test component typelib for Simple Object Rexx.Com"
Typelib“Name = "Test component typelib for Simple Object Rexx.Com"
Typelib“MajorVersion = 1
Typelib™MinorVersion = 0
Typelib“GUID = "{6550bac5-b31d-11d4-9306-b9d506515£14}"
Typelib~Write()
Typelib™Reset ()
Shell~Popup("We've really done itnow")

505

Chapter 20. Windows Scripting Host Engine

::Routine Unregister Public
Shell = .0OLEObject”New("WScript.Shell")
Shell~Popup("We are outa here!")

11></script>

</registration>
<!---
-—= This section is what describes this COM object to the outside
--- world. There is one property, and there are two methods named.
--- One of the methods is the default, since its dispid is O.
--— O0Object Rexx does not support calling the default in a shorthand
--- manner. All calls are as follows:
--- 0bj = .OLEObject~New("SimpleObjectRexx.Com")
--- 0bj~DefaultMethod("Some Parm")
1-=>
<public>

<property name="ExternalPropertyName"
internalName="InternalPropertyName" dispid="3">

</property>

<method name="NamedRoutine">
<parameter name="NamedParameter"/>
</method>

<method name="DefaultMethod" dispid="0">
<parameter name="ReallyForTheOutsideWorld" />
</method>

</public>

-—= This is the actual script code. Note that the property
--- 1is declared at the highest scope. If this is not done,
--- then the property will not be found, and the script
--— will not abend when the property is referenced.
1-=>
<script language="Object Rexx" ><![CDATA[
InternalPropertyName = "Sample Property"

::Routine NamedRoutine Public

say "There are "Arg()" args."

a = RxMessageBox("Is executing, now.","NamedRoutine","OK",)
Return

::Routine DefaultMethod Public

say "There are "Arg()" args."

a = RxMessageBox("Is executing, now.","DefaultMethod","OK",)

WShell = .0OLEObject”New("WScript.Shell")

a = WShell“Popup("A message via an implicit COM object.");
Return "a value"

506

Chapter 20. Windows Scripting Host Engine

11></script>
</component>
</package>

The important things to note are:
- There are three distinct sections in this file, and two of them contain Object Rexx code.

. The first section identifies this as a COM object. Phegid=, version=, andclsid= attributes of
the <registration> tag are given so that this file can be entered into the Windows Registry as a
COM object. This is one of the sections that has code. The code here generates the Typelib when
the script is registered as a COM object.

- The second section lists all of the entry points to this object, their parameters, and any data that is
being externalized. When the Typelib is generated, this information is used to create its contents.
This is more of a designer’s wish list than something that is enforced. The designer states what he or
she believes to be the minimal number of parameters. The designer must then enforce this within the
subroutine. However, be aware that other routines calling these listed here may pass more, or fewer,
parameters than this section suggests. This is especially true for procedures nametktitia >
tags. WSH passes the named paramgates, which Object Rexx passes on to the routine.

- The third section is the actual code.
« Read the comments before each section; they contain important information about that particular
section.

- Any code that is put in the same scope as the property being assigned its value is called immediate
code. Immediate code is executed when the COM object is loaded, before any of its pieces (methods,
properties, or events) are accessed. It executes even if none of the external pieces are accessed.

Additional examples can be found in the Samples\WSH subdirectory of your Object Rexx for Windows
installation directory.

20.2.3. Invocation from a Command Prompt

Invocation from a command prompt covers many possible means:

« Opening a DOS window to type the command into;
« Selecting Start=Run from the Windows taskbar;
- Starting from a file association made in Windows Explorer.

A conventional Object Rexx file is one in which every line is valid Object Rexx syntax, and makes no
assumptions about global objects. It contains no XML wrapper as described in the sectiai &les.

Consider what happens when a file namsil. rex contains the single linéwScript~Echo ("WSH is
available.")'; another file nameusH.wsf contains the same line of code in the .wsf wrapper described
above; and another filgafe.rex, contains the lin@say 'Conventional Rexx file' Arg(1)".

507

Chapter 20. Windows Scripting Host Engine

20.2.3.1. As a Conventional Object Rexx File

From a command promptRexx WSH.rex", will stop with an error 970bject "WScript" does not

understand message "Echo".

From a command promptRexx WSH.wsf", will stop with an error 35Invalid expression detected
at I|<II .

From a command promptRexx Safe.rex GREAT!", produces one line of outputgonventional Rexx
File GREAT!".

20.2.3.2. As a Windows Scripting Host File

Both CScript and WScript will invoke a file from the command line. All of their parameters begin with a
double slash. Two useful parameters apologo and//e:. The//nologo parameter prevents the

banner from being displayed, arde: tells WSH not to interpret this file, and to pass the complete
contents to the named engine. Entetript or WwScript with no parameters or file names to see a
complete list of parameters.

WScript converts all WScript~Echo() output into pop-up text boxes, whereas with CScript they are
displayed as output lines in a DOS window. If CScript is executed from outside a DOS window (either
from Start=>Run, or from the use of Windows Explorer), a DOS window will be created for the output.
Note, however, that it is removed when the script is complete. Usually, this means that the lifetime of the
DOS window is long enough for a person to detect it, but not to actually read it.

From a command promptcscript //e:"Object Rexx" WSH.rex" produces one line of outputysa
is available." From a command promptyscript //e:"Object Rexx" WSH.rex", produces a pop-up
box that contains the titleWindows Script Host", an OK button, and the textisSH is available."

From a command promptcscript //e:"Object Rexx" WSH.wsf" will stop with an error 35Invalid
expression detected at "<".From acommand promptyscript //e:"Object Rexx" WSH.wsf",

will seem as if it produced no output at all. Though Object Rexx is still generating the error message,
WScript does not detect the output to STDOUT, and no DOS window is created.

From a command promptescript //e:"Object Rexx" Safe.rex GREAT!" produces one line of
output,"Conventional Rexx File". Note the lack of the word GREAT!. WSH does not pass the
command lineargs to Object Rexx. Th@script~Arguments method/object must be used, as in the
following code:

/% Note that the WScript object is not declared. It just appears
* courtesy of CScript and WScript
*/
Say "The arguments as WSH sees them."
If WScript~™Arguments~length > O Then Do I = 0 To (WScript~Arguments”length - 1)
Say i WScript~Arguments(i)
End
Else Say "No arguments were sent."

From a command promptyscript //e:"Object Rexx" Safe.rex GREAT!", will seem as if it produced
no output at all. As whersH.wsf is run by WScript with a known engine (see the relevant paragraph
earlier), Object Rexx is still executing tlsay instruction, WScript does not detect the output to
STDOUT, and no DOS window is created.

508

Chapter 20. Windows Scripting Host Engine

20.2.4. Invocation as a COM Object

This is the most intricate of the script files to execute. Multiple steps are involved, and there is ho
command that directly invokes the script. C/WScript cannot be used to directly invaike &le. It must
be processed by other means first. Once created, the file must be registered.

Once registered, this can be invoked by any program that can call COM objects. It does not have to be
another script; that program could be Visual Basic or C++. If the COM object is to be invoked by Visual
Basic, it is a good idea to generate a Typelib. This helps Visual Basic to form its parameter list.

20.2.4.1. Registering the COM Obiject

Use either of two methods to registerasc file. The first is to right-click it in Windows Explorer, and
chooseregister from the list of commands that appears. The second is from the command line. For
example, to registersi.wsc, at a command prompt, enter the comman@gsvr32 /c WSH.wsf".

The GUID in thec1sid= attribute must be unique for the machine the COM object is being registered on.
In other words, no other COM object may use the GUID. Once it is registered, the script cannot be
moved. The path to a COM object is stored in the Registry as a complete path. If the script is moved,
then Windows will not know how to find it.

20.2.4.2. Generating a Typelib

Use either of two methods to generate the Typelib. One is using code in the Register method of the
<registration> Section. See the samplesc code above for an example of this. The other is to choose
Generate Type Library from the list of commands that appear when the file name is right-clicked in
Windows Explorer.

20.2.4.3. Invoking

The easiest method of invoking the script, once it is a COM object, is to use an OLE-enabled application,
such as Object Rexx. The following Object Rexx code shows how to define the object in Object Rexx,
and invoke its methods.

<7xml version="1.0"7>
<7job error="true" debug="true" 7>

<package id="wstest">

<!--

[ok sk ok sk sk ok sk sk sk sk ok sk ok sk sk ok sk ok sk sk ok sk sk sk ok sk sk sk ok sk ok sk sk sk ok sk sk sk ok sk sk sk ok sk sk sk ok sk sk sk ok ok sk ok /
/* DISCLAIMER OF WARRANTIES. The following [enclosed] x/
/* code is sample code created by Rexx Language Association. This */
/* sample code is not part of any standard or RexxLA x/
/* product and is provided to you solely for the */
/* purpose of assisting you in the development of your x/
/* applications. The code is provided "AS IS", without */
/* warranty of any kind. RexxLA shall not be liable for x/
/* any damages arising out of your use of the sample x/
/* code, even if they have been advised of the */

509

Chapter 20. Windows Scripting Host Engine

510

/* possibility of such damages. */

[HFFAAA KA KA AA KK A KKK AAK KA K KA A KK KA A KA KK KA A KK A KKK AA KK KA KKK AA KKK [
1-->

<1---

-—= This example shows how easy it is to
--- invoke a COM object that is a script by means of
--— O0Object Rexx.

<job id="RunByDefault">
<script language="Object Rexx"><![CDATA[

Say "Creating the ObjectRexx.Com object. "
Sample = .0LEObject™new("SimpleObjectRexx.Com")
Say "Just before the default method "
ReturnValue = Sample~DefaultMethod("A parm");
ReturnValue = Sample~NamedRoutine("A parm");
11></script>
</job>
</package>

Object Rexx is not the only way to invoke the script. Any application that can call COM objects can
invoke it. For further information, see the relevant documentation.

20.2.4.4. Events

When scripts are turned into COM objects they can initiate events. Several types of events are supported:
the default COM events, HTML or Behavior events, and ASP events. The type of event that the COM
object supports is denoted by thgpe= attribute of the<implements> tag. An in-depth discussion of

events and how to create, code, and handle them is beyond the scope of this documentation. However,
there are a few concepts that should be mentioned.

20.2.4.4.1. COM Events

In the <public> section, where the external attributes of the COM object are disclesednt > tags

can be added. They name the events that the script could possibly activate. When the script that calls the
COM object instantiates it by using the method provided by WScript, rather than the Object Rexx
method, it can inform the COM object that it will handle the events that the COM object fires. Note that
when a script agrees to handle the events of an object, it must handle all of the events of that object.

For example, suppose the public section looked as follows:
<public>
<event name="Eventl" />

<event name="Event2" />
</public>

and the script that instantiated the COM objects code looked as follows:
RexxObject = WScript~CreateObject("ObjectRexx.Com","Event_");

In that case, the instantiating script would be required to define the two routines below.

Chapter 20. Windows Scripting Host Engine

::Routine Event_Eventl Public
::Routine Event_Event2 Public

It is not acceptable if only one of the events is supported. Also, note the naming convention. The second
parameter of CreateObject() names the prefix of the routine name that will support the event. The
remainder of the routine name is composed of the event name frorethat > tag of the<public>

section. Neither the prefix nor the empty string can be elided. In other words, neither
CreateObject("object",) NOrCreateObject ("object","") is allowed. The script host will generate an
error.

20.2.4.4.2. Internet Explorer Events

When coding Internet Explorer events, the user should be aware of the following. The section of code
between the quotes on an HTML tag has to be complete, with correct syntaxaiihebject is

implicity defined for the scope of the section. If the section calls a function, and the function needs
access tauis, then the section must pagsrs as a variable to the functioms1s is the browser’s object
that represents the tag that the event was fired from. For all of the exact properties and methods
associated witltazs, see the documentation for the corresponding tag.

To illustrate, consider the following code extract:

<p onmouseover="Call RxMouseOver This" id="SomeTag">
"HOT" text, get your "HOT" text right here
</p>

<script language="Object Rexx">

::Routine RxMouseOver Public

Use Arg This

Text = "This is a <"This“tagName"> tag named '"THIS~id"'"
a = RxMessageBox(Text, "RxMouseOver","0K",)

Return "OK"

</script>

The code for thenmouseover= "Call RxMouseOver This" iS complete and correct. If a function call
had been used instead, the code would be something similar£orxMouseOver (This)". Do not forget
to assign the results of a function call to somethingaifs is not passed as an argument to
RxMouseOver, it will have the default value of a string whose contertis.

To cancel Internet Explorer events, the Object Rexx Boolean valts se must be returned. The
integer values and1 are not appropriate alternatives. For example:

20.2.5. WSH Samples

There are more features to WSH than are listed here. The Samples\WSH subdirectory of your Object
Rexx for Windows installation directory contains some appropriate samples and an explanation of the

511

Chapter 20. Windows Scripting Host Engine

relevant features. Before running any samples, make sure that the latest version of Windows Scripting
Host is installed on the machine.

Several sample files are stand-alone; these are all of the file types.wsf or .rex. However, all of the
samples covering the aspects of using Object Rexx scripts as COM objects are in pairs or, in one case, a
group of three. One file is the COM object, and the other is the script that instantiates it. All of the COM
objects are of the file typessc. The files that instantiate them are eithegf or .rex. The sample that

uses three files illustrates theclude= attribute of the<script> tag. All of the .wsc files must be

registered before they can be used (Registering the COM Objekt

To view the.htm samples, use Windows Explorer to view the sample directory. Right-click the desired
sample file, and choose Open WitHaternet Explorer from the menu that appears.

To view the.wsf or .rex samples, use either a DOS window or Windows Explorer. From Windows
Explorer, double-click the desired file. It will execute automatically. From the DOS window, make the
sample directory the current directory, and use either CScript or WScript to execute the sample. The file
Print.rex iS an include file. It is not intended for direct execution.

Samples whose names begin with "w" use only Window pop-up boxes for output. Samples without the
leading "w" are best viewed from the DOS window. They produce output that will not display in a
Windows-only environment. Samples whose name begins with "call" are used to instantiate the COM
objects once they are installed. If they are not installed, the error message 98.909: Class

L, " not found" Will be issued.

20.3. Interpretation of and Deviation from the WSH
Specification

This section deals with a number of issues to do with interpreting the WSH specification and with
deviations from it.

20.3.1. Windows Scripting Host (WSH) Advanced Overview

Accommodating to WSH has necessitated some deviations from the Object Rexx standard. To best
understand what these deviations are, you need to be aware of the components of WSH. In addition to the
products that are hosts, there are special COM objects and different mechanisms for initiating the engine.

20.3.1.1. Hosts Provided by Microsoft

Microsoft provides three fully-implemented scripting hosts. They are Microsoft Internet Explorer,
CScript, and WScript. As an expansion on the concept of using a scripting language to drive external
products, CScript and WScript were developed to control the Windows operating system. The two
modules are so similar that they are sometimes referred to as C/WScript. CScript is intended to be used
from the command line, and WScript is best used in the Windows environment. Both provide their
services to the script through the WScript object. Using the default method for estatipt~Echo (),

CScript sends the output to a console screen in the same manner as the Object Rexx cespmand

512

Chapter 20. Windows Scripting Host Engine

whereasiscript~Echo () in a script controlled by WScript will create a pop-up box in which the user
must click the OK button to make it disappear.

These are not the only Microsoft products that have WSH capabilities. The core of C/Wscript is
scrobj.d1l1. Several Microsoft products implement various parts of the scripting host architecture by
usingscrobj.d1l.

20.3.1.2. Additional COM Objects

Since JScript and VBScript were developed primarily to manipulate the Web browser DOM (Domain
Object Model), they lack many of the features associated with a language that drives an operating
system. They have no native facilities for 1/O (Input and Output), or for controlling the file system. These
powers are granted through several additional COM objects.

Most of the literature on WSH describes these objects. Most of the features in these additional COM
objects are native to Object Rexx; for further information, ee OLEODbject Clasd-urther
documentation on the additional COM objects is readily available from other sources.

Object Rexx, since it is OLE-enabled, has access to all of these objects. OLE (Object Linking and
Embedding) is an advanced protocol based on COM. Be aware that the automatic object WScript is only
available when Object Rexx is activated by C/Wscript. Access cannot be obtained if Object Rexx is
initiated by Internet Explorer, or when it is initiated in the classical mettReslx someFile.rex", either

from the command line or from a command issued by the file explorer as an association with a file type.
This is not a limitation of Object Rexx. It is a consequence of the manner in which this object is loaded.

The WScript object is not registered in the Windows Registry. It exists only when C/WScript
dynamically creates it and then passes the pointer to Object Rexx. All scripting languages, including
JScript and VBScript, have this limitation.

20.3.1.3. Where to Find Additional Documentation

The best source of up-to-date information on WSH is the World Wide Web. The keyword to use when
searching the help facilities provided by Microsoft is "scripting”. If you are using a search engine
(available when you click "Search" on your browser’s menu bar), insert "activescript” as the keyword.

In addition, there are several books on the subject. When browsing online bookstores, use the keyword,
"activescript". The MSDN (Microsoft Developers Network) is a good reference source for the syntax of
the XML used to define the WSH files.

Note that the correct file type to use for the XML file that C/WScript processess Existing
documentation often states misleadingly that the file type to useisC/WScript requires the full file
name, including file type, and it processes the file correctly only when the file typefisThis seems to
be hard coded into C/WScript, and no workaround is available.

20.3.2. Object Rexx in the WSH Environment

Object Rexx is fully compatible with the WSH environment. Interaction with JScript and VBScript is
transparent. Legacy applications developed with these languages will not have to be discarded.

513

Chapter 20. Windows Scripting Host Engine

514

20.3.2.1. Object Rexx Features Available

All of the features normally associated with Object Rexx are available when Object Rexx is loaded by
WSH. In addition, OLE support is loaded automatically. Scripts do not need to inclugeuires
"ORexxOLE.CLS"'. However, when Object Rexx is invoked by Internet Explorer, it honors the "sandbox"
settings that the user has set in the browser’s security panel. Access to I/O, the file system, external
commands, and COM objects may not be granted.

20.3.2.2. Changes in Object Rexx due to WSH

To comply with the WSH definition, some of the scoping rules and default behavior of Object Rexx have
been modified. The default behavior has been altered to allow some objects to be implicitly defined. The
normal scoping rules now allow "global" objects to appear at any procedure depth, without requiring the
use of EXPOSE, or the passing of the object as a parameter. Second-level objects can now be accessed
without specifying the first level. These changes only apply to objects that WSH provides to Object

Rexx. All other objects and variables behave in the standard ways.

Normally, access to objects requires explicit declaration through one of the OLE methods, as in:
"Window = .OLEObject™new("window")"

Some, like WScript, can only be passed in; othersndow, for example - have a history of being
implicitly available. Full documentation is not yet available as to what objects have these features, and
therefore only a few will be mentioned.

As previously mentioned, the WScript object is implicitly available when Object Rexx is started by
C/WScript. The "window" object is implicitly available when Object Rexx is initiated by Internet
Explorer. For events associated with an HTML taxyMOUSEQVER, for example - the scriptlet in the
HTML tag hasta1s implicitly defined. Unlikewinpow", THIS is not global. Typically, this scriptlet calls
a procedure, antiIs must be passed to the procedure if the procedure needs to refergace

Normally, you reference an object by naming the top level object, followed by the objects at second and
subsequent levels, separated by the tilde symbol (~). However, in order to emulate the current behavior
of Internet Explorer, the engine must resolve object names starting at the second level to the appropriate
top level that owns them. The shortham@cument “WriteLn ()" Or "Alert ()" iS just as acceptable as
"Window~Document~WriteLn()" Of "Window~Alert ()". It iS preferable, as good coding practice, to

explicitly state this relationship. StatinQoc = Window~Document" removes all doubt as to which global
object WriteLn() is associated with when the statem@at-writeLn()" is encountered.

Note: This applies only to global objects supplied by WSH. Objects created in or supplied by Object
Rexx must be named in the normal fashion.

20.3.2.3. Parameters

A called routine may receive more parameters than expected. This is not necessarily an error on the
caller’s part; WSH adds extra parameters on occasion. When WSH does this, Object Rexx adds the
parameters at the end. There is an exception to this. The documentation is ambiguous in certain sections
about defining properties for scripts that are used as COM objects. If the XML that defines the script

Chapter 20. Windows Scripting Host Engine

states that a name should be a property, but Object Rexx finds it defined as a function, then Object Rexx
will prepend the parameter list witteT or puT, depending on the direction of the property access. For

more information, see the sample fil§l1_ExtraParms.wsf in the Samples\WSH subdirectory of your
Object Rexx for Windows installation directory.

20.3.3. Properties

WSH defines properties as variable values that a COM script exposes to outside routines, or strings and
numbers extracted from a Typelib. Properties are to be treated as global variables within the accessing
script. Properties can be implemented as variables or as functions.

Object Rexx supports declaring and defining properties in the intent of the specification (see the section
on .wsc files). That means that the variables at the highest scope, the closest to what could be considered
as global, may have their values exposed as properties for other programs to use.

For another program to reference these properties, it must instantiate the COM object, and the object
name must precede the property name. For example:

Object = .0LEObject~New("SimpleObjectRexx.Com")

/* The next line is a property GET */

Say "The value for ExternalPropertyName is:" Object”ExternalPropertyName
Object“ExternalPropertyName = "New Value" -- This is a PUT

If you experiment, you will find that there is also a shorthand method, as follows:

Object = .OLEObject”New("SimpleObjectRexx.Com")

/* The next line is a property GET */

Say "The ExternalPropertyName value is:" Object ExternalPropertyName ()
Say Object”ExternalPropertyName("New Value")

In the case of the second reference, the method is both a PROPERTYGET and a PROPERTYPUT. It gets
the old value, replacing the current one with the parameter inside the parenthesis. If more than one
parameter is passed, the additional parameters are ignored.

Note: This does not always work, and is supported only by Object Rexx. The cases in which it does
not work are where the properties are defined as functions and not as simple variables. These calls
are, in fact, methods and not property references. When Object Rexx receives method calls for
properties, it converts them to the appropriate action. In the case of properties defined as functions,
WSH translates the property action into a function action. However, when the action is initiated as a
function and not as a property, WSH does not always make the appropriate or correct translation.

Object Rexx does not support the concept of global variables. For a COM script to reference its own
properties, and to react to outside scripts changing them, then the properties have to be global. To meet
the requirement that properties are global in scope within the defining script, the Built-In Function (BIF)
Value() has been expanded to accept "WSHPROPERTY" as a selector when referencing properties. As
with variables accessed with the "ENVIRONMENT" selector, these variables persist only during the life
of the COM object that supplies the properties. The next time that the COM is run, the values will be at
initial coded state.

515

Chapter 20. Windows Scripting Host Engine

516

The WSH supports various syntax combinations in the case of implementing a property as a function. In
all combinations, the function is named in theroperty> section or tag. It assumes that, when no

function is named, the property is a variable; however, it does not enforce this assumption. It is possible
to name a property and define it as a function. Object Rexx defines this to mean that the function must be
invoked whenever a property access is attempted. Object Rexx notifies the function of the intended
access direction by insertirggT or PUT as the first argument, and shifting all original arguments

accordingly; that is, the original first argument is the second, the second is the third, and so on. For a
demonstration of this behavior, see the1_PropertyORexx.wsf Sample in the Samples\WSH

subdirectory of your Object Rexx for Windows installation directory.

The WSH also establishes that Type Library variables may be made accessible to the script. This violates
the default value and scope mechanisms of Object Rexx. To meet the requirement that properties are
global in scope within the defining script, the Built-In Function (BIF) Value() has been expanded to

accept "WSHTYPELIB" as a selector when referencing elements in a Type Library. As with variables
accessed with the "ENVIRONMENT" selector, these variables (because they are external to Object
Rexx) are global and persist only during the life of the COM object that supplies the properties. In
addition, they are read only. They are immutable; they cannot be changed.

20.3.4. The Object Rexx "Sandbox"

Object Rexx contains a feature known as the Security Manager. When this is enabled it can restrict and
audit the other native abilities of Object Rexx. When used with WSH, Object Rexx honors the
IObjectSafety interface and its methods GetlnterfaceSafetyOptions() and SetinterfaceSafetyOptions() by
translating their calls into Security Manager settings. This means that when Object Rexx is in the
Internet Explorer’s sandbox, it will restrict itself to the user’s settings. The most secure situation is one
where Object Rexx does not interact with the user’s desktop (no reads or writes to the hard disk, no
external commands, and so on).

20.3.4.1. Implications of Browser Applications That Run Outside the
"Sandbox"

The most useful aspect of this feature is that the user may select the most secure settings for the Internet,
but allow desktop interaction for pages delivered by the local intranet server. In keeping with the current
trend in IT, Object Rexx allows users to leverage their investment in desktop software. This facility is
intended for clients who use the intranet to lighten the client, or put a Web interface on legacy
applications. A lighter client desktop means less software on the user desktop to maintain.

20.3.5. Features Duplicated in Object Rexx and WSH

Several features are available from both WSH and Object Rexx. However, the overlap is not exact, and
knowing the differences can aid the user in deciding which is more appropriate to use.

Chapter 20. Windows Scripting Host Engine

20.3.5.1. Declaring Objects with Object Rexx or WScript

When instantiating COM or OLE objects as Rexx objects, either the native Rexx .OLEObject~new()
method, or the WScript~CreateObject() method can be used. The WSH method has the advantage of
allowing the script to support the events that the object might fire. This is part of its definition, and no
scripting language will have access to this ability in its native object enabler. The disadvantage is that it
is a COM object performing a function that can be done internally.

Another disadvantage of using the WSH method becomes evident if the script is executed outside of the
context of WSH. The WScript object will not exist. Therefore, unless the ability to sink events is
necessary, it is suggested that the native Object Rexx method be used.

20.3.5.2. Subcom versus the Host Interface

With the advent of WSH, there are two ways to use Object Rexx to drive a product. The first is through
the Object Rexx Subcom interface. The second is for the product to become a Windows Scripting Host.
The advantage of the WSH interface to the product is that it is a COM interface. This positions the
product to take advantage of DCOM. This interface also allows the package developed by the user to
pass objects to Object Rexx.

The disadvantage is the loss of richness contained in the Subcom interface, and the loss of the close
integration that ad11 connection has over a COM connection. The Subcom interface allows the package
to tailor Object Rexx in ways that are not possible through the COM interface, especially when the
Object Rexx Exit Handlers are implemented.

When writing a product that will be a WSH to Object Rexx, refer to the sections "Concurrency” and
"COM Interfaces" in "Windows Scripting Host Interface", in the Object Rexx for Windows:
Programming Guide.

20.3.5.3. .dll vs COM

There are several issues that should be considered when a choice needs to be made between a COM or a
.d11 interface. These issues stem from the intended purposes of each interface.

The .d11 interface was developed to extend code reuse by allowing global scope subroutines and
functions to be externalized into a module that is separate from the executable. When more than one
executable wanted these functions, they all shared the same code that was loaded into memory. The code
that was in the d11 executed in the frame of thexe module. It had the same address space and other
environmental parameters. Multiple copies 6f.a11 code exist on a machine at one time. The first one

that was found in the search path was loaded.

COM was developed to embody a flat model world; only one copy per machine. It was developed to
solve two problems with the.d11 interface. The first was entry point resolution, and the other was using
the wrong«.d11 because the search path was not correct. COM does this by using RPC, a mechanism
that was designed to communicate between different machines. For conceptual purposes, COM modules
then function in a different address space from that of the invokirge. Therefore, there is overhead in
making any data that is to be passed back and forth opaque on the sender’s side, and converting it into
usable data on the receiver's side.

517

Chapter 20. Windows Scripting Host Engine

518

Appendix A. Using the DO Keyword

This appendix provides you with additional information about the DO keyword.

A.1l. Simple DO Group

If you specify neitherepetitor nor conditional the DO construct only groups a number of instructions
together. They are processed once. For example:

/* The two instructions between DO and END are both */
/* processed if A has the value "3". */
If a=3 then Do

a=a+2

Say "Smile!"

End

A.2. Repetitive DO Loops

If a DO instruction has a repetitor phrase, a conditional phrase, or both, the group of instructions forms a
repetitive DO loop. The instructions are processed according to the repetitor phrase, optionally modified
by the conditional phrase. (S@»nditional Phrases (WHILE and UNTIL)

A.2.1. Simple Repetitive Loops

A simple repetitive loop is a repetitive DO loop in which the repetitor phrase is an expression that
evaluates to a count of the iterations.

If repetitoris omitted but there is eonditionalor if the repetitoris FOREVER, the group of instructions
is processed until the condition is satisfied or a Rexx instruction ends the loop (for example, LEAVE).

In the simple form of a repetitive loogxprris evaluated immediately (and must result in a positive
whole number or zero), and the loop is then processed that many times.

Example:
/* This displays "Hello" five times */
Do 5

say "Hello"
end

Note that, similar to the distinction between a command and an assignment, if the first takgmra$ a
symbol and the second token is (or starts withthe controlled form ofepetitoris expected.

519

Appendix A. Using the DO Keyword

520

A.2.2. Controlled Repetitive Loops

The controlled form specifiesontroll, acontrol variable that is assigned an initial value (the result of
expri, formatted as though had been added) before the first execution of the instruction list. The
variable is then stepped by adding the resukxgfrbbefore the second and subsequent times that the
instruction list is processed.

The instruction list is processed repeatedly as long as the end condition (determined by the result of
expri is not met. Ifexprbis positive oro, the loop is ended whetontrollis greater thaexprt If
negative, the loop is ended wheantrollis less tharexprt

The expri, exprt, andexprboptions must result in numbers. They are evaluated only once, before the
loop begins and before the control variable is set to its initial value. The default valarddyis 1. If
exprtis omitted, the loop runs infinitely unless some other condition stops it.

Example:
Do I=3 to -2 by -1 /* Displays: */
say i /* 3 */
end /* 2 */
/* 1 */
/* 0 */
/* -1 */
/* -2 */

The numbers do not have to be whole numbers:

Example:
I=0.3 /* Displays: */
Do Y=I to I+4 by 0.7 /* 0.3 */
say Y /* 1.0 */
end /* 1.7 */
/* 2.4 */
/* 3.1 */
/% 3.8 */

The control variable can be altered within the loop, and this can affect the iteration of the loop. Altering
the value of the control variable is not considered good programming practice, though it can be
appropriate in certain circumstances.

Note that the end condition is tested at the start of each iteration (and after the control variable is stepped,
on the second and subsequent iterations). Therefore, if the end condition is met immediately, the group
of instructions can be skipped entirely. Note also that the control variable is referred to by name. If, for
example, the compound namelt is used for the control variable, alterimgvithin the loop causes a

change in the control variable.

The execution of a controlled loop can be limited further by a FOR phrase. In this case, you must specify
exprf, and it must evaluate to a positive whole number or zero. This acts like the repetition count in a
simple repetitive loop, and sets a limit to the number of iterations around the loop if no other condition
stops it. Like the TO and BY expressions, it is evaluated only once--when the DO instruction is first
processed and before the control variable receives its initial value. Like the TO condition, the FOR
condition is checked at the start of each iteration.

Example:

Appendix A. Using the DO Keyword

Do Y=0.3 to 4.3 by 0.7 for 3 /x Displays: */
say Y /* 0.3 */
end /* 1.0 */
/* 1.7 */

In a controlled loop, theontrol1 name describing the control variable can be specified on the END
clause. Thismamemust matctcontrollin the DO clause in all respects except the case (note that no
substitution for compound variables is carried out). Otherwise, a syntax error results. This enables the
nesting of loops to be checked automatically, with minimal overhead.

Example:

Do K=1 to 10

End k /#* Checks that this is the END for K loop */

Note: The NUMERIC settings can affect the successive values of the control variable because Rexx
arithmetic rules apply to the computation of stepping the control variable.

A.3. Repetitive Loops over Collections

A collection loop specifies a control variabt®ntrol2, which receives a different value on each

repetition of the loop. (For more information eontrol2, seeDO.) These different values are taken from
successive values obllection Thecollectionis any expression that evaluates to an object that provides

a MAKEARRAY method, including stem variables. The collection returned determines the set of values
and their order. Array and List items return an array with the items in the appropriate order, as do
Streams. Tables, Stems, Directories, etc. are not ordered so the items get placed in the array in no
particular order.

If the collection is a stem variable, the values are the tail names that have been explicitly assigned to the
given stem. The order of the tail names is unspecified, and a program should not rely on any order.

For other collection objects, the MAKEARRAY method of the specific collection class determines the
values assigned to the control variable.

All values for the loop iteration are obtained at the beginning of the loop. Therefore, changes to the target
collection object do not affect the loop iteration. For example, using DROP to change the set of tails
associated with a stem or using a new value as a tail does not change the number of loop iterations or the
values over which the loop iterates.

As with controlled repetition, you can specify the symbol that describes the control variable on the END
clause. The control variable is referenced by name, and you can change it within the loop (although this
would not usually be useful). You can also specify the control variable name on an ITERATE or LEAVE
instruction.

Example:

521

Appendix A. Using the DO Keyword

Astem.=0
Astem.3="CCC"
Astem.24="XXX"
do k over Astem.
say k Astem.k
end k

This example can produce:

3 CCC
24 XXX

or:

24 XXX
3 CCC

SeeConcept of a DO Looffor a diagram.

A.4. Conditional Phrases (WHILE and UNTIL)

522

A conditional phrase can modify the iteration of a repetitive DO loop. It can cause the termination of a
loop. It can follow any of the forms akpetitor(none, FOREVER, simple, or controlled). If you specify
WHILE or UNTIL, exprwor expru respectively, is evaluated after each loop using the latest values of all
variables, and the loop is endeceiprwevaluates to@ or expruevaluates ta.

For a WHILE loop, the condition is evaluated at the top of the group of instructions. For an UNTIL loop,
the condition is evaluated at the bottom--before the control variable has been stepped.

Example:
Do I=1 to 10 by 2 until i>6
say 1

end
/* Displays: wqn n3n ngn o owgn */

Note: Using the LEAVE or ITERATE instructions can also modify the execution of repetitive loops.

Figure A-1. Concept of a DO Loop

Evaluate exprr+0 aor sxpri+1
and than exprt+0, exprb+0, and
sxpri+0 in order writtan.

:

fssign start value to control

variahle.

— | Uss |0 valuz (2xprt) to tast
control variable for termination.

!

lUse count ot iterations [exprr)
to test for termination.

!

Use FOR value (exprf) to test
for termination.

!

Use WHILE exprassion (axprw) 10
test for tarmination.

!

Process instructions in the DO

aroup.

Use UM IL 2xprassion (gxpru) to
test for termination.

!

Use BY value (gxprb) to updats
control variable.

Appendix A. Using the DO Keyword

Discontinue procassing ot DO
group if TO valus s excesded

Discontinue processing of DO
group if number of iterations
is exceaded.

Wiscontinue pracessing of DO
group if FOR value (number of
iterations through the loop)

is exceeded.

Discontinue processing of DO
group it WHILE condition is
not met.

Discontinue procassing ot DO
group if UMTIL condition is
met.

523

Appendix A. Using the DO Keyword

524

Figure A-2. Concept of Repetitive Loop over Collection

Evaluats array=
[collection)~makearray

v
Index=1

v

® Testindex>array~items

Y es

v

Control varighle =
array[index]

v

(while expression)

:

FProcess instruction

v

(until expression)

v

Index=indaex+1

Stop processing

Appendix B. Migration

This appendix lists some differences between Object Rexx and earlier versions of Rexx, and between
Object Rexx for OS/2 and Open Object Rexx for Windows NT, Windows 95 and *nix environments.

B.1. Error Codes and Return Codes

Some error codes have changed and some have been added. Also, for most errors you now receive two
error messages. The first should be similar or identical to the message you would have seen previously.
The second provides additional and more detailed information. So, for example, where you formerly
received "Invalid Call to Routine", you now get further information on what is wrong with the call.

Also, the return codes of host commands might be different.

In Windows 95, you do not get return codes for external commands that:

« Are internal commands of the command interpreter COMMAND.COM, such as DIR, COPY, or MD
+ Are 16-bit applications

- Redirect input or output

B.2. Error Detection and Reporting

Some errors are now detected earlier. Formerly, Rexx would wait until it encountered an error during
execution to report it to you. Now, some errors are reported before the first instruction in your Rexx

script is executed. In particular, syntax errors are reported after you have invoked the program, but before
it starts execution.

B.3. Environment Variables

Environment variables set within an Object Rexx program by the VALUE function or "SET" are not kept
after the program termination.

B.4. Stems versus Collections

Stems are a general data structure that are powerful but abstract. In earlier releases of Rexx, you could
use stems to create data structures of all types, such as arrays, stacks, and queues. These data structures
were semantically neutral. Because stems were the basis for all of them, the code itself gave no hint of
which structure was implemented and for what purpose.

The best data structure job is not always the most powerful and abstract but the most specific and
restrictive. Object Rexx provides a variety of data structures in the collection classes. This helps reduce

525

Appendix B. Migration

errors because you can select the data structure that best meets your requirements. It also helps eliminate
the misuse of data structures and adds a semantic context that makes programs easier to maintain.

B.5. Input and Output Using Functions and Methods

Do not use a mixture of methods and functions for input and output because it can cause unpredictable
results. For example, using the LINEOUT method and the LINEOUT function on the same persistent
stream object can cause overlays.

When a Rexx I/O function creates a stream object, the language processor maintains the stream object.
When an 1/O method creates a stream object, it is returned to the program to be maintained. Therefore,
these two stream objects are separate stream objects with different read and write pointers. The program
needs to synchronize the read and write pointers of both stream objects. Otherwise, overlays would occur.

B.6. .Environment

The .Environment directory in Windows is local and not system-global as in OS/2. This means that in
Windows there is no difference between the scope of the .Local and .Environment directories.

B.7. Deleting Environment Variables

Value(envvar,™ "ENVIRONMENT") does not delete an environment variable but sets the environment
variable’s value to ""'. Use Value(envvar,.nil,"ENVIRONMENT") to delete an environment variable.

B.8. Queuing

To improve performance it is recommended that you use the Queue class instead of RXQUEUE
whenever the queued data is not to be shared among processes.

B.9. Trace in Macrospace

Functions in macrospace cannot be traced using the TRACE keyword. These functions are stored in an
optimized format without source code. If you want to trace functions, do not load them into macrospace.

B.10. The RxMessageBox Function

In Windows, the RxMessageBox function does not support all the options available in OS/2. The
following button styles are not available in Windows: CANCEL, ENTER, and ENTERCANCEL.

526

Appendix C. Error Numbers and Messages

The error numbers produced by syntax errors during the processing of Rexx programs are all in the range
1to 99. Errors are raised in response to conditions, for example, SYNTAX, NOMETHOD, and
PROPAGATE. When the condition is SYNTAX, the value of the error number is placed in the variable

RC when SIGNAL ON SYNTAX is trapped.

You can use the ERRORTEXT built-in function to return the text of an error message.

Some errors have associated subcodes. A subcode is a one- to three-digit decimal extension to the error
number, for example,15 in 40.115. When an error subcode is available, additional information that

further defines the source of the error is given. The ERRORTEXT built-in function cannot retrieve the
secondary message, but it is available from the condition object created when SIGNAL ON SYNTAX
traps an error.

Some errors are only or not displayed under certain conditions:

- Errors 3 and 5 cannot be trapped by SIGNAL ON SYNTAX.
« Error 4 can only be trapped by SIGNAL ON HALT or CALL ON HALT.

« Errors 6 and 30 can only be trapped by SIGNAL ON SYNTAX if they occur during the execution of
an INTERPRET instruction.

C.1. Error List

C.1.1. Error 3 - Failure during initialization

Explanation:
The REXX program could not be read from the disk.

The associated subcodes are:

001

Failure during initialization: Filefilenamé is unreadable

901

Failure during initialization: Progranptogram' was not found

902

Error writing output file file"

903

Program program_nameécannot be run by this version of the REXX interpreter

527

Appendix C. Error Numbers and Messages

528

904

Failure during initialization: Progranptogram’' needs to be tokenized. To run untokenized scripts
you need a full version of Object REXX.

C.1.2. Error 4 - Program interrupted

Explanation:
The system interrupted the execution of your program because of an error or a user request.

The associated subcodes are:

001

Program interrupted withonditioncondition

C.1.3. Error 5 - System resources exhausted

Explanation:

While trying to execute a program, the language processor was unable to get the resources it needed to
continue. For example, it could not get the space needed for its work areas or variables. The program that
called the language processor might itself have already used up most of the available storage. Or a
request for storage might have been for more than the implementation maximum.

C.1.4. Error 6 - Unmatched "/*" or quote

Explanation:

A comment or literal string was started but never finished. This could be because the language processor
detected:

- The end of the program (or the end of the string in an INTERPRET instruction) without finding the
ending "*/" for a comment or the ending quotation mark for a literal string

- The end of the line for a literal string.

The associated subcodes are:
001
Unmatched comment delimiter ("/*") on linee_number

002

Unmatched single quote (')

Appendix C. Error Numbers and Messages

003
Unmatched double quote (")

C.1.5. Error 7 - WHEN or OTHERWISE expected

Explanation:

At least one WHEN construct (and possibly an OTHERWISE clause) is expected within a SELECT
instruction. This message is issued if any other instruction is found or there is no WHEN construct
before the OTHERWISE or all WHEN expressions are false and an OTHERWISE is not present. A
common cause of this error is if you forget the DO and END around the list of instructions following a
WHEN. For example:

WRONG RIGHT

Select Select

When a=c then When a=c then DO
Say 'A equals C' Say 'A equals C'
exit exit

Otherwise nop end

end Otherwise nop
end

The associated subcodes are:

001
SELECT on lindine_numberequires WHEN

002
SELECT on lineline_numberequires WHEN, OTHERWISE, or END

003
All WHEN expressions of SELECT are false; OTHERWISE expected

C.1.6. Error 8 - Unexpected THEN or ELSE

Explanation:

A THEN or an ELSE clause was found that does not match a corresponding IF or WHEN clause. This
often occurs because of a missing END or DO...END in the THEN part of a complex IF...THEN...ELSE
construction. For example:

WRONG RIGHT

If a=c then do; If a=c then do;
Say EQUALS Say EQUALS
exit exit

else end

529

Appendix C. Error Numbers and Messages

Say NOT EQUALS else
Say NOT EQUALS

The associated subcodes are:

001
THEN has no corresponding IF or WHEN clause

002
ELSE has no corresponding THEN clause

C.1.7. Error 9 - Unexpected WHEN or OTHERWISE

Explanation:

A WHEN or OTHERWISE was found outside of a SELECT construction. You might have accidentally
enclosed the instruction in a DO...END construction by leaving out an END, or you might have tried to
branch to it with a SIGNAL instruction (which does not work because the SELECT is then ended).

The associated subcodes are:

001
WHEN has no corresponding SELECT

002
OTHERWISE has no corresponding SELECT

C.1.8. Error 10 - Unexpected or unmatched END

Explanation:

More ENDs were found in your program than DO or SELECT instructions, or the ENDs did not match

the DO or SELECT instructions. This message also occurs if you try to transfer control into the middle

of a loop using SIGNAL. In this case, the language processor does not expect the END because it did not
process the previous DO instruction. Remember also that SIGNAL deactivates any current loops, so it
cannot transfer control from one place inside a loop to another.

Another cause for this message is placing an END immediately after a THEN or ELSE subkeyword or
specifying a name on the END keyword that does not match the name following DO. Putting the name of
the control variable on ENDs that close repetitive loops can also help locate this kind of error.

The associated subcodes are:

001
END has no corresponding DO or SELECT

530

Appendix C. Error Numbers and Messages

002

Symbol following END ('symbal) must either match control variable of DO specification
("control_variablé on line line_numbey or be omitted

003

END corresponding to DO on lingymbolmust not have a symbol following it because there is no
control variable; foundlihe_numbe't

004

END corresponding to SELECT on lisymbolmust not have a symbol following; found
"line_numbet

005
END must not immediately follow THEN

006
END must not immediately follow ELSE

C.1.9. Error 11 - Control stack full

Explanation:

Your program exceeds the nesting level limit for control structures (for example, DO...END and
IF.. THEN...ELSE). This could be because of a looping INTERPRET instruction, such as:

line='INTERPRET line'
INTERPRET line

These lines loop until they exceed the nesting level limit and the language processor issues this message.
Similarly, a recursive subroutine or internal function that does not end correctly can loop until it causes
this message.

The associated subcodes are:

001

Insufficient control stack space; cannot continue execution

C.1.10. Error 13 - Invalid character in program

Explanation:

A character was found outside a literal (quoted) string that is not a blank or one of the valid
alphanumeric and special characters.

The associated subcodes are:

531

Appendix C. Error Numbers and Messages

532

001

Incorrect character in progranchiaractet' (‘hex_characteKk)

C.1.11. Error 14 - Incomplete DO/SELECT/IF

Explanation:

At the end of the program or the string for an INTERPRET instruction, a DO or SELECT instruction was
found without a matching END or an IF clause that is not followed by a THEN clause. Putting the name
of the control variable on each END closing a controlled loop can help locate this kind of error.

The associated subcodes are:

001

DO instruction on lindine_numberequires matching END

002

SELECT instruction on lindine_numberrequires matching END

003

THEN on lineline_numbemust be followed by an instruction

004

ELSE on lineline_numbemust be followed by an instruction

901
OTHERWISE on lindine_numberequires matching END

C.1.12. Error 15 - Invalid hexadecimal or binary string

Explanation:

Hexadecimal strings must not have leading or trailing blanks and blanks can only be embedded at byte
boundaries. Only the digits 0-9 and the letters a-f and A-F are allowed. The following are valid
hexadecimal strings:

'13'x
'A3C2 1c34'x
'1de8'x

Binary strings can have blanks only at the boundaries of groups of four binary digits. Only the digits 0
and 1 are allowed. These are valid binary strings:

'1011'b
'110 1101'b
'101101 11010011'd

Appendix C. Error Numbers and Messages

You might have mistyped one of the digits, for example, typing a letter O instead of the number 0. Or
you might have used the one-character symbol X or B (the hame of the variable X or B, respectively)
after a literal string when the string is not intended as a hexadecimal or binary specification. In this case,
use the explicit concatenation operator (]|) to concatenate the string to the value of the symbol.

The associated subcodes are:

001

Incorrect location of blank in positiopositionin hexadecimal string

002

Incorrect location of blank in positiopositionin binary string

003
Only 0-9, a-f, A-F, and blank are valid in a hexadecimal string; fowidtactef

004
Only 0, 1, and blank are valid in a binary string; fouraharactet’

C.1.13. Error 16 - Label not found

Explanation:

A SIGNAL instruction has been executed or an event for which a trap was set with SIGNAL ON has
occurred, and the language processor could not find the label specified. You might have mistyped the
label or forgotten to include it.

The associated subcodes are:

001

Label label_naménot found

C.1.14. Error 17 - Unexpected PROCEDURE

Explanation:

A PROCEDURE instruction was encountered at an incorrect position. This could occur because no
internal routines are active or because the PROCEDURE instruction was not the first instruction
processed after the CALL instruction or function call. One cause for this error is dropping through to an
internal routine, rather than calling it with a CALL instruction or a function call.

The associated subcodes are:

533

Appendix C. Error Numbers and Messages

534

001

PROCEDURE is valid only when it is the first instruction executed after an internal CALL or
function invocation

901
INTERPRET data must not contain PROCEDURE

C.1.15. Error 18 - THEN expected

Explanation:

A THEN clause must follow each REXX IF or WHEN clause. The language processor found another
clause before it found a THEN clause.

The associated subcodes are:

001

IF instruction on lindine_numberequires matching THEN clause

002

WHEN instruction on lindine_numberrequires matching THEN clause

C.1.16. Error 19 - String or symbol expected

Explanation:

A symbol or string was expected after the CALL or SIGNAL keywords but none was found. You might
have omitted the string or symbol or inserted a special character (such as a parenthesis).

The associated subcodes are:

001
String or symbol expected after ADDRESS keyword

002
String or symbol expected after CALL keyword

003
String or symbol expected after NAME keyword

004
String or symbol expected after SIGNAL keyword

006
String or symbol expected after TRACE keyword

Appendix C. Error Numbers and Messages

007
String or symbol expected after PARSE keyword

901
String or symbol expected after ::CLASS keyword

902
String or symbol expected after ::METHOD keyword

903
String or symbol expected after ::ROUTINE keyword

904
String or symbol expected after ::REQUIRES keyword

905
String or symbol expected after EXTERNAL keyword

906
String or symbol expected after METACLASS keyword

907
String or symbol expected after SUBCLASS keyword

908
String or symbol expected after INHERIT keyword

909

String or symbol expected after tilde (~)

911

String or symbol expected after superclass colon (:)

912
String or symbol expected after STREAM keyword

913
String or symbol expected after MIXINCLASS keyword

C.1.17. Error 20 - Symbol expected

Explanation:

A symbol is expected after CALL ON, CALL OFF, END, ITERATE, LEAVE, NUMERIC, PARSE,
SIGNAL ON, or SIGNAL OFF. Also, a list of symbols or variable references is expected after DROP,

535

Appendix C. Error Numbers and Messages

EXPOSE, and PROCEDURE EXPOSE. Either there was no symbol when one was required or the
language processor found another token.

The associated subcodes are:

901
Symbol expected after DROP keyword

902
Symbol expected after EXPOSE keyword

903
Symbol expected after PARSE keyword

904
Symbol expected after PARSE VAR

905
NUMERIC must be followed by one of the keywords DIGITS, FORM, or FUZZ; fousyghibol

906

Symbol expected after "(" of a variable reference

907
Symbol expected after LEAVE keyword

908
Symbol expected after ITERATE keyword

909
Symbol expected after END keyword

911
Symbol expected after ON keyword

912
Symbol expected after OFF keyword

913
Symbol expected after USE ARG

914
Symbol expected after RAISE keyword

915
Symbol expected after USER keyword

536

Appendix C. Error Numbers and Messages
916
Symbol expected after ::

917

Symbol expected after superclass colon (:)

C.1.18. Error 21 - Invalid data on end of clause

Explanation:
A clause such as SELECT or NOP is followed by a token other than a comment.

The associated subcodes are:

901
Data must not follow the NOP keyword; foundatd'

902
Data must not follow the SELECT keyword; foundata'

903
Data must not follow the NAME keyword; foundiatd'

904

Data must not follow the condition name; fourdhtd'

905
Data must not follow the SIGNAL label name; founditd'

906
Data must not follow the TRACE setting; foundata'

907

Data must not follow the LEAVE control variable name; founthtd'

908

Data must not follow the ITERATE control variable name; fouddtd'

909

Data must not follow the END control variable name; foudats'

911
Data must not follow the NUMERIC FORM specification; fourdhta’

537

Appendix C. Error Numbers and Messages

538

912
Data must not follow the GUARD OFF specification; fourdhta’

C.1.19. Error 22 - Invalid character string

Explanation:

A literal string contains character codes that are not valid. This might be because some characters are not
possible, or because the character set is extended and certain character combinations are not allowed.

The associated subcodes are:

001

Incorrect character stringharacter_string (‘hex_stringX)

901

Incorrect double-byte character

C.1.20. Error 23 - Invalid data string

Explanation:

A data string (that is, the result of an expression) contains character codes that are not valid. This might
be because some characters are not possible, or because the character set is extended and certain
character combinations are not allowed.

The associated subcodes are:

001

Incorrect data stringstring’ (‘hex_stringX)

C.1.21. Error 24 - Invalid TRACE request

Explanation:

This message is issued when:

- The option on a TRACE instruction or the argument to the built-in function does not start with A, C,
E,.FI,L,N,O,0orR.

- Ininteractive debugging, you entered a number that is not a whole number.

The associated subcodes are:

Appendix C. Error Numbers and Messages

001
TRACE request letter must be one of "ACEFILNOR"; foundlué'

901

Numeric TRACE requests are valid only from interactive debugging

C.1.22. Error 25 - Invalid subkeyword found

Explanation:

An unexpected token was found at his position of an instruction where a particular subkeyword was
expected. For example, in a NUMERIC instruction, the second token must be DIGITS, FUZZ, or FORM.

The associated subcodes are:

001
CALL ON must be followed by one of the keywords ERROR, FAILURE, HALT, NOTREADY,
USER, or ANY; found Word"

002
CALL OFF must be followed by one of the keywords ERROR, FAILURE, HALT, NOTREADY,
USER, or ANY; found Word"

003
SIGNAL ON must be followed by one of the keywords ERROR, FAILURE, HALT, LOSTDIGITS,
NOTREADY, NOMETHOD, NOSTRING, NOVALUE, SYNTAX, USER, or ANY; foundword"

004
SIGNAL OFF must be followed by one of the keywords ERROR, FAILURE, HALT, LOSTDIGITS,
NOTREADY, NOMETHOD, NOSTRING, NOVALUE, SYNTAX, USER, or ANY; foundWord"

011
NUMERIC FORM must be followed by one of the keywords SCIENTIFIC or ENGINEERING;
found 'word"

012
PARSE must be followed by one of the keywords ARG, LINEIN, PULL, SOURCE, VALUE, VAR,
or VERSION; found Wword"

015
NUMERIC must be followed by one of the keywords DIGITS, FORM, or FUZZ; fouward"

017
PROCEDURE must be followed by the keyword EXPOSE or nothing; fouvatd"

539

Appendix C. Error Numbers and Messages

901
Unknown keyword on ::CLASS directive; foungvbrd"

902
Unknown keyword on ::METHOD directive; founavbrd"

903
Unknown keyword on ::ROUTINE directive; founavord"

904
Unknown keyword on ::REQUIRES directive; founadrd"

905
USE must be followed by the keyword ARG; foungdrd"

906

RAISE must be followed by one of the keywords ERROR, FAILURE, HALT, LOSTDIGITS,
NOMETHOD, NOSTRING, NOTREADY, NOVALUE, or SYNTAX; foundword'

907
Unknown keyword on RAISE instruction; founavbrd"

908
Duplicate DESCRIPTION keyword found

909
Duplicate ADDITIONAL or ARRAY keyword found

911
Duplicate RETURN or EXIT keyword found

912
GUARD ON or GUARD OFF must be followed by the keyword WHEN; fourvebtd"

913
GUARD must be followed by the keyword ON or OFF; founddrd"

914
CALL ON condition must be followed by the keyword NAME; found/érd"

915
SIGNAL ON condition must be followed by the keyword NAME; founadrd"

916
Unknown keyword on FORWARD instruction; foundeéyword

540

Appendix C. Error Numbers and Messages

917
Duplicate TO keyword found

918
Duplicate ARGUMENTS or ARRAY keyword found

919
Duplicate RETURN or CONTINUE keyword found

921
Duplicate CLASS keyword found

922
Duplicate MESSAGE keyword found

C.1.23. Error 26 - Invalid whole number

Explanation:

An expression was found that did not evaluate to a whole number or is greater than the limit (the default
is 999 999 999):

- The positional patterns in parsing templates (including variable positional patterns)
« The operand to the right of the power operator

« The values of exprr and exprf in the DO instruction

« The values given for DIGITS or FUZZ in the NUMERIC instruction

« The number used in the option of the TRACE setting This error is also raised if the value is not
permitted (for example, a negative repetition count in a DO instruction), or the division performed
during an integer divide or remainder operation does not result in a whole number.

The associated subcodes are:

002

Value of repetition count expression in DO instruction must be zero or a positive whole number;
found 'valué'

003

Value of FOR expression in DO instruction must be zero or a positive whole number; foalud™

004
Positional pattern of PARSE template must be a whole number; fotaldeé

541

Appendix C. Error Numbers and Messages

542

005
NUMERIC DIGITS value must be a positive whole number; fourdite'

006
NUMERIC FUZZ value must be zero or a positive whole number; fouradue'

007
Number used in TRACE setting must be a whole number; fouatl&'

008

Operand to the right of the power operator (**) must be a whole number; fouaddé'

011

Result of % operation did not result in a whole number

012

Result of // operation did not result in a whole number

C.1.24. Error 27 - Invalid DO syntax

Explanation:

A syntax error was found in the DO instruction. You probably used BY, TO, FOR, WHILE, or UNTIL
twice, used a WHILE and an UNTIL, or used BY, TO, or FOR when there is no control variable
specified.

The associated subcodes are:

001
WHILE and UNTIL keywords cannot be used on the same DO loop

901
Incorrect data following FOREVER keyword on the DO loop; fouddtd'

902

DO keywordkeywordcan be specified only once

C.1.25. Error 28 - Invalid LEAVE or ITERATE

Explanation:

A LEAVE or ITERATE instruction was found at an incorrect position. Either no loop was active, or the
name specified on the instruction did not match the control variable of any active loop. Note that internal
routine calls and the INTERPRET instruction protect DO loops by making them inactive. Therefore, for
example, a LEAVE instruction in a subroutine cannot affect a DO loop in the calling routine. You

Appendix C. Error Numbers and Messages
probably tried to use the SIGNAL instruction to transfer control within or into a loop. Because a
SIGNAL instruction ends all active loops, any ITERATE or LEAVE instruction causes this message.

The associated subcodes are:

001
LEAVE is valid only within a repetitive DO loop

002
ITERATE is valid only within a repetitive DO loop

003
Symbol following LEAVE ("symbol) must either match the control variable of a current DO loop
or be omitted

004

Symbol following ITERATE (symbol) must either match the control variable of a current DO loop
or be omitted

C.1.26. Error 29 - Environment name too long

Explanation:

The environment name specified on the ADDRESS instruction is longer than permitted for the system
under which the interpreter is running.

The associated subcodes are:

001

Environment name exceelisit characters; foundeéhvironment_nanie

C.1.27. Error 30 - Name or string too long

Explanation:

A variable name, label name, literal (quoted) string has exceeded the allowed limit of 250 characters.

The limit for names includes any substitutions. A possible cause of this error is if you use a period (.) in a
name, causing an unexpected substitution. Leaving off an ending quotation mark for a literal string, or
putting a single quotation mark in a string, can cause this error because several clauses can be included in
the string. For example, write the string 'don't' as 'don't' or "don't".

The associated subcodes are:

001

Name exceeds 250 charactenmsathé

543

Appendix C. Error Numbers and Messages

002

Literal string exceeds 250 characterstrihg"

901

Hexadecimal literal string exceeds 250 charactstsrig'

902
Binary literal string exceeds 250 charactestihg"

C.1.28. Error 31 - Name starts with number or ".

Explanation:

A variable was found whose name begins with a numeric digit or a period. You cannot assign a value to
such a variable because you could then redefine numeric constants.

The associated subcodes are:

001

A value cannot be assigned to a number; foumgitibel

002

Variable symbol must not start with a number; foursgithbol

003

Variable symbol must not start with a "."; foundymbot

C.1.29. Error 33 - Invalid expression result

Explanation:
The result of an expression was found not to be valid in the context in which it was used.

The associated subcodes are:
001
Value of NUMERIC DIGITS (Value') must exceed value of NUMERIC FUZZ\alu€e")

002
Value of NUMERIC DIGITS (Valué’) must not exceegalue

901
Incorrect expression result following VALUE keyword of ADDRESS instruction

902

Incorrect expression result following VALUE keyword of SIGNAL instruction

544

Appendix C. Error Numbers and Messages

903

Incorrect expression result following VALUE keyword of TRACE instruction

904

Incorrect expression result following SYNTAX keyword of RAISE instruction

C.1.30. Error 34 - Logical value not 0 or 1

Explanation:

An expression was found in an IF, WHEN, DO WHILE, or DO UNTIL phrase that did not resultin a 0
or 1. Any value operated on by a logical operator must result in a 0 or 1. For example, the phrase If result
then exit rc fails if result has a value other than O or 1.

The associated subcodes are:

001

Value of expression following IF keyword must be exactly "0" or "1"; foundllé'

002

Value of expression following WHEN keyword must be exactly "0" or "1"; foundltie'

003

Value of expression following WHILE keyword must be exactly "0" or "1"; fourndlte'

004
Value of expression following UNTIL keyword must be exactly "0" or "1"; foumalue'

005

Value of expression to the left of the logical operatopé&ratol’ must be exactly "0" or "1"; found
"valué'

901

Logical value must be exactly "0" or "1"; founddluée'

902

Value of expression following GUARD keyword must be exactly "0" or "1"; foumdlte'

903

Authorization return value must be exactly "0" or "1"; foundhlue'

C.1.31. Error 35 - Invalid expression

Explanation:

545

Appendix C. Error Numbers and Messages

An expression contains a grammatical error. Possible causes:

« An expression is missing when one is required

+ You ended an expression with an operator

» You specified, in an expression, two operators next to one another with nothing in between them
- You did not specify a right parenthesis when one was required

« You used special characters (such as operators) in an intended character expression without enclosing
them in quotation marks

The associated subcodes are:

001

Incorrect expression detected &iRer

901

Prefix operatordperatot is not followed by an expression term

902

Missing conditional expression following IF keyword
903

Missing conditional expression following WHEN keyword

904

Missing initial expression for DO control variable

905

Missing expression following BY keyword

906

Missing expression following TO keyword

907
Missing expression following FOR keyword

908
Missing expression following WHILE keyword

909

Missing expression following UNTIL keyword

911
Missing expression following OVER keyword

546

Appendix C. Error Numbers and Messages

912
Missing expression following INTERPRET keyword

913
Missing expression following OPTIONS keyword

914
Missing expression following VALUE keyword of an ADDRESS instruction

915
Missing expression following VALUE keyword of a SIGNAL instruction

916
Missing expression following VALUE keyword of a TRACE instruction

917
Missing expression following VALUE keyword of a NUMERIC FORM instruction

918

Missing expression following assignment instruction

919

Operator dperator' is not followed by an expression term

921

Missing expression following GUARD keyword

922
Missing expression following DESCRIPTION keyword of a RAISE instruction

923
Missing expression following ADDITIONAL keyword of a RAISE instruction

924
Missing "(" on expression list of the ARRAY keyword

925
Missing expression following TO keyword of a FORWARD instruction

926
Missing expression following ARGUMENTS keyword of a FORWARD instruction

927
Missing expression following MESSAGE keyword of a FORWARD instruction

547

Appendix C. Error Numbers and Messages

928
Missing expression following CLASS keyword of a FORWARD instruction

C.1.32. Error 36 - Unmatched "(" or "[" in expression

Explanation:

A matched parenthesis or bracket was found within an expression. There are more left parentheses than
right parentheses or more left brackets than right brackets. To include a single parenthesis in a command,
enclose it in quotation marks.

The associated subcodes are:

901

Left parenthesis "(" in positiopositionon lineline_numberequires a corresponding right
parenthesis ")"

902

Square bracket "[" in positiopositionon lineline_numberrequires a corresponding right square
bracket ""

C.1.33. Error 37 - Unexpected ",",)", or "]"

Explanation:

Either a comma was found outside a function invocation, or there are too many right parentheses or right
square brackets in an expression. To include a comma in a character expression, enclose it in quotation
marks. For example, write the instruction:

Say Enter A, B, or C

as follows:

Say 'Enter A, B, or C'

The associated subcodes are:

001

Unexpected ",

002

Unmatched ")" in expression

548

Appendix C. Error Numbers and Messages

901

Unexpected "]"

C.1.34. Error 38 - Invalid template or pattern

Explanation:

A special character that is not allowed within a parsing template (for example, "%") has been found, or
the syntax of a variable pattern is incorrect (that is, no symbol was found after a left parenthesis). This
message is also issued if you omit the WITH subkeyword in a PARSE VALUE instruction.

The associated subcodes are:

001
Incorrect PARSE template detected ebfumn_positioh

002

Incorrect PARSE position detected ablumn_positioh

003
PARSE VALUE instruction requires WITH keyword

901
Missing PARSE relative position

C.1.35. Error 39 - Evaluation stack overflow

Explanation:

The expression is too complex to be evaluated by the language processor.

C.1.36. Error 40 - Incorrect call to routine

Explanation:

An incorrect call to a routine was found. Possible causes:

« You passed incorrect data (arguments) to the built-in or external routine.
« You passed too many arguments to the built-in, external, or internal routine.
« The external routine called was not compatible with the language processor.

If you did not try to call a routine, you might have a symbol or a string adjacent to a "(* when you meant
it to be separated by a blank or other operator. The language processor would treat this as a function call.
For example, write TIME(4+5) as follows: TIME*(4+5)

The associated subcodes are:

549

Appendix C. Error Numbers and Messages

001

External routine foutin€' failed

003

Not enough arguments in invocationroiting minimum expected isumber

004

Too many arguments in invocation mfuting maximum expected isumber

005

Missing argument in invocation @butine argumentargument_numbeis required

011

function_namergumentargument_numbemust be a number; found/dluée'

012

function_namargumen@irgument_numbemust be a whole number; foundalue'

013

function_namargumentirgument_numbeamnust be zero or positive; founddlué'

014

function_namergumentargument_numbemust be positive; foundvalue'

019

function_namargument 2, Valu€', is not in the format described by argument @afue'

021

function_namergumentargument_numbemust not be null

022

function_nameargumentirgument_numbemnust be a single character or null; founglué'

023

function_namargumentirgument_numbemnust be a single character; foundatue'

024

function_namergumentrgument_numbemnust be a binary string; found/élue'

025

function_namargumentirgument_numbemust be a hexadecimal string; foundhfuée'

026

function_namergumentargument_numbemust be a valid symbol; found/aluée'

550

Appendix C. Error Numbers and Messages

027
function_nameargument 1 must be a valid stream name; fouralue'
029
function_nameonversion to formatvalue' is not allowed
032
RANDOM difference between argument ¥gluée') and argument 2 {falue') must not exceed
100000
033
RANDOM argument 1 (@rgument) must be less than or equal to argument&gument)
034
SOURCELINE argument 1 &fgument) must be less than or equal to the number of lines in the
program argumeny
035
X2D argument 1 cannot be expressed as a whole number; foahas"
043
function_namergumennumbermust be a single non-alphanumeric character or the null string;
found 'valué'
044
function_nameaargumennumber "value', is a format incompatible with the separator specified in
argumennumber
901
Result returned byoutineis longer thariength "valuée'
902
function_namargumentirgument_numbemust not exceed 999,999,999
903
function_nameargumentrgument_numbeamust be in the range 0-99; founddlue'
904
function_namargumentirgument_numbemnust be one ofalues found 'valué'
905
TRACE setting letter must be one of "ACEFILNOR"; founealue'
912

function_namergumentirgument_numbemnust be a single-dimensional array; fouvalue'

551

Appendix C. Error Numbers and Messages

913

function_namargumentirgument_numbemnust have a string value; foungalué'

914

Unknown VALUE function variable environment selector; fouvelue'

915

funtion_namesannot be used with QUEUE:

916

Cannot read from a write-only property.

917

Cannot write to a read-only property or typelib element.

C.1.37. Error 41 - Bad arithmetic conversion

Explanation:

A term in an arithmetic expression is not a valid number or has an exponent outside the allowed range of
-999 999 999 to +999 999 999.

You might have mistyped a variable name, or included an arithmetic operator in a character expression
without putting it in quotation marks.

The associated subcodes are:

001

Nonnumeric value {/alue") used in arithmetic operation

003

Nonnumeric value §alue") used with prefix operator

004

Value of TO expression of DO instruction must be numeric; fouradue'

005

Value of BY expression of DO instruction must be numeric; founalé'

006

Value of control variable expression of DO instruction must be numeric; foualdié

007

Exponent exceedsumberdigits; found Yalué'

552

Appendix C. Error Numbers and Messages

901
Value of RAISE SYNTAX expression of DO instruction must be numeric; fowralue'

C.1.38. Error 42 - Arithmetic overflow/underflow

Explanation:

The result of an arithmetic operation requires an exponent that is greater than the limit of nine digits
(more than 999 999 999 or less than -999 999 999).

This error can occur during the evaluation of an expression (often as a result of trying to divide a number
by 0) or while stepping a DO loop control variable.

The associated subcodes are:

001

Arithmetic overflow detected atvalue operator value

002

Arithmetic underflow detected atvélue operator valué

003

Arithmetic overflow; divisor must not be zero

901

Arithmetic overflow; exponent €xponent) exceedsiumberdigits

902

Arithmetic underflow; exponent €kponeril) exceedsiumberdigits

903

Arithmetic underflow; zero raised to a negative power

C.1.39. Error 43 - Routine not found

Explanation:

A function has been invoked within an expression or a subroutine has been invoked by a CALL, but it
cannot be found. Possible reasons:

- The specified label is not in the program
- Itis not the name of a built-in function
- The language processor could not locate it externally

Check if you mistyped the name.

553

Appendix C. Error Numbers and Messages

554

If you did not try to call a routine, you might have put a symbol or string adjacent to a "(" when you
meant it to be separated by a blank or another operator. The language processor then treats it as a
function call. For example, write the string 3(4+5) as 3*(4+5).

The associated subcodes are:

001

Could not find routine routin€e'

901
Could not find routinerbutine' for ::REQUIRES

C.1.40. Error 44 - Function or message did not return data

Explanation:

The language processor called an external routine within an expression. The routine seemed to end
without error, but it did not return data for use in the expression.

You might have specified the name of a program that is not intended for use as a REXX function. Call it
as a command or subroutine instead.

The associated subcodes are:

001

No data returned from functiorfinctiort'

C.1.41. Error 45 - No data specified on function RETURN

Explanation:
A REXX program has been called as a function, but returned without passing back any data.

The associated subcodes are:

001

Data expected on RETURN instruction because routioetihe’ was called as a function

C.1.42. Error 46 - Invalid variable reference

Explanation:

Within an ARG, DROP, EXPOSE, PARSE, PULL, or PROCEDURE instruction, the syntax of a variable
reference (a variable whose value is to be used, indicated by its name being enclosed in parentheses) is
incorrect. The right parenthesis that must immediately follow the variable name might be missing or the
variable name might be misspelled.

The associated subcodes are:

Appendix C. Error Numbers and Messages

001

Extra token (tokerY) found in variable reference list; ")" expected

901
Missing ")" in variable reference

902

Extra token (tfoker) found in USE ARG variable reference; "," or end of instruction expected

C.1.43. Error 47 - Unexpected label

Explanation:

A label was used in the expression being evaluated for an INTERPRET instruction or in an expression
entered during interactive debugging.

The associated subcodes are:

001
INTERPRET data must not contain labels; foutabel'

C.1.44. Error 48 - Failure in system service

Explanation:

The language processor stopped processing the program because a system service, such as stream input
or output or the manipulation of the external data queue, has failed to work correctly.

The associated subcodes are:

001

Failure in system servicservice

C.1.45. Error 49 - Interpretation error

Explanation:

A severe error was detected in the language processor or execution process during internal
self-consistency checks.

The associated subcodes are:

001

Interpretation error: unexpected failure initializing the interpreter

555

Appendix C. Error Numbers and Messages

C.1.46. Error 90 - External name not found

Explanation:

An external class, method, or routine (specified with the EXTERNAL option on a ::CLASS,
:METHOD, or ::ROUTINE directive, or as a second argument on a NEW message to the Method class)
cannot be found.

The associated subcodes are:

997

Unable to find external classlass

998
Unable to find external methodrethod

999

Unable to find external routineduting'

C.1.47. Error 91 - No result object

Explanation:
A message term requires a result object, but the method did not return one.

The associated subcodes are:

999

Message thessagedid not return a result object

C.1.48. Error 92 - OLE error

The associated subcodes are:
901
An unknown OLE error occured (HRESULRresul).

902

Cannot convert VARIANT to REXX object: The conversion of the VARIANT tysrianttypeinto
a REXX obiject failed.

903
Cannot convert REXX object to VARIANT: The conversionrekx_objecinto a VARIANT failed.

556

Appendix C. Error Numbers and Messages

904

The number of elements provided to the method or property is different from the number of
parameters accepted by it.

905
One of the parameters is not a valid VARIANT type.

906

OLE exceptionexc_name

907

The requested method does not exist, or you tried to set the value of a read-only property.

908

One of the parameters could not be coerced to the desired type.

909

One or more of the parameters could not be coerced to the desired type. The first parameter with
incorrect type is argumeirdex

910

A required parameter was omitted.

911

Could not create OLE instance.

912

The object invoked has disconnected from its clients.

C.1.49. Error 93 - Incorrect call to method

Explanation:
The specified method or built-in or external routine exists, but you used it incorrectly.

The associated subcodes are:

901

Not enough arguments in methadjmberexpected

902

Too many arguments in invocation of methodimberexpected

903

Missing argument in method; argumemguments required

557

Appendix C. Error Numbers and Messages

904

Method argumendargumentmust be a number; foundalue'

905

Method argumenargumentmust be a whole number; foundalué'

906

Method argumenargumentmust be zero or a positive whole number; fourdlte'

907

Method argumendargumentmust be a positive whole number; foundalue'

908

Method argumerd@rgumentmust not exceetimit; found 'valug'

909
Method argumenargumentmust be in the range 0-99; founddlué'

911

Method argumenargumentmust not be null

912

Method argumenargumentmust be a hexadecimal string; foundatue'

913

Method argumenargumentmust be a valid symbol; foundraluée'

914

Method argumer@rgumentmust be one oargumentsfound "valué'

915

Method option must be one afgumentsfound 'value'

916

Method argumenargumentmust have a string value

917

Methodmethoddoes not exist

918

Incorrect list index Ihdex'

919

Incorrect array positiongositiort'

558

Appendix C. Error Numbers and Messages

921

Argument missing on binary operator

922

Incorrect pad or character argument specified; fowadug'

923

Incorrect length argument specified; founglué'

924

Incorrect position argument specified; founalue'

925

Not enough subscripts for arrayumberexpected

926

Too many subscripts for arragumberexpected

927

Length must be specified to convert a negative value

928

D2X value must be a valid whole number; foundglue'

929

D2C value must be a valid whole number; founglue'

931

Incorrect location of blank in positiopositionin hexadecimal string

932

Incorrect location of blank in positiopositionin binary string

933
Only 0-9, a-f, A-F, and blank are valid in a hexadecimal string; character fochratdctef

934

Only 0, 1, and blank are valid in a binary string; character fowfdrtactet

935
X2D result is not a valid whole number with NUMERIC DIGITdgits

936
C2D result is not a valid whole number with NUMERIC DIGIT®)its

559

Appendix C. Error Numbers and Messages

560

937

No more supplier items available

938

Method argumenargumentmust have a string value

939

Method argumenargumentmust have a single-dimensional array value

941

Exponent &xponernitis too large fomumberspaces

942

Integer part Integer” is too large fomumberspaces

943

methodmethod target must be a number; foundlté'

944

Method argumenargumentmust be a message object

945

Missing argument in message array; argunsgtiments required

946

A message array must be a single-dimensional array with 2 elements

947

Method SECTION can be used only on single-dimensional arrays

948

Method argumenargumentmust be of thelassclass

949

The index and value objects must be the same for PUT to an index-only collection

951

Incorrect alarm time; foundtime"

952

Method argumenarguments an array and does not contain all string values

953

Method argumer@rgumentcould not be converted to typgpe

Appendix C. Error Numbers and Messages

954

Method 'method can be used only on a single-dimensional array

956

Elementelemenbf the array must be a string

957

Elementelementbf the array must be a subclass of the target object

958

Positioning of transient streams is not valid

959

An array cannot contain more than 99,999,999 elements

961

Method argumerdargumentmust have a string value or an array value

962

Invalid Base 64 encoded string.

963

Call to unsupported or unimplemented method

964

Application errormessage

C.1.50. Error 97 - Object method not found

Explanation:

The object does not have a method with the given name. A frequent cause of this error is an uninitialized
variable.

The associated subcodes are:

001

Object 'object’ does not understand messageessage

C.1.51. Error 98 - Execution error

Explanation:

The language processor detected a specific error during execution. The associated error gives the reason
for the error.

561

Appendix C. Error Numbers and Messages

562

The associated subcodes are:

901

SOM object bbject' is no longer available

902

Unable to convert objectbject' to a double-float value

903

Unable to load library flamé

904

Abnormal termination occurred

905

Deadlock detected on a guarded method

906

Incorrect object reference detected

907
Object of type type' was required

908

Metaclass thetaclassnot found

909

Class tlass not found

911

Cyclic inheritance in progranptogrant’
912

SOM class tlass not found

913

Unable to convert objectbject to a single-dimensional array value

914

Unable to convert objectbject to a string value

915

A message object cannot be sent more than one SEND or START message

Appendix C. Error Numbers and Messages

916

Message objectdbject received an error from messagaéssage

917
Incorrect condition object received for RAISE OBJECT; fourdlUe'

918
No active condition available for PROPAGATE

919

Unable to convert objectbject' to a method

921

Could not retrieveValué' information for method thethod

931

No method descriptor information for methoehé&thod on class ¢lass$

932

The SOM interface does not currently support parameter tiype", specified for argument
argument

933

The SOM interface does not currently support parameter tiype"; specified for return value

934
The number of OUT or INOUT type arguments cannot exaastber

935

REPLY can be issued only once per method invocation

936
RETURN cannot return a value after a REPLY

937

EXIT cannot return a value after a REPLY

938

Message search overrides can be used only from methods of the target object

939

Additional information for SYNTAX errors must be a single-dimensional array of values

941
Unknown error number specified on RAISE SYNTAX; fouruinbel

563

Appendix C. Error Numbers and Messages

564

942
Class tlass must be a MIXINCLASS for INHERIT

943

Class tlass is not a subclass oftlass base classclass

944

Class 'tlass cannot inherit from itself, a superclass, or a subclas&$s)

945

Class tlass has not inherited clasglass

946

FORWARD arguments must be a single-dimensional array of values

947

FORWARD can only be issued in an object method invocation

948

Authorization failurevalue

949

The DSOM Server for classass could not be resolved.

951

Concurrency not supported

952

servernamelass server not installed

961

Too many parameters for evergvent

962

Error creating OSA evengtvent

963

Error creating direct parameter for OSA eveevént

964

Error accessing event information in AETE

965

Error launching applicationdpplicatior

Appendix C. Error Numbers and Messages

966

Invalid additional parameteparametet for OSA event &vent

967

Error creating additional parameter for OSA evemiént

968
Error sending OSA eventVent

969

Error handling result for OSA evengevent

971

Error converting OSA event result to a REXX object

972

Invalid direct parametergarametef for OSA event event

973

Invalid key form for object specifier

974
Invalid parameter type for key fornk&yformi

C.1.52. Error 99 - Translation error

Explanation:
An error was detected in the language syntax. The associated error subcode identifies the syntax error.

The associated subcodes are:

901

Duplicate ::CLASS directive instruction

902
Duplicate ::METHOD directive instruction

903
Duplicate ::ROUTINE directive instruction

904
Duplicate ::REQUIRES directive instruction

565

Appendix C. Error Numbers and Messages

566

905
CLASS keyword on ::METHOD directive requires a matching ::CLASS directive

907

EXPOSE must be the first instruction executed after a method invocation

908
INTERPRET data must not contain EXPOSE

909
GUARD must be the first instruction executed after EXPOSE or USE

911

GUARD can only be issued in an object method invocation

912
INTERPRET data must not contain GUARD

913

GUARD instruction did not include references to exposed variables

914

INTERPRET data must not contain directive instructions

915
INTERPRET data must not contain USE

916

Unrecognized directive instruction

917

Incorrect external directive namenéthod

918
USE ARG requires a "," between variable names; fouo#er

919

REPLY can only be issued in an object method invocation

921

Incorrect program line in method source array

922

:REQUIRES directives must appear before other directive instructions

Appendix C. Error Numbers and Messages

923
INTERPRET data must not contain FORWARD

924
INTERPRET data must not contain REPLY

925
An ATTRIBUTE method name must be a valid variable name; fouratié¢

926

Incorrect class external; too many parameters

927

"classnameéis not a valid metaclass

928

Incorrect class external; class name missing or invalid

929

Incorrect class external; invalid class servegryernameé

C.2. RXSUBCOM Utility Program

RXSUBCOM issues the following errors:

C.2.1. Error 116 - The RXSUBCOM parameter REGISTER is
incorrect.

Explanation:
RXSUBCOM REGISTER requires the following parameters:

RXSUBCOM REGISTER Environment_Name DIl_Name Procedure_Name

Environment_Name

is the name of the subcommand handler.

. DIl_Name

is the name of the file containing the subcommand handler routine.

. Procedure_Name

is the name of the procedure that REXX calls as a subcommand handler.

567

Appendix C. Error Numbers and Messages

568

C.2.2. Error 117 - The RXSUBCOM parameter DROP is
incorrect.

Explanation:

RXSUBCOM DROP requires that the subcommand handler name be specified.

RXSUBCOM DROP Environment_Name [DIl_Name]

Environment_Name

is the name of the subcommand handler.

. DIl_Name

is the name of the file containing the subcommand handler routine (optional).

C.2.3. Error 118 - The RXSUBCOM parameter LOAD is
incorrect.

Explanation:

RXSUBCOM LOAD requires thatn the subcommand handler name be specified.

RXSUBCOM LOAD Environment_Name [DIl_Name]

Environment_Name

is the name of the subcommand handler.

. DIl_Name

is the name of the file containing the subcommand handler routine (optional).

C.2.4. Error 125 - The RXSUBCOM parameter QUERY is
incorrect.

Explanation:

RXSUBCOM QUERY requires the environment name be specified.

RXSUBCOM QUERY Environment_Name [DIl_Name]

Environment_Name

is the name of the subcommand handler.

Appendix C. Error Numbers and Messages

. DIl_Name

is the name of the file containing the subcommand handler routine (optional).

C.3. RXQUEUE Utility Program

RXQUEUE issues the following errors:

C.3.1. Error 119 - The REXX queuing system is not initialized.

Explanation:

The queuing system requires a housekeeping program to run. This program usually runs under the
Presentation Manager shell. The program is not running.

C.3.2. Error 120 - The size of the data is incorrect.

Explanation:

The data supplied to the RXQUEUE command is too long. The RXQUEUE program accepts data
records containing 0 - 65472 bytes. A record exceeded the allowable limits.

C.3.3. Error 121 - Storage for data queues is exhausted.

Explanation:

The queuing system is out of memory. No more storage is available to store queued data.

C.3.4. Error 122 - The name %1 is not a valid queue name.

Explanation:

The queue name contains an invalid character. Only the following characters can appear in queue names:

!AV .. VZI, VOI . lg!, I'V’ I!V’ |?V’ LI

C.3.5. Error 123 - The queue access mode is not correct.

Explanation:

569

Appendix C. Error Numbers and Messages

An internal error occurred in RXQUEUE. The RXQUEUE program tried to access a queue with an
incorrect access mode. Correct access modes are LIFO and FIFO.

C.3.6. Error 124 - The queue %1 does not exist.

Explanation:

The command attempted to access a nonexistent queue.

C.3.7. Error 131 - The syntax of the command is incorrect

C.3.8. Error 132 - System error occurred while processing the
command

C.4. RexxC Utility Program

RexxC issues the following errors:

C.4.1. Error 127 - The REXXC command parameters are
incorrect.

Explanation:

The REXXC utility was invoked with zero or more than three parameters. REXXC accepts the following
parameters:

« To check the syntax of a REXX program: REXXC Program_name [/s]

- To convert a REXX program into a sourceless executable file: REXXC Program_name
Output_file_name [/s]

C.4.2. Error 128 - Output file name must be different from
input file name.

570

Appendix C. Error Numbers and Messages

C.4.3. Error 129 - SYNTAX: REXXC InProgramName
[OutProgramName] [/S]

C.4.4. Error 130 - Without OutProgramName REXXC only
performs a syntax check

571

Appendix C. Error Numbers and Messages

572

Appendix D. Notices

Any reference to a non-open source product, program, or service is not intended to state or imply that
only non-open source product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any RexxLA intellectual property right may be used instead.
However, it is the user’s responsibility to evaluate and verify the operation of any non-open source
product, program, or service.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurement may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-open source products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. RexxLA has not tested those products
and cannot confirm the accuracy of performance, compatibility or any other claims related to

non-RexxLA packages. Questions on the capabilities of non-RexxLA packages should be addressed to
the suppliers of those products.

All statements regarding RexxLA's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

D.1. Trademarks

The following terms are trademarks of the IBM Corporation in the United States, other countries, or both:

1-2-3

AIX

IBM

Lotus
0S/2
S/390
VisualAge

AMD is a trademark of Advance Micro Devices, Inc.

Intel, Intel Inside (logos), MMX and Pentium are trademarks of Intel Corporation in the United States,
other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the Unites States, other
countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in
the United States, other countries, or both.

573

Appendix D. Notices

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

D.2. Source Code For This Document

The source code for this document is available under the terms of the Common Public License v1.0
which accompanies this distribution and is available in the appe@dirmon Public License Version
1.0. The source code itself is available at
http://sourceforge.net/project/showfiles.php?group_id=119701.

The source code for this document is maintained in DocBook SGML/XML format.

crearcd DOCBoOOK

WIB T .'\'l.ll.'r-:'-:'_.:;.lr
hcumeriaion

574

Appendix E. Common Public License Version
1.0

THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS COMMON
PUBLIC LICENSE ("AGREEMENT"). ANY USE, REPRODUCTION OR DISTRIBUTION OF THE
PROGRAM CONSTITUTES RECIPIENT'S ACCEPTANCE OF THIS AGREEMENT.

E.1. Definitions

"Contribution” means:

1.in the case of the initial Contributor, the initial code and documentation distributed under this
Agreement, and

2.in the case of each subsequent Contributor:
a.changes to the Program, and
b. additions to the Program;
where such changes and/or additions to the Program originate from and are distributed by that particular
Contributor. A Contribution 'originates’ from a Contributor if it was added to the Program by such
Contributor itself or anyone acting on such Contributor’s behalf. Contributions do not include additions

to the Program which: (i) are separate modules of software distributed in conjunction with the Program
under their own license agreement, and (ii) are not derivative works of the Program.

"Contributor" means any person or entity that distributes the Program.

"Licensed Patents " mean patent claims licensable by a Contributor which are necessarily infringed by
the use or sale of its Contribution alone or when combined with the Program.

"Program" means the Contributions distributed in accordance with this Agreement.

"Recipient" means anyone who receives the Program under this Agreement, including all Contributors.

E.2. Grant of Rights

1. Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-exclusive,
worldwide, royalty-free copyright license to reproduce, prepare derivative works of, publicly
display, publicly perform, distribute and sublicense the Contribution of such Contributor, if any, and
such derivative works, in source code and object code form.

2. Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-exclusive,
worldwide, royalty-free patent license under Licensed Patents to make, use, sell, offer to sell, import
and otherwise transfer the Contribution of such Contributor, if any, in source code and object code
form. This patent license shall apply to the combination of the Contribution and the Program if, at
the time the Contribution is added by the Contributor, such addition of the Contribution causes such

575

Appendix E. Common Public License Version 1.0

combination to be covered by the Licensed Patents. The patent license shall not apply to any other
combinations which include the Contribution. No hardware per se is licensed hereunder.

3. Recipient understands that although each Contributor grants the licenses to its Contributions set
forth herein, no assurances are provided by any Contributor that the Program does not infringe the
patent or other intellectual property rights of any other entity. Each Contributor disclaims any
liability to Recipient for claims brought by any other entity based on infringement of intellectual
property rights or otherwise. As a condition to exercising the rights and licenses granted hereunder,
each Recipient hereby assumes sole responsibility to secure any other intellectual property rights
needed, if any. For example, if a third party patent license is required to allow Recipient to distribute
the Program, it is Recipient’s responsibility to acquire that license before distributing the Program.

4. Each Contributor represents that to its knowledge it has sufficient copyright rights in its
Contribution, if any, to grant the copyright license set forth in this Agreement.

E.3. Requirements

A Contributor may choose to distribute the Program in object code form under its own license
agreement, provided that:

1.it complies with the terms and conditions of this Agreement; and

2.its license agreement:

a. effectively disclaims on behalf of all Contributors all warranties and conditions, express and
implied, including warranties or conditions of title and non-infringement, and implied
warranties or conditions of merchantability and fitness for a particular purpose;

b. effectively excludes on behalf of all Contributors all liability for damages, including direct,
indirect, special, incidental and consequential damages, such as lost profits;

c. states that any provisions which differ from this Agreement are offered by that Contributor
alone and not by any other party; and

d. states that source code for the Program is available from such Contributor, and informs

licensees how to obtain it in a reasonable manner on or through a medium customarily used for
software exchange.

When the Program is made available in source code form:

1. it must be made available under this Agreement; and
2. a copy of this Agreement must be included with each copy of the Program.
Contributors may not remove or alter any copyright notices contained within the Program.

Each Contributor must identify itself as the originator of its Contribution, if any, in a manner that
reasonably allows subsequent Recipients to identify the originator of the Contribution.

576

Appendix E. Common Public License Version 1.0

E.4. Commercial Distribution

Commercial distributors of software may accept certain responsibilities with respect to end users,
business partners and the like. While this license is intended to facilitate the commercial use of the
Program, the Contributor who includes the Program in a commercial product offering should do so in a
manner which does not create potential liability for other Contributors. Therefore, if a Contributor
includes the Program in a commercial product offering, such Contributor ("Commercial Contributor”)
hereby agrees to defend and indemnify every other Contributor ("Indemnified Contributor") against any
losses, damages and costs (collectively "Losses") arising from claims, lawsuits and other legal actions
brought by a third party against the Indemnified Contributor to the extent caused by the acts or omissions
of such Commercial Contributor in connection with its distribution of the Program in a commercial
product offering. The obligations in this section do not apply to any claims or Losses relating to any
actual or alleged intellectual property infringement. In order to qualify, an Indemnified Contributor must:
a) promptly notify the Commercial Contributor in writing of such claim, and b) allow the Commercial
Contributor to control, and cooperate with the Commercial Contributor in, the defense and any related
settlement negotiations. The Indemnified Contributor may patrticipate in any such claim at its own
expense.

For example, a Contributor might include the Program in a commercial product offering, Product X. That
Contributor is then a Commercial Contributor. If that Commercial Contributor then makes performance
claims, or offers warranties related to Product X, those performance claims and warranties are such
Commercial Contributor’s responsibility alone. Under this section, the Commercial Contributor would
have to defend claims against the other Contributors related to those performance claims and warranties,
and if a court requires any other Contributor to pay any damages as a result, the Commercial Contributor
must pay those damages.

E.5. No Warranty

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, THE PROGRAM IS PROVIDED

ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, EITHER
EXPRESS OR IMPLIED INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OR

CONDITIONS OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Each Recipient is solely responsible for determining the appropriateness of
using and distributing the Program and assumes all risks associated with its exercise of rights under this
Agreement, including but not limited to the risks and costs of program errors, compliance with applicable
laws, damage to or loss of data, programs or equipment, and unavailability or interruption of operations.

E.6. Disclaimer of Liability

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, NEITHER RECIPIENT NOR ANY
CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING WITHOUT
LIMITATION LOST PROFITS), HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OR DISTRIBUTION OF THE

577

Appendix E. Common Public License Version 1.0

PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED HEREUNDER, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES.

E.7. General

578

If any provision of this Agreement is invalid or unenforceable under applicable law, it shall not affect the
validity or enforceability of the remainder of the terms of this Agreement, and without further action by
the parties hereto, such provision shall be reformed to the minimum extent necessary to make such
provision valid and enforceable.

If Recipient institutes patent litigation against a Contributor with respect to a patent applicable to
software (including a cross-claim or counterclaim in a lawsuit), then any patent licenses granted by that
Contributor to such Recipient under this Agreement shall terminate as of the date such litigation is filed.
In addition, if Recipient institutes patent litigation against any entity (including a cross-claim or
counterclaim in a lawsuit) alleging that the Program itself (excluding combinations of the Program with
other software or hardware) infringes such Recipient’s patent(s), then such Recipient’s rights granted
under Section 2(b) shall terminate as of the date such litigation is filed.

All Recipient’s rights under this Agreement shall terminate if it fails to comply with any of the material
terms or conditions of this Agreement and does not cure such failure in a reasonable period of time after
becoming aware of such noncompliance. If all Recipient’s rights under this Agreement terminate,
Recipient agrees to cease use and distribution of the Program as soon as reasonably practicable.
However, Recipient’s obligations under this Agreement and any licenses granted by Recipient relating to
the Program shall continue and survive.

Everyone is permitted to copy and distribute copies of this Agreement, but in order to avoid inconsistency
the Agreement is copyrighted and may only be modified in the following manner. The Agreement
Steward reserves the right to publish new versions (including revisions) of this Agreement from time to
time. No one other than the Agreement Steward has the right to modify this Agreement. IBM is the

initial Agreement Steward. IBM may assign the responsibility to serve as the Agreement Steward to a
suitable separate entity. Each new version of the Agreement will be given a distinguishing version
number. The Program (including Contributions) may always be distributed subject to the version of the
Agreement under which it was received. In addition, after a new version of the Agreement is published,
Contributor may elect to distribute the Program (including its Contributions) under the new version.
Except as expressly stated in Sections 2(a) and 2(b) above, Recipient receives no rights or licenses to the
intellectual property of any Contributor under this Agreement, whether expressly, by implication,

estoppel or otherwise. All rights in the Program not expressly granted under this Agreement are reserved.

This Agreement is governed by the laws of the State of New York and the intellectual property laws of
the United States of America. No party to this Agreement will bring a legal action under this Agreement
more than one year after the cause of action arose. Each party waives its rights to a jury trial in any
resulting litigation.

Index

Symbols

% (integer division operator}9, 434
% method 205

& (AND logical operator) operatog 1
& method,208

&& (exclusive OR operator)22

&& method, ??

> (greater than operatordQ

> method,206

>> (strictly greater than operatog(, 21
>> method,208

>>> tracing flag,74

>>= (strictly greater than or equal operator),

21
>>= method 208
>< (greater than or less than operat@0,
>< method
of Object class173
of String class206, 206
>.> tracing flag,74
>= (greater than or equal operata2})
>= method 206
>C> tracing flag,75
>F> tracing flag,75
>L> tracing flag,75
>M> tracing flag,75
>0O> tracing flag,75
>P> tracing flag,75
>V> tracing flag,75
< (less than operator0
< method,206
<> (less than or greater than operat@,
<> method
of Object class173
of String class206
<< (strictly less than operator20, 21
<< method,??
<<= (strictly less than or equal operatoR),
<<= method 208
<= (less than or equal operaterf), 20
<= method,??
* (multiplication operator)19, 434
* method,205

** (power operator)434
** method, 206
- tracing flag, 74
+ (addition operator)19, 434
+ method 205
+++ tracing flag,74
, (comma)
as a special charactdrs
as continuation charactdré
in CALL instruction,43
in function calls,291
in parsing template lisg1, 427
separator of argument$3, 291
- (subtraction operator}9, 434
- method,205
. (period)
as placeholder in parsing19
causing substitution in variable nam&g,
in numbers433
.dll vs COM (WSH engine)517
.ENVIRONMENT object,285
.ERROR object288
INPUT object,289
.LOCAL object,287
.METHODS object289
.NIL object,289
.OUTPUT object289
.RS (return code)
not set during interactive debu¢33
.RS object290
/ (division operator)19, 434
/ method 205
/I (remainder operatori34
/I method,205
: (colon)
as a special charactdrs
in a label,27
:: METHOD directive,78
:: REQUIRES directive80
:: ROUTINE directive 81
::CLASS directive,77
; semicolon
as a special charactds
= (equal sign)
assignment operatd29
equal operato20
immediate debug commandi33
in DO instruction) 45

579

580

in parsing templatet21
= method
of Object class173
of String class206
== (strictly equal operatorR0, 21, 437
== method
of Object class173
of String class207
? prefix on TRACE option73
[] method
of Array class,107
of Bag class113
of Directory class120
of List class,125
of Queue classl30
of Relation class]33
of Set class138
of Stem class185
of Table class140
[I= method
of Array class,108
of Bag class113
of Directory class120
of List class,126
of Queue classl30
of Relation class]33
of Set class138
of Stem class]185
of Table class140
\ (NOT operator)21
\ method,208
\> (not greater than operato®1
\> method, 207
\>> (strictly not greater than operatoB)]
\>> method,208
\< (not less than operato20
\< method,207
\< < (strictly not less than operatog1
\<< method,208
\= (not equal operator0
\= method
of Object class173
\== (not strictly equal operator0, 21, 437
== method 207
of Object class173
| inclusive OR operatoB1
| method 209
|| concatenation operatdi8

|| method209

~ (tilde or twiddle),5, 26

~~,26

= (NOT operator)21

—> (not greater than operatog)1

—>> (strictly not greater than operatog1
—< (not less than operatorp

—< < (strictly not less than operato1

—= (not equal operator0

—== (not strictly equal operator®0, 21, 437

ABBREY function
description296
example 296
using to select a defaulk97
ABBREV method
of String class210
abbreviations with ABBREYV functior296
ABS function
description297
example297
ABS method
of String class210
absolute value
finding using the ABS functiorg97
finding using the ABS metho@®10
used with power435
abstract class, definitioB4
abuttal, 18
action taken when a condition is not trapped,
444
action taken when a condition is trappdd,,
444
active loops55
activity, 451
add external functior326
ADDDESKTOPICON method
of WindowsProgramManager clagf9
ADDGROUP method
of WindowsProgramManager clag§1
ADDITEM method
of WindowsProgramManager clagf1
addition operator] 9
ADDITIONAL subkeyword
in a RAISE instructionp4

ADDRESS function

description297

determining current environmera97

example297
ADDRESS instruction

description 39

example40

issuing commands t&9

settings saved during subroutine cadls,
address settingl0, 45
ADDSHORTCUT method

of WindowsProgramManager clag0
Alarm class 149
algebraic precedencg?
ALLAT method

of Relation class]33
ALLINDEX method

of Relation class133
alphabetical character word options in
TRACE, 72
alphabetics

checking with DATATYPE 217, 309

used in symbols]3
alphanumerics

checking with DATATYPE 309
alphnumerics

checking with DATATYPE 217
altering

flow within a repetitive DO loop54

special variables36

TRACE setting 342
alternating exclusive scope acce$s8
AND, logical operator21
ANDing character string211, 300
ANY subkeyword

in a CALL instruction,42, 441

in a SIGNAL instruction89, 441
APPEND method

of MutableBuffer class]170
ARG function

description298

example298
ARG instruction

description41

example4l
ARG option of PARSE instructiorg8
ARG subkeyword

in a PARSE instructior41, 58, 425

in a USE instruction75
arguments

checking with ARG function298

of functions,41, 291

of programs41

of subroutines41

passing in messagex;

passing to function®91, 292

retrieving with ARG function298

retrieving with ARG instruction41

retrieving with PARSE ARG instructiorh8
ARGUMENTS subkeyword

in a FORWARD instruction49
arithmetic

basic operator example$35

comparisons437

errors,438

exponential notatior}36

examples436
numeric comparisons example
examples438

NUMERIC setting 56

operator exampleg,35

operatorsl7, 433 434

overflow, 438

precision434

underflow,438
array

initialization, 30

setting up32
Array class,106
ARRAY subkeyword

in a FORWARD instruction49

in a RAISE instruction64
ARRAYIN method

of Stream classl 87
ARRAYOUT method

of Stream classl87
assigning data to variables8
assignment

description29

indicator (=),29

of compound variableg2

of stems variables30

several assignment$24
associative storag82
ASSOCWINDOW method

of WindowsObiject clas248

581

582

AT method

of Array class]108

of Directory class120

of List class,126

of Queue classl30

of Relation class]33

of Set class138

of Table class140
ATTRIBUTE subkeyword

in a METHOD directive,/8
AVAILABLE method

of Supplier class234

B2X function
description299
example299
B2X method
of String class211
backslash, use 014, 21
Bag class111
base class for mixin§4
Base option of DATE function311
base64
DECODEBASE64 method18
ENCODEBASE64 method19
BASECLASS method
of Class class]52
bash command environmed{)
basic operator example435
BEEP function
description 300
example 300
binary
digits, 12
strings
description,12
implementation maximuni,3
nibbles,12
to hexadecimal conversio@11, 299
BITAND function
description 300
example 300
BITAND method
of String class211
BITOR function

description 301
example301
BITOR method
of String class212
bits checked using DATATYPE functio309
bits checked using DATATYPE metho#17
BITXOR function
description 301
example301
BITXOR method
of String class212
blanks,18
adjacent to special charactér,
in parsing, treatment o418
removal with STRIP functior337
removal with STRIP metho®26
boolean operation21
boolean value11

bottom of program reached during execution,

48

bounded buffer463

browser, invocation by (WSH engin&00

built-in functions
ABBREYV, 296
ABS, 297
ADDRESS,297
ARG, 298
B2X, 299
BEEP,300
BITAND, 300
BITOR, 301
BITXOR, 301
C2D, 302
C2X, 302
calling,42
CENTER,303
CENTRE,303
CHANGESTR,303
CHARIN, 303
CHAROUT, 304
CHARS,305
COMPARE,306
CONDITION, 306
COPIES 308
COUNTSTR,308
D2C,308
D2X, 309
DATATYPE, 309

DATE, 311
definition,42
DELSTR,314
DELWORD, 314
DIGITS, 315
DIRECTORY,315
ENDLOCAL, 315
ERRORTEXT,316
FILESPEC316
FORM, 317
FORMAT, 317
FUZZ, 318
INSERT, 318
LASTPOS,319
LEFT, 319
LENGTH, 320
LINEIN, 320
LINEOUT, 321
LINES, 323
MAX, 323

MIN, 324
OVERLAY, 324
P0OS,324
QUEUED, 325
RANDOM, 325
REVERSE 326
RIGHT, 326
RXFUNCADD, 326

RXFUNCDROP327
RXFUNCQUERY,327

RXQUEUE, 327
SETLOCAL, 329
SIGN, 329
SOURCELINE,330
SPACE,330
STREAM, 330
STRIP,337
SUBSTR,338
SUBWORD,338
SYMBOL, 339
TIME, 339
TRACE, 342
TRANSLATE, 342
TRUNC, 343
USERID,343
VALUE, 344
VAR, 346
VERIFY, 347

WORD, 347
WORDINDEX, 347
WORDLENGTH, 348
WORDPOS 348
WORDS, 348
X2B, 349
X2C, 349
X2D, 350
XRANGE, 350
built-in object
.ENVIRONMENT object,285
.ERROR object288
INTPUT object,289
.LOCAL object,287
.METHODS object289
.NIL object, 289
.OUTPUT object289
.RS object290
BY phrase of DO instructior46
BY subkeyword
in a DO instruction45, 520

C2D function
description 302
example 302
C2D method
of String class213
C2X function
description 302
example 302
C2X method
of String class213
CALL instruction
description42
example44
call, recursive44
calls to the Security Managet67
CANCEL method
of Alarm class 150
cancelling Internet Explorer events (WSH
engine),511
CASELESS subkeyword
in a PARSE instruction8, 425
CENTER function
description 303

583

584

example303
CENTER method
of String class214
centering a string
CENTER,303
CENTRE,303
CENTRE function
description 303
example303
CENTRE method
of String class214
CHANGESTR function
description 303
example303
CHANGESTR method
of String class214
changing destination of comman@&$
changing the search order for metho@ig,
character
definition,9
removal with STRIP function338
removal with STRIP metho®26
strings, ANDing,211, 300
strings, exclusive-ORin@12 301
strings, ORing212 301
to decimal conversior213 302
to hexadecimal conversio@13 302
character input and output7 3 484
character input streamé74
character output stream&74
CHARIN function
description 303
example 304
CHARIN method
of Stream classl 87
role in input and outpu74
CHAROUT function
description 304
example 305
CHAROUT method
of Stream classl 87
role in input and outpu75
CHARS function
description 305
example 306
CHARS method
of Stream classl 88
role in input and outpu74

checking arguments with ARG functioR98
CHILDATPOSITION method
of WindowsObject clas®51
CircularQueue clas4,14
class
Alarm class 149
Array class,106
Bag class111
CircularQueue clas4,14
Class classl51
definition,6
Directory class119
List class,124
MenuObject classl 59
Message clas4,61
Method class165
Monitor class167
MutableBuffer class169
Object class172
OLEODbiject class276
Queue classl29
RegularExpression clask?7
Relation class]32
Set class137
Stem class]83
Stream classl86
String class203
subclasses
superclasses$,
Supplier class233
Table class139
types
abstract84
metaclass84
mixin, 83
object,83
WindowsClipboard clas235
WindowsEventLog clas236
WindowsManager clas244
WindowsObject clas246
WindowsProgramManager clagf8 268
Class class]51
CLASS method
of Object class173
class methods33
CLASS subkeyword
in a FORWARD instruction49
in a METHOD directive,78

CLASSES_ROOT method

of WindowsRegistry clas69
CLASSES_ROOT= method

of WindowsRegistry clas®269
clauses

assignment28, 29

commands28

continuation of16

description9, 29

directives 27

instructions 28

keyword instructions28

labels,27

message instruction28

null, 27
CLEAR method

of WindowsEventLog clas242
CLOSE method

of Stream classl 88

of WindowsEventLog clas238

of WindowsRegistry clas®69
CMD command environmend0
code paged
codes, error527
collating sequence using XRANGB50
collection classed,05
COLLECTOR example progrard80
colon

as a special charactdrb

as label terminator7

in a label,27
COM events (WSH engine}10
COM object registration (WSH engine§09
combining string and positional patterd28
comma

as a special charactds

as continuation characteré

in CALL instruction,43

in function calls,291

in parsing template lis§1, 427

separator of argument$3, 291
command

alternative destination86

clause28

destination of39

errors, trapping441

issuing to host36
COMMAND method,473

of Stream classl 88
command prompt, invocation from (WSH
engine) 507
comments9
line comment9
standard commen$,
Common Public Licensé&75
COMPARE function
description 306
example 306
COMPARE method
of String class214
comparisons
description,19
numeric, example438
of numbers20, 437
of strings,19, 214, 306
COMPLETED method
of Message clas4,62
compound
symbols,32
variable
description 32
setting new value30
concatenation
abuttal, 18
as concatenation operaté8
blank,18
of strings,18
operator
[l,14, 18
conceptual overview of parsing17
concurrency
alternating exclusive scope acce$s8
conditional,458
default, 454
early reply,451
GUARD instruction,51, 458
guarded methodg,58
message object453
object based451
SETGUARDED method]166
SETUNGUARDED method167, 458
UNGUARDED option,458
condition
action taken when not trappet4}4
action taken when trapped44
ANY, 441

585

586

definition, 441
ERROR441
FAILURE, 442
HALT, 442
information,45
described446
LOSTDIGITS, 442
NOMETHOD, 442
NOSTRING,442
NOTREADY, 442
NOVALUE, 442
saved45
saved during subroutine cal5
SYNTAX, 443

trap information using CONDITION306

trapping of 441

traps, notes443

USER,443
CONDITION function

description 306

example 307
conditional

loops,45

phrasep22
conditional concurrency58
conditions

raising of,64
CONNECT method

of WindowsRegistry clas£,70
console

reading from with PULL63

writing to with SAY, 68
CONSOLETITLE method

of WindowsManager clas245
CONSOLETITLE= method

of WindowsManager clas245
constant symbol9
content addressable storage,
continuation

characterl6

clauses16

example16

of data for displayp8
CONTINUE subkeyword

in a FORWARD instruction49
control variable520
controlled loops520
conversion

binary to hexadecima®11, 299
character to decima®13 302
character to hexadecim&l3 302
conversion function295
decimal to characteg 15, 308
decimal to hexadecima?16, 309
formating numbers219, 317
hexadecimal to binar®31, 349
hexadecimal to charact&t32, 349
hexadecimal to deciani32
hexadecimal to decimaB50
COORDINATES method
of WindowsObiject clas48
COPIES function
description 308
example 308
COPIES method
of String class215
COPY method
of Object class173
of WindowsClipboard clas£35

copying a string using COPIES15, 308

count from stream304
counting

words in a string231, 348
COUNTSTR function

description 308

example 308 308
COUNTSTR method

of String class215
CPL,575
create external data quels27
CREATE method

of WindowsRegistry clas®70
CScript,500, 512
CURRENT method

of Monitor class, 168
CURRENT_KEY method

of WindowsRegistry clas270
CURRENT_KEY= method

of WindowsRegistry clas270
CURRENT_USER method

of WindowsRegistry clas£,70
CURRENT_USER= method

of WindowsRegistry clas270

D2C function
description 308
example 308
implementation maxiun309
D2C method
of String class215
D2X function
description 309
example 309
implementation maxiun809
D2X method
of String class216
data
abstraction8
encapsulatiord
modularization?
objects,16
terms,17
DATATYPE function
description 309
example311
DATATYPE method
of String class217
date and version of the language processor,
DATE function
description311
example312
Days option of DATE function312
debug interactive71
decimal
integer,433
to character conversiog]15 308
to hexadecimal conversio@16, 309
declaring objects (WSH enginé&§17
DECODEBASE64 method
of String class218
default
character streamdy3
concurrency454
environment36
search order for method89
selecting with ABBREYV function296
selecting with ABBREV method210
DEFAULTNAME method
of Class class]52
of Object class173

DEFINE method

of Class class] 52
delayed state

description441

of NOTREADY condition,481
DELETE method

of Class class]53

of MutableBuffer class]170

of WindowsRegistry clas271
DELETEDESKTOPICON method

of WindowsProgramManager clag$2
DELETEGROUP method

of WindowsProgramManager clag4
DELETEITEM method

of WindowsProgramManager clasg4
DELETEVALUE method

of WindowsRegistry clas271
deleting

part of a string218, 314

words from a string219, 314
DELSTR function

description314

example314
DELSTR method

of String class218
DELWORD function

description314

example 314
DELWORD method

of String class219
derived names of variable32
DESCRIPTION method

of Stream classl 94
DESCRIPTION subkeyword

in a RAISE instructionp4
DESTINATION method

of Monitor class,168
DIFFERENCE method

of Directory class122

of Table class142
DIFFERNCE method

of Relation class]35
DIGITS function

description315

example315
DIGITS option of NUMERIC instruction433
DIGITS subkeyword

in a NUMERIC instruction56, 434

587

588

DIMENSION method
of Array class]108
directives
©:CLASS,77
=METHOD, 78
:REQUIRES 80
::ROUTINE, 81
Directory class119
DIRECTORY function
description315
example315
DISABLE method
of WindowsObiject clas250
DISPATCH method
of OLEObject class277
division operator19
dlifunctions,353
DO instruction
description45
example519
Domain Object Model (DOM)513
drop external functior327
DROP instruction
description46
exampleA7
DROP keyword
in a RXSUBCOM command}93

duplicated features in Object Rexx and WSH,

516
dyadic operatorsl7
dynamic link library (RexxUtil),353

early reply,66, 451
elapsed-time clock

measuring intervals witt839

saved during subroutine callé5
ELSE

as free standing clausg9
ELSE subkeyword

in an IF instruction52
EMPTY method

of WindowsClipboard clas£36
ENABLE method

of WindowsObiject clas250
encapsulation of datd,

ENCODEBASE®64 method
of String class219
END
as free standing clausg9
END clause
specifying control variable520
END subkeyword
in a DO instruction45
in a SELECT instructiont8
ENDLOCAL function
description315
example 316
engineering notatiom37
ENGINEERING subkeyword
in a NUMERIC instructionp6
ENHANCED method
of Class class]53
ENTRY method
of Directory class120
ENUMERATECHILDREN method
of WindowsObiject clas®52
environment;39
addresing of40
default,40
determining current using ADDRESS
function,297
equal
operator20
sign
in parsing templatel20, 421
to indicate assignment4, 29
equality, testing of19
error
definition,36
during execution of function293
during stream input and output31
from commands36
messages
list, 527
retrieving with ERRORTEXT527
syntax,527
traceback afteff2
trapping,441
error codes527
error messages and codggy
ERROR subkeyword
in a CALL instruction,42, 441, 446
in a RAISE instructionp4

in a SIGNAL instruction$9, 441, 446

ERRORTEXT function

description316
example 316

European option of DATE functiorg12
evaluation of expression&7

events (WSH engineh10

examples

::CLASS directive,78
::METHOD directive,79
::ROUTINE directive 81
ABBREYV function,296
ABBREYV method,210
ABS function,297

ABS method210
ADDRESS function297
ADDRESS instruction40
ARG function,298

ARG instruction41
arithmetic methods of String clasz)6
B2X function,299

B2X method 211

basic operator example$35
BEEP function 300
BITAND function, 300
BITAND method,211
BITOR function,301
BITOR method212
BITXOR function,301
BITXOR method,212

C2D function,302

C2D method213

C2X function,302

C2X method213

CALL instruction,44
CENTER function303
CENTER method214
CENTRE function303
CENTRE method214
CHANGESTR function303
CHANGESTR method214
CHARIN function,304
CHAROUT function,305
CHARS function,306
COLLECTOR program480
combining positional pattern and parsing
into words,424

combining string and positional patterns,
428
combining string pattern and parsing into
words,423
COMMAND method
OPEN option191
QUERY DATETIME option,193
QUERY EXISTS option,193
QUERY HANDLE option,193
SEEK option,192
COMPARE function306
COMPARE method215
comparison methods of String clage7
concatenation methods of String cla289
CONDITION function,307
continuation,16
COPIES function308
COPIES method215
COPY method173
COUNTSTR function308 308
COUNTSTR method215
D2C function,308
D2C method216
D2X function,309
D2X method 216
DATATYPE function,311
DATATYPE method 218
DATE function,312
DECODEBASE64 metho®18
DEFAULTNAME method,152
DEFINE method 153
DELETE method153
DELSTR function,314
DELSTR method219
DELWORD function,314
DELWORD method219
DIGITS function,315
DIRECTORY function 315
DO instruction 519
DROP instruction47
ENCODEBASE64 metho®19
ENDLOCAL function,316
ENHANCED method153
ERRORTEXT function316
EXIT instruction,47
exponential notatior}36
EXPOSE instructior48
expression23

589

590

FILECOPY program480
FILESPEC function317
FORM function,317
FORMAT function,317
FORMAT method220
FORWARD instruction50
FUZZ function,318
GUARD instruction,51
ID method,154
IF instruction,52
INHERIT method,154
INSERT function, 319
INSERT method219

of List class, 127

of String class221
INTERPRET instruction53, 53
ITERATE instruction,55
LASTPOS function319
LASTPOS method221
LEAVE instruction,55
LEFT function,319
LEFT method222
LENGTH function,320
LENGTH method222
line comments10
LINEIN function, 320
LINEOUT function,322
LINES function,323

logical methods of String clasg09

MAX function, 323

MAX method,223
message instruction85
metaclass3s

METHOD method 155
METHODS method156
MIN function, 324

MIN method,223
MIXINCLASS method,156
NEW method 157

NOP instruction56
NOTIFY method, 163
numeric comparisong,38
OBJECTNAME= method174
of Alarm class 150

of Array class111

of Bag class114

of CircularQueue clas4,17
of Directory class123

of Message clas4,64
of Monitor class, 169

of program 480

of Relation class]136

of Supplier class234
OPEN method198
operator exampleg,35
OVERLAY function, 324
OVERLAY method,224
PARSE instruction60
parsing instructions}26

parsing multiple strings in a subroutin&7

period as a placeholdet19
POS function325

POS method224
PROCEDURE instructior 1
PULL instruction,63
PUSH instruction64
QUERY method,199
QUEUE instructionp4
QUEUED function,325
RAISE instruction66
RANDOM function, 325

RegularExpression claskr9, 181, 181,

182
REPLY instruction67
REVERSE function326
REVERSE method224
RIGHT function,326
RIGHT method225
RXFUNCADD function,326
RXFUNCDROP function327
RXFUNCQUERY function327
RXFUNCQUEUE function328
RxMessageB0xX358
SAY instruction,68
SEEK method202
SELECT instructionf9
set operations
conceptsl143
eliminating duplicates}44
principals,144
with duplicates 145
SETLOCAL function,329
SIGL, special variable}48
SIGN function,329
SIGN method225
SIGNAL instruction,70

simple templates, parsing17
SOURCELINE function330
SPACE function330
SPACE method225
special characterdb
standard comment&p
START method 164
STREAM function,334, 335
STRIP function338
STRIP method226
SUBCLASS method]58
SUBSTR function338
SUBSTR method227
SUBWORD function 339
SUBWORD method227
SUPERCLASSES method58
SYMBOL function, 339
SysCurPos363
SysDrivelnfo,364
SysDriveMap 365
SysDumpVariables367
SysFileCopy368
SysFileDelete369
SysFileMove 369
SysFileSearch370
SysFileSystemTyp&71
SysFileTree374
SysGetDefaultPrinted15
SysGetErrortext378
SysGetFileDateTime§78
SysGetMessag&30
SysGetMessage)381
SysGetPrinters}15
SyslIni, 382

SysMKkDir, 389
SysRmDir,397
SysSearchPatl398
SysSetDefaultPrinted15
SysSetFileDateTime&99
SysSleep402
SysStemCopy03
SysStemDelete}04
SysStemSorg06
SysTempFileName}07
SysTextScreenRead)8
SysTextScreenSizdP8

templates containing positional patterns,

421

templates containing string patterd20
TIME function, 341, 341
TRACE function,342
TRACE instruction,74
TRANSLATE function,343
TRANSLATE method228
TRUNC function,343
TRUNC method228
UNINHERIT method,159
USE instructiony/5
using a variable as a positional pattet@5
using a variable as a string patted24
VALUE function, 344, 345
VAR function, 346
VERIFY function,347
VERIFY method,229
WORD function,347
WORD method230
WORDINDEX function,348
WORDINDEX method 230
WORDLENGTH function, 348
WORDLENGTH method230
WORDPOS function348
WORDPOS method230
WORDS function 349
WORDS method231
X2B function,349
X2B method,231
X2C function,349
X2C method232
X2D function, 350, 350
X2D method 232
XRANGE function,350
exception conditions saved during subroutine
calls,44
exclusive OR operatop2
exclusive-ORing character strings together,
212 301
execution
by language processdr,
of data,53
EXIT instruction
description47
exampleA7
EXIT subkeyword
in a RAISE instructionp4
exponential notation
description436

501

example 13, 436
exponentiation
description436
operator,19
EXPOSE instruction
description48
example48

EXPOSE option of PROCEDURE instruction,
61

EXPOSE subkeyword
in a PROCEDURE instructiorg0
exposed variable&g1
expressions
evaluation17
examples23
parsing of 60
results of 17
tracing results of73
external character strean?3
external data queue
counting lines in325
creating and deleting queu&27
description475
naming and quering queue7
reading from with PULLG3
RXQUEUE function 327
writing to with PUSH,63
writing to with QUEUE,64
external functions
description292
functions
description,??
search orde292
external routine42
external subroutine292
external variables
access with VALUE function344
extracting
substring227, 338
word from a string229, 347
words from a string231, 348
extracting words with SUBWOR®27

FAILURE subkeyword

in a CALL instruction,42, 442, 446

in a RAISE instruction64

in a SIGNAL instruction$9, 442, 446
failure, definition,36
features duplicated in Object Rexx and WSH,
516
FIFO (first-inffirst-out) stackingg4
file name, extension, path of prograf$,
FILECOPY example progrand80
files, 473
FILESPEC function

description316

example317
FIND method

of WindowsManager clas245
FINDCHILD method

of WindowsObject clas®51
finding

mismatch using COMPARE214, 306

string in another stringR24, 324

string length 222, 320

word length,230, 348
FINDITEM method

of MenuObject classl61
FINDSUBMENU method

of MenuObiject classl60
FIRST method

of Array class, 108

of List class,126

of WindowsObiject clas51
FIRSTCHILD method

of WindowsObiject clas52
FIRSTITEM method

of List class,126
flag, tracing

>>>, 74

>.>,74

>C>,75

>F>, 75

>L>, 75

>M>, 75

>0>, 75

>P>, 75

>V>, 75

** 74

+++,74
flow of control

unusual, with CALL 441

unusual, with SIGNAL441

with CALL and RETURN construcf2

with DO construct45

with IF construct52

with SELECT constructt8
FLUSH method

of Stream classl 95

of WindowsRegistry clas71
FOCUSITEM method

of WindowsObiject clas250
FOCUSNEXTITEM method

of WindowsObiject clas50
FOCUSPREVIOUSITEM method

of WindowsObiject clas250
FOR phrase of DO instructiod6
FOR subkeyword

in a DO instruction45
FOREGROUNDWINDOW method

of WindowsManager clas245
FOREVER phrase of DO instructioA5
FOREVER repetitor on DO instructioAf
FOREVER subkeyword

in a DO instruction45, 519, 522
FORM function

description317

example317
FORM option of NUMERIC instruction57
FORM subkeyword

in a NUMERIC instruction56, 437
FORMAT function

description317

example317
FORMAT method

of String class219
formatting

numbers for display219, 317

numbers with TRUNC228 343

of output during tracing74

text centering214, 303

text left justification,221, 319

text right justification 225 326

text spacing225, 330
FORWARD instruction

description49

example 50

functions,291

ABBREYV, 296
ABS, 297
ADDRESS,297
ARG, 298

B2X, 299
BEEP,300
BITAND, 300
BITOR, 301
BITXOR, 301
built-in, 295
built-in, description296
C2D, 302

C2X, 302

call, definition,291
calling,291
CENTER,303
CENTRE,303
CHANGESTR,303
CHARIN, 303
CHAROUT, 304
CHARS,305
COMPARE,306
CONDITION, 306
COPIES,308
COUNTSTR,308
D2C,308

D2X, 309
DATATYPE, 309
DATE, 311
definition, 291
DELSTR,314
DELWORD, 314
description291
DIGITS, 315
DIRECTORY,315
ENDLOCAL, 315
ERRORTEXT,316
external 292
FILESPEC 316
forcing built-in or external referenc@92
FORM, 317
FORMAT, 317
FUzz,318
INSERT, 318
internal,292
LASTPOS,319
LEFT, 319

593

594

LENGTH, 320
LINEIN, 320
LINEOUT, 321
LINES, 323

logical bit operations300, 301, 301

MAX, 323
MIN, 324

numerice arguments d??

OVERLAY, 324
POS,324
QUEUED, 325
RANDOM, 325
return from,67
REVERSE 326
RIGHT, 326
RXFUNCADD, 326
RXFUNCDROP327
RXFUNCQUERY,327
RXQUEUE, 327
SETLOCAL, 329
SIGN, 329
SOURCELINE,330
SPACE,330
STREAM, 330
STRIP,337
SUBSTR,338
SUBWORD,338
SYMBOL, 339
TIME, 339
TRACE, 342
TRANSLATE, 342
TRUNC, 343
USERID,343
VALUE, 344

VAR, 346
variables in60
VERIFY, 347
WORD, 347
WORDINDEX, 347
WORDLENGTH, 348
WORDPOS 348
WORDS,348

X2B, 349

X2C, 349

X2D, 350
XRANGE, 350

FUzz
controlling numeric comparisod37

instruction,57, 437
FUZZ function
description318
example 318
FUZZ subkeyword
in a NUMERIC instruction56, 437

general conceptd, 39
GETBUFFERSIZE method

of MutableBuffer class]170
GETCONSTANT method

of OLEODbject class278
GETKNOWNEVENTS method

of OLEObject class278
GETKNOWNMETHODS method

of OLEObject class279
GETNUMBER method

of WindowsEventLog clas243
GETOBJECT method

of OLEObject class281
GETOUTPARAMETERS method

of OLEODbject class?281
getting value with VALUE 344
GETVALUE method

of WindowsRegistry clas71
global variables

access with VALUE function344
GOTO, unusuak41
greater than operatdzp
greater than operator(, 20
greater than or equal operat@f)
greater than or equal to operator), 20
greater than or less than opera2®,
greater than or less than operatpr<(), 20
group, DO,519
grouping instructions to run repetitive§5
GUARD instruction

description51

example51
guarded methodg,58
GUARDED subkeyword

in a METHOD directive,/8

HALT subkeyword
in a CALL instruction,42, 442, 446
in a SIGNAL instruction 69, 442, 446
halt, trapping442
HANDLE method
of WindowsObject clas248
HASENTRY method
of Directory class120
HASINDEX method
of Array class,108
of Bag class113
of Directory class120
of List class,126
of Queue classl30
of Relation class133
of Set class138
of Table class141
HASITEM method
of Relation class134
HASMETHOD method
of Object class173
hexadecimal
checking with DATATYPE 217, 309
digits, 12
strings
description,12
implementation maximunt,2
to binary, converting with X2B231, 349
to character, converting with X2@32 349
to decimal, converting with X2D232, 350
HIDE method
of WindowsObiject clas49
host commands
issuing commands to underlying operating
system36
hours calculated from midnigh340

ID method

of Class class] 54

of WindowsObiject clas248
IDOF method

of MenuObiject classl60
IF instruction

description52

example 52
implementation maximum

binary strings13

D2C function,309

D2C method216

D2X function,309

D2X method216

hexadecimal stringd,2

literal strings,12

numbers14

TIME function, 342
implied semicolonsl15
imprecise numeric comparisof37
inclusive OR operatog1
indentation during tracing;4
INDEX method

of Relation class134

of Supplier class234
indirect evaluation of dat&3
inequality, testing of20
infinite loops,45, 520
information hiding 4
INHERIT method

of Class class] 54
INHERIT subkeyword

in a CLASS directive77
inheritance
INIT method

of Alarm class 150

of CircularQueue clas4,15

of Class class]55

of Message clas4,62

of Monitor class168

of MutableBuffer class]170

of Object class174

of OLEObject class277

of RegularExpression clask30

of Stream classl 95

of WindowsEventLog clas®37

of WindowsProgramManager clag§4

of WindowsRegistry clas£72
initialization

of arrays,30

of compound variable0
input and output

functions

CHARIN, 303

595

596

CHAROUT, 304
CHARS, 305
LINEIN, 320
LINEOUT, 321
LINES, 323
STREAM, 330
model,473
streams473
input from the use73
input object,289
input streams474
input to PULL from STDIN,63
input to PULL from the keyboard3
input, errors during481
INSERT function
description318
example319
INSERT method
of List class,126
of MutableBuffer class170
of String class221
inserting a string into anothe?221, 318
instance method8§3
instances
definition, 6
instructions
ADDRESS,39
ARG, 41
CALL, 42
definition, 28
DO, 45
DROP,46
EXIT, 47
EXPOSE 48
FORWARD, 49
GUARD, 51, 458
IF, 52
INTERPRET,53
ITERATE, 54
keyword,28
description 39
LEAVE, 55
messagez8, 35
NOP,56
NUMERIC, 56
PARSE,58
parsing, summary25
PROCEDURES0

PULL, 63
PUSH,63
QUEUE, 64
RAISE, 64
REPLY, 66
RETURN,67
SAY, 68
SELECT,68
SIGNAL, 69
TRACE, 71
USE,75
integer
arithmetic,433
division
description>, 433 435
integer division operatod,9
interactive debug/1
internal
functions
return from,67
variables in60
routine,42
Internet Explorer events (WSH enging),1
INTERPRET instruction
description53
example53, 53
interpretive execution of data3
INTERSECTION method
of Directory class123
of Relation class135
of Table class142
invocation as a COM object (WSH engine),
509
invocation by browser (WSH enginé&§00
invocation from a command prompt (WSH
engine),507
invoking
built-in functions,42
routines 42
invoking a script (WSH engineR09
ISDATAAVAILABLE method
of WindowsClipboard clas£36
ISMENU method
of MenuObject classl59
of WindowsObiject clas258
ITEM method
of Supplier class234
ITEMS method

of Array class109

of Directory class121

of List class,127

of MenuObject classl59

of Queue classl30

of Relation class]34

of Set class138

of Table class141
ITERATE instruction

descriptionb4

example 55

JScript,513
justification, text right, RIGHT function326
justification, text right, RIGHT metho®25

keyword
conflict with commands487
description39
mixed case39
reservation of487

label
as target of CALLA2
as target of SIGNALG9
description27
duplicate,70
in INTERPRET instruction53
search algorithmG9
language
processor date and versidi
processor execution,
structure and synta®,
Language (local) option of DATE function,
312
LAST method
of Array class,109
of List class,127

of WindowsObiject clas252
LASTITEM method
of List class 127
LASTPOS function
description319
example 319
LASTPOS method
of String class221
leading
blank removal with STRIP metho@26
leading blank removal with STRIP
function, 337
zeros
adding with RIGHT function326
adding with RIGHT method225
removing with STRIP functior337
removing with STRIP metho®26
LEAVE instruction
description55
example 55
leaving your progranv7, 47
LEFT function
description319
example319
LEFT method
of String class221
LENGTH function
description 320
example 320
LENGTH method
of MutableBuffer class]171
of String class222
less than operatokq), 20
less than or equal to operatos£), 20
less than or greater than operatarx), 20
License, Common Publi&75
License, Open Object Rex&75
LIFO (last-in, first-out) stackingg3
line input and output473
LINEIN function
description 320
example 320
LINEIN method
of Stream classl95
role in input and outpu74
LINEIN option of PARSE instruction;9
LINEIN subkeyword
in a PARSE instruction8, 425

597

598

LINEOUT function

description321

example 322
LINEOUT method

of Stream classl 95

role in input and outpu75
lines

from a program retrieved with

SOURCELINE,330

from stream59
LINES function

description323

example 323

from stream320

remaining in strean323
LINES method

of Stream classl 96

role in input and outpu74
List class, 124
LIST method

of WindowsRegistry clas£72
LISTVALUES method

of WindowsRegistry clas®72
literal

description,11

implementation maximuni,2

patterns419
LOAD keyword

in a RXSUBCOM command}94
LOAD method

of WindowsRegistry clas72
LOCAL_MACHINE method

of WindowsRegistry clas73
LOCAL_MACHINE= method

of WindowsRegistry clas273
locating

string in another string224, 324

word in another string229, 347
logical

operations21
logical bit operations

BITAND, 300

BITOR, 301

BITXOR, 301
logical NOT characterl 4
logical OR operatorl4
loops

active,55

execution models23 524

modification of,54

over collections521

repetitive,519

termination of 55
LOSTDIGITS subkeyword

in a CALL instruction,446

in a SIGNAL instruction 69, 446
LOSTFIGITS subkeyword

in a SIGNAL instruction442
LOWER subkeyword

in a PARSE instructior8, 425
lowercase translation

with PARSE LOWER 58

MAKEARRAY method

of Array class,109

of Bag class113

of CircularQueue clas4,15

of Directory class121

of List class,128

of Queue classl30

of Relation class]34

of Set class138

of Stem class]185

of Stream classl 96

of String class222

of Table class141

of WindowsClipboard clas£35
MAKESTRING method

of Array class109

of String class223
MATCH method

of RegularExpression class30
MAX function

description 323

example 323
MAX method

of String class223
MAXIMIZE method

of WindowsObiject clas49
MENU method

of WindowsObiject clas®57
MenuObject classl59
Message clas461

message instruction8, 35 ABS method

message sequence instructioss, of String class210
MESSAGE subkeyword ADDDESKTOPICON method
in a FORWARD instruction49 of WindowsProgramManager clag§9
message-send operator (5), ADDGROUP method
messages} of WindowsProgramManager clag§1
messages to objects ADDITEM method
operator as messagk] of WindowsProgramManager clag§1
~, using,26 ADDSHORTCUT method
~~, using,26 of WindowsProgramManager clag§0
messages, erras27 ALLAT method
METACLASS method of Relation class]33
of Class class]55 ALLINDEX method
METACLASS subkeyword of Relation class]33

in a CLASS directive77

metaclasseg4

>=,206

APPEND method
of MutableBuffer class]1 70

method arithmetic methods

%, 205 of String class205

&, 208 ARRAYIN method

&&, 209 of Stream class]87

>, 206 ARRAYOUT method

>>, 208 of Stream classl87

>>=,208 ASSOCWINDOW method

>< of WindowsObject clas48
of Object class173 AT method
of String class206 of Array class108

of Directory class120

<, 206 of List class, 126

<> of Queue class] 30
of Object class173 of Relation class]33
of String class206 of Set class138

<<, 208 of Table class140

<<=,208 AVAILABLE method
<=, 207 of Supplier class234
* 205 B2X method
** 206 of String class211
+, 205 BASECLASS method
-, 205 of Class classl52
/, 205 BITAND method
/1, 205 of String class211
= BITOR method

of Object class173 of String class212

of String class206

BITXOR method
of String class212

of Object class173 C2D method
of String class207 of String class213
ABBREV method C2X method

of String class210

of String class213

599

600

CANCEL method

of Alarm class, 150
CENTER method

of String class214
CENTRE method

of String class214
CHANGESTR method

of String class214
CHARIN method

of Stream classl 87
CHAROUT method

of Stream classl87
CHARS method

of Stream classl 88
CHILDATPOSITION method

of WindowsObject clas51
CLASS method

of Object class173
CLASSES_ROOT method

of WindowsRegistry clas®69
CLASSES ROOT= method

of WindowsRegistry clas®69
CLEAR method

of WindowsEventLog clas242
CLOSE method

of Stream classl88

of WindowsEventLog clas238

of WindowsRegistry clas®69
COMMAND method

of Stream classl 88
COMPARE method

of String class214
comparison methods

of String class206
COMPLETED method

of Message clas4,62
concatenation methods

of String class209
CONNECT method

of WindowsRegistry clas®70
CONSOLETITLE method

of WindowsManager clasg45
CONSOLETITLE= method

of WindowsManager clas245
COORDINATES method

of WindowsObject clas48
COPIES method

of String class215

COPY method

of Object class173

of WindowsClipboard clas£35
COUNTSTR method

of String class215
CREATE method

of WindowsRegistry clas70
creation,’78
CURRENT method

of Monitor class, 168
CURRENT_KEY method

of WindowsRegistry clasf70
CURRENT_KEY= method

of WindowsRegistry clas70
CURRENT_USER method

of WindowsRegistry clas£70
CURRENT_USER= method

of WindowsRegistry clas®70
D2C method

of String class215
D2X method

of String class216
DATATYPE method

of String class217
DECODEBASE64 method

of String class218
DEFAULTNAME method

of Class class] 52

of Object class173
DEFINE method

of Class class]52
definition,5
DELETE method

of Class classl53

of MutableBuffer class]170

of WindowsRegistry clas®71
DELETEDESKTOPICON method

of WindowsProgramManager clag$2

DELETEGROUP method

of WindowsProgramManager clag$4

DELETEITEM method

of WindowsProgramManager clagf4

DELETEVALUE method

of WindowsRegistry clas®71
DELSTR method

of String class218
DELWORD method

of String class219

DESCRIPTION method

of Stream class] 94
DESTINATION method

of Monitor class; 168
DIFFERENCE method

of Directory class]122

of Relation class]35

of Table class142
DIMENSION method

of Array class, 108
DISABLE method

of WindowsObject clas®£50
DISPATCH method

of OLEODbject class277
EMPTY method

of WindowsClipboard clas236
ENABLE method

of WindowsObject clas®250
ENCODEBASE64 method

of String class219
ENHANCED method

of Class classl53
ENTRY method

of Directory class120
ENUMERATECHILDREN method

of WindowsObject clas®52
FINDCHILD method

of WindowsObject clas251
FINDITEM method

of MenuObject classl61
FINDSUBMENU method

of MenuObject classl60
FIRST method

of Array class,108

of List class,126

of WindowsObject clas251
FIRSTCHILD method

of WindowsObject clas®52
FIRSTITEM method

of List class,126
FLUSH method

of Stream class]95

of WindowsRegistry clas®71
FOCUSITEM method

of WindowsObject clas250
FOCUSNEXTITEM method

of WindowsObject clas®£50
FOCUSPREVIOUSITEM method

of WindowsObject clas250
FOREGROUNDWINDOW method

of WindowsManager clasg45
FORMAT method

of String class219
GETBUFERSIZE method

of MutableBuffer class]170
GETCONSTANT

of OLEODbject class278
GETKNOWNEVENTS method

of OLEODbject class278
GETKNOWNMETHODS method

of OLEODbject class279
GETNUMBER method

of WindowsEventLog clas243

of WindowsManager clasg45
GETOBJECT method

of OLEODbject class281
GETOUTPARAMETERS method

of OLEODbject class281
GETVALUE method

of WindowsRegistry clas271
HANDLE method

of WindowsObject clas48
HASENTRY method

of Directory class120
HASINDEX method

of Array class, 108

of Bag class113

of Directory class120

of List class,126

of Queue classl30

of Relation class]33

of Set class]138

of Table class141
HASITEM method

of Relation class] 34
HASMETHOD method

of Object class173
HIDE method

of WindowsObject clas249
ID method

of Class classl54

of WindowsObject clas®48
IDOF method

of MenuObiject classl60
INDEX method

of Relation class]34

601

of Supplier class234
INHERIT method
of Class classl54
INIT method
of Alarm class,150
of CircularQueue clas4,15
of Class class] 55
of Message clas4,62
of Monitor class; 168
of MutableBuffer class]170
of Object class174
of OLEODbject class277
of RegularExpression clask30
of Stream classl 95
of WindowsEventLog clas237

of WindowsProgramManager clagf4

of WindowsRegistry clas®72
INSERT method

of List class,126

of MutableBuffer class]170

of String class221
INTERSECTION method

of Directory class123

of Relation class]35

of Table class142
ISDATAAVAILABLE method

of WindowsClipboard clas236
ISMENU method

of MenuObject classl59

of WindowsObject clas®£58
ITEM method

of Supplier class234
ITEMS method

of Array class,109

of Directory class121

of List class, 127

of MenuObject class]59

of Queue class]30

of Relation class]34

of Set class138

of Table class141
LAST method

of Array class,109

of List class,127

of WindowsObject clas®52
LASTITEM method

of List class, 127
LASTPOS method

of String class221
LEFT method

of String class221
LENGTH method

of MutableBuffer class]171

of String class222
LINEIN method

of Stream classl 95
LINEOUT method

of Stream classl 95
LINES method

of Stream classl 96
LIST method

of WindowsRegistry clas®72
LISTVALUES method

of WindowsRegistry clas£72
LOAD method

of WindowsRegistry clas®72
LOCAL_MACHINE method

of WindowsRegistry clas73
LOCAL_MACHINE= method

of WindowsRegistry clas®73
logical methods

of String class208
MAKEARRAY method

of Array class109

of Bag class113

of CircularQueue clas4,15

of Directory class]121

of List class, 128

of Queue classl 30

of Relation class]34

of Set class138

of Stem class]85

of Stream classl 96

of String class222

of Table class141

of WindowsClipboard clas£35
MAKESTRING method

of Array class,109

of String class223
MATCH method

of RegularExpression clask30
MAX method

of String class223
MAXIMIZE method

of WindowsObject clas®49
MENU method

of WindowsObject clas®57
METACLASS method

of Class classl55
METHOD method

of Class classl55
METHODS method

of Class class] 55
MIN method

of String class223
MINIMIZE method

of WindowsObject clas49
MIXINCLASS method

of Class classl56
MOVETO method

of WindowsObject clas50
NEW method

of Array class107

of Class classl57

of Method class166

of Object class172

of Stem class]84

of String class205

of Supplier class234
NEWFILE method

of Method class]166
NEXT method

of Array class, 109

of List class,128

of Supplier class234

of WindowsObject clas®51
NOTIFY method

of Message clas4,63
OBJECTNAME method

of Object class174
OBJECTNAME= method

of Object class174
OF method

of Array class 107

of Bag class112

of CircularQueue clas4,15

of List class,125

of Set class138
OPEN method

of Stream classl96

of WindowsEventLog clas237

of WindowsRegistry clas®73
OVERLAY method

of MutableBuffer class]171

of String class224
OWNER method
of WindowsObject clas52
PARSE method
of RegularExpression clask30
PASTE method
of WindowsClipboard clas236
PEEK method
of Queue classl 31
POS method
of RegularExpression clask32
of String class224
POSITION method
of RegularExpression clask33
of Stream class] 98
prefix +,206
prefix -, ??
PREVIOUS method
of Array class, 109
of List class,128
of WindowsObject clas®51
private,91
PROCESSITEM method
of MenuObject classl61

PROCESSMENUCOMMAND method

of WindowsManager clas246

of WindowsObject clas58
public,91
PULL method

of Queue classl 31
PUSH method

of CircularQueue clas4,16

of Queue class]31
PUSHBUTTON method

of WindowsObject clas®£56
PUSHBUTTONINWINDOW method

of WindowsManager clas246
PUT method

of Array class 110

of Bag class113

of Directory class121

of List class,128

of Queue classl 31

of Relation class]34

of Set class139

of Table class141
QUALIFY method

of Stream classl99

603

604

QUERY

of Stream class] 99
QUERY method

of WindowsRegistry clas®74
QUERYMIXINCLASS method

of Class class] 57
QUEUE method

of CircularQueue clas4,16

of Queue classl 31
READ method

of WindowsEventLog clas238
REMOVE method

of Array class110

of Directory class121

of List class,128

of Queue classl 31

of Relation class] 34

of Set class139

of Table class141
REMOVEITEM method

of Relation class]35
REPLACE method

of WindowsRegistry clas®74
REQUEST method

of Object class174

of Stem class]85
RESIZE method

of CircularQueue clas4,16

of WindowsObject clas249
RESTORE method

of WindowsObject clas249

of WindowsRegistry clas75
RESULT method

of Message clas4,63
REVERSE method

of String class224
RIGHT method

of String class225
RUN method

of Object class175
SAVE method

of WindowsRegistry clas£75
SAY method

of Stream clas01
scope 38
search order

changing 89
SECTION method

of Array class110

of List class,128
SEEK method

of Stream clas201
selection

search ordei89
SEND method

of Message clas4,64
SENDCHAR method

of WindowsObject clas257
SENDCOMMAND method

of WindowsObject clas®53
SENDKEY method

of WindowsObject clas256
SENDKEYDOWN method

of WindowsObject clas57
SENDKEYUP method

of WindowsObject clas®57
SENDMENUCOMMAND method

of WindowsObject clas53
SENDMESSAGE method

of WindowsObject clas®£53
SENDMOUSECLICK method

of WindowsObject clas53
SENDSYSCOMMAND method

of WindowsObject clas®55
SENDTEXT method

of WindowsObject clas257
SENDTEXTTOWINDOW method

of WindowsManager clas245
SETBUFERSIZE method

of MutableBuffer class]171
SETENTRY method

of Directory class121
SETGUARDED method

of Method class166
SETMETHOD method

of Directory class121

of Object class176
SETPRIVATE method

of Method class166
SETPROTECTED method

of Method class]167
SETSECURITYMANAGER method

of Method class167
SETUNGUARDED method

of Method class]167
SETVALUE method

of WindowsRegistry clas75
SHOWGROUP method

of WindowsProgramManager clagf5
SIGN method

of String class225
SIZE method

of Array class,110

of CircularQueue clas4,16
SOURCE method

of Method class167
SPACE method

of String class225
START method

of Message clas4,64

of Object class176
STATE method

of Stream clas203

of WindowsObject clas249
STRING method

of CircularQueue clas4,17

of MutableBuffer class]171

of Object class177

of String class226
STRIP method

of String class226
SUBCLASS method

of Class classl57
SUBCLASSES method

of Class class158
SUBMENU method

of MenuObject classl60
SUBSET method

of Directory class123

of Relation class]35

of Table class142
SUBSTR method

of MutableBuffer class]171

of String class227
SUBWORD method

of String class227
SUPERCLASSES method

of Class class]58
SUPPLIER method

of Array class110

of Bag class113

of CircularQueue clas4,17

of Directory class122

of List class, 129

of Queue classl 32

of Relation class]35

of Set class139

of Stream clas203

of Table class141
SYSTEMMENU method

of WindowsObject clas257
TEXTOF(id) method

of MenuObject classl60
TEXTOF(position) method

of MenuObiject classl60
TITLE method

of WindowsObject clas®48
TITLE= method

of WindowsObject clas248
TOFOREGROUND method

of WindowsObject clas50
TRANSLATE method

of String class227
TRUNC method

of String class228
UNINHERIT method

of Class class] 58
UNION method

of Directory class123

of Relation class]136

of Table class142
UNKNOWN method

of Directory class]122

of Monitor class; 169

of OLEODbject class282

of Stem class]86
UNLOAD method

of WindowsRegistry clas®75
UNSETMRTHOD method

of Object class177
USERS method

of WindowsRegistry clas®76
USERS= method

of WindowsRegistry clas®76
VERIFY method

of String class229
WCLASS method

of WindowsObject clas248
WINDOWATPOSITION method

of WindowsManager clas245
WORD method

of String class229

605

606

WORDINDEX method
of String class230
WORDLENGTH method
of String class230
WORDPOS method
of String class230
WORDS method
of String class231
WRITE method
of WindowsEventLog clas240
X2B method
of String class231
X2C method
of String class232
X2D method
of String class232
XOR method
of Directory class123
of Relation class] 36
of Table class142
[] method
of Array class107
of Bag class113
of Directory class120
of List class, 125
of Queue classl30
of Relation class]33
of Set class138
of Stem class]85
of Table class140
[I= method
of Array class, 108
of Bag class]113
of Directory class120
of List class,126
of Queue classl30
of Relation class]33
of Set class]138
of Stem class]85
of Table class140
\, 209
\>, 207
\>>, 208
\<, 207
\<<, 208
\=
of Object class173
of String class206

of Object class173
of String class207
[,209
[l,209
Method class165
METHOD method
of Class classl55
METHODS method
of Class classl55

Microdoft Internet Explorer events (WSH

engine),511
Microsoft Internet Explorer500, 512
MIN function

description 324

example 324
MIN method

of String class223
MINIMIZE method

of WindowsObiject clas49
minutes calculated from midnigH240
mixin classes83
MIXINCLASS method

of Class class156
MIXINCLASS subkeyword

in a CLASS directivey7
model of input and outpu#73
modularizing data2
monitor,463
Monitor class 167
Month option of DATE function312
MOVETO method

of WindowsObiject clas250
multiple inheritance8
multiplication operator19

MutableBuffer class]169

NAME subkeyword

in a CALL instruction,42

in a SIGNAL instruction69
name, definition39
names

of functions,291

of programsh9

of subroutines4?2

of variables,13
negation

of logical values19, 22
NEW method

of Array class,107

of Class class]57

of Method class]166

of Object class172

of Stem class]184

of String class205

of Supplier class234
NEWFILE method

of Method class166
NEXT method

of Array class,109

of List class,128

of Supplier class234

of WindowsObiject clas51
nibbles,12
NOMETHOD subkeyword

in a SIGNAL instruction69, 442 446
NOP instruction

description56

example 56
Normal option of DATE function312
NOSTRING subkeyword

in a SIGNAL instruction69, 442, 446
not equal operatog0
not greater than operatd@l
not less than operatdp
NOT operator]14, 22
notation

engineering436

exponential, exampleé36

scientific,436
Notices,573
NOTIFY method

of Message clas4,63

NOTREADY condition
condition trapping481
reaised by stream erros31
NOTREADY subkeyword
in a CALL instruction,42, 447
in a SIGNAL instruction 69, 442, 447
NOVALUE condition
not raised by VALUE function346
use of,487
NOVALUE subkeyword
in a SIGNAL instruction69, 442 447
null
clauses27
strings,11
numbers
arithmetic on19, 433 434
checking with DATATYPE 217, 309
comparison of19, 437
description,14, 433
formatting for display219, 317
implementation maximuni,4
in DO instruction 46
truncating,228 343
use in the languagé38
numbers for display219, 317
numeric
comparisons, examplé38
options in TRACE 73
NUMERIC instruction
description56, 56
DIGITS option,57
FORM option,57, 436
FUZZ option,57
settings saved during subroutine cadld,

object,16
as data valuel 7
definition, 3
kinds of,3
Object class172
object classeg/, 83
object method83
Object Rexx Sandbo%16
object variable pooM8, 454
object-based concurreneis1

607

608

object-oriented programming,
OBJECTNAME method

of Object class174
OBJECTNAME= method

of Object class174
objects, declaring (WSH engin&17
OF method

of Array class,107

of Bag class112

of CircularQueue clas4,15

of LIST class,125

of Set class138
OFF subkeyword

in a CALL instruction,42

in a SIGNAL instruction69

in an GUARD instruction51
OLEObject class276
ON subkeyword

in a CALL instruction,42

in a SIGNAL instruction69

in an GUARD instruction51
ooRexx License575
OPEN method

of Stream classl 96

of WindowsEventLog clas237

of WindowsRegistry clas273
Open Object Rexx Licens&75
operations

tracing results71
operator

arithmetic

description,17, 433 434
list, 19

as messagd,’7

as special characters4

characters]4

comparisonl9, 437

concatenationl8

examples436

logical, 21

precedence (priorities) 022
options

alphabetical character word optio72,

numeric in TRACE,73
OR, logical,21
Ordered option of DATE functior§12
ORing character togetheé212, 301
OTHERWISE

as free standing clausg9
OTHERWISE subkeyword

in a SELECT instructiont8
output

errors during481

object,289

to the user473
OVER subkeyword

in a DO instruction45, 521
overflow, arithmetic438
OVERLAY function

description 324

example 324
OVERLAY method

of MutableBuffer class]171

of String class224
overlaying a string onto anothét24, 324
overview of parsing430
OWNER method

of WindowsObiject clas252

packing a string with X2C232, 349
pad character, definitiol296
page, coded
parentheses

adjacent to blanks,5

in expressions22

in function calls,291

in parsing templategi24
PARSE instruction

description58

example 60
PARSE LINEIN method

role in input and outpu74
PARSE method

of RegularExpression class30
PARSE PULL method

role in input and outpu$74
parsing421

advanced topicgi27

combining patterns and parsing into words

string,423

combining string and positional patterns,

428

conceptual overview}29

description417, 430
equal sign421
examples
combining positional patterns with
parsing into words424
combining string and positional patterns,
428
combining string pattern and parsing
into words,423
parsing instruction}26
parsing multiple strings in a subroutine,
427
period as a placeholdet19
simple template417
templates containing positional patterns,
421
templates containing string patterd0
using a variable as a positional pattern,
425
using a variable as a string pattef24
into words, 417
patterns
positional, 417, 420
string,417, 419
word parsing, conceptual overvied32
period as placeholdef,19
positional patterns}17
absolute420
variable, 425
selecting words417
several assignment$24
several strings427
source string417
special case}28
steps430
string patterns417
literal string patterns419
variable string patterng24
summary of instructiong}25
templates
in ARG instruction41
in PARSE instruction58
in PULL instruction,63
treatment of blanks}18
UPPER, use of425
variable patterns
string,424
word parsing

conceptual overview}32
description and example$17
PASTE method
of WindowsClipboard clas£36
patterns in parsing
combined with parsing into word423
conceptual overview}30, 431, 432
positional,417, 420
string,417, 419
PEEK method
of Queue classl31
period
as placeholder in parsing19
causing substitution in variable nama&g,
in numbers433
permanent command destination chargfe,
persistent input and outputy3
polymorphism5
POS function
description 324
example 325
POS method
of RegularExpression clask32
of String class224
position
last occurrence of a string21, 319
POSITION method
of RegularExpression clask33
of Stream class] 98
positional patterns
absolute419
description417
relative,421
variable,425
power operator]9
powers of ten in numberg4
precedence of operato?
prefix + method209
prefix + operatorl9
prefix - method209
prefix - operatorl9
prefix \ operator20, 21
presumed command destinatioBs,
PREVIOUS method
of Array class109
of List class,128
of WindowsObiject clas®51
private method91

609

610

PRIVATE subkeyword

in a METHOD directive,78
PROCEDURE instruction

description60

example61
PROCESSITEM method

of MenuObject classl 61
PROCESSMENUCOMMAND method

of WindowsManager clas246

of WindowsObiject clas258
programming restrictions,
programs

arguments to41

examples480

retrieving lines with SOURCELINE330

retrieving name of59
programs without sourcd97
PROPAGATE subkeyword

in a RAISE instructionp4
properties (WSH engine}15
PROTECTED subkeyword

in a METHOD directive,78
protecting variables0

pseudo random number RANDOM function,

325

public class
.METHOD class286

public method91

public object,285
.ALARM object, 285
.ARRAY object,285
.BAG object,285
.CLASS object285
.DIRECTORY object285
.ENVIRONMENT object,286
.ERROR object??, 288
.FALSE object286
.INPUT object,286, 289
.LIST object,286
.LOCAL object,286, 287
.MESSAGE object286
.METHOD object,289
.METHODS object286
.MONITOR object,286
.NIL object, 286, 289
.OBJECT object286
.OLEBJECT object?286
.OUTPUT object286, 289

.QUEUE object286

.RELATION object,287

.RS object??, 290

.SET object287

.STEM object287

.STREAM object 287

.STRING object287

.SUPPLIER object287

.TABLE object,287

.TRUE object287
PUBLIC subkeyword

in a CLASS directivey/7

in a ROUTINE directive81
PULL instruction

description63

example63
PULL method

of Queue classl31

role in input and outpu 74
PULL option of PARSE instructiorg9
PULL subkeyword

in a PARSE instructior8, 425

in an PARSE instructiorg3
PUSH instruction

description63

example 64
PUSH method

of CircularQueue clas4,16

of Queue class] 31
PUSHBUTTON method

of WindowsObiject clas256
PUSHBUTTONINWINDOW method

of WindowsManager clas246
PUT method

of Array class,110

of Bag class113

of Directory class121

of List class,128

of Queue classl31

of Relation class134

of Set class139

of Table class141

QUALIFY method
of Stream classl 99
query external functior327
QUERY keyword
in a RXSUBCOM command}94
QUERY method
of Stream classl 99
of WindowsRegistry clas®74
QUERYMIXINCLASS method
of Class class]57
queue
creating and deleting queué&®7
named475
naming and querin327
RXQUEUE function 327
session475
unnamed475
Queue classl29
QUEUE instruction
description64
example 64
role in input and outpu75
Queue interface from Rexx progrand27
QUEUE method
of CircularQueue clas4,16
of Queue classl31
QUEUED function
description 325
example 325
role in input and outpu76

RAISE instruction
description64
example 66
RANDOM function
description 325
example 325
random number RANDOM functior825
RC (return code)
not set during interactive debug83
set by commands$6
special variable449, 489
RC special variable

description 489
READ method

of WindowsEventLog clas£38
read position in a stream;/4
recursive call44, 292
register external function826
REGISTER keyword

in a RXSUBCOM command}92
RegularExpression clask?7
Relation class]132
relative positional pattern

positional patterns

relative,421

remainder

description>, 435
remainder operatof,9
REMOVE method

of Array class110

of Directory class121

of List class,128

of Queue classl31

of Relation class]34

of Set class139

of Table class141
REMOVEITEM method

of Relation class]135
reordering data227, 342
repeating s string with COPIES15 308
repetitive loops

altering flow,55

controlled repetitive loopH20

exiting, 55

simple DO group519
REPLACE method

of WindowsRegistry clas274
REPLY instruction

description66

example67
REQUEST method

of Object class174

of Stem class185
reservation of keywordi87
RESIZE method

of CircularQueue clas4,16

of WindowsObiject clas49
RESTORE method

of WindowsObiject clas49

of WindowsRegistry clas275

611

612

restrictions
embedded in number4
first character of variable nam29
in programming.l
RESULT method
of Message clas4,63
RESULT special variable
description 489
return value from a routin®95
set by RETURN instructior44, 67
retrieving
argument strings with ARG11
arguments with ARG functiorg98
lines with SOURCELINE330
return
code
as set by command36
setting on exit47
string
setting on exit47
RETURN instruction
description67
RETURN subkeyword
in a RAISE instructionp4
returning control from Rexx prograrg/
REVERSE function
description 326
example 326
REVERSE method
of String class224
rexxutil functions,353
RxMessageB0xX356
example 358
RxWinExec,358
SysAddFileHandle360
SysAddRexxMacro360
SysBootDrive 360
SysClearRexxMacroSpacg60
SysCloseEventSe361
SysCloseMutexSen361
SysCls,362
SysCreateEventSer862
SysCreateMutexSer362
SysCreatePip&63
SysCurPos363
example363
SysCurState364
SysDrivelnfo,364

example364
SysDriveMap 365
example365
SysDropFuncs366
SysDropLibrary366
SysDropRexxMacra366
SysDumpVariables367
example 367
SysFileCopy367
example368
SysFileDelete368
example 369
SysFileMove 369
example 369
SysFileSearch369
example 370
SysFileSystemTyp&71
example371
SysFileTree372
example374
SysFork,375
SysFromUnicode375
SysGetCollate377
SysGetErrortext378
example378
SysGetFileDateTime378
example378
SysGetKey379
SysGetMessag8&,79
example380
SysGetMessage)380
example 381
SyslIni,381
example 382
SyslsFile 383
SyslsFileCompressed83
SyslsFileDirectory384
SyslsFileEncrypted384
SyslsFileLink,385
SyslsFileNotContentindexed86
SyslsFileOffline 386
SyslsFileSpars&87
SyslsFileTemporang87
SysLoadFuncs388
SysLoadRexxMacroSpacgg8
SysMapCase388
SysMkDir, 388
example 389

SysNationalLanguageCompaB89
SysOpenEventSer890
SysOpenMutexSen390
SysPostEventSerB91l
SysProcessTyp&891
SysPulseEventSer92
SysQueryProces892
SysQueryProcessCodePag@4
SysQueryRexxMacr@94
SysReleaseMutexSers94
SysReorderRexxMacr895
SysRequestMutexSerg95
SysResetEventSer&96
SysRmDir,396
example 397
SysSaveRexxMacroSpa@97
SysSearchPati398
example 398
SysSetFileDateTime&98
example 399
SysSetPriority399
SysSetProcessCodePage)
SysShutdownSystem1
SysSleep401
example402
SysStemCopy02
example403
SysStemDelete}03
example404
SysSteminserg04
SysStemSorg05
example 406
SysSwitchSessiod,06
SysSystemDirectoryi06
SysTempFileName}06
example407
SysTextScreenRead)7
example408
SysTextScreenSizdP8
example408
SysToUnicode408
SysUtilVersion 410
SysVersion411
SysVolumeLabel411
SysWait,411
SysWaitEventSeni12
SysWaitNamedPipel12
SysWinDecryptFile412

SysWinEncryptFile413
SysWinGetDefaultPrinted 14
example415
SysWinGetPrinters}14
example415
SysWinSetDefaultPrinted 14
example415
SysWinVer,415
RIGHT function
description 326
example 326
RIGHT method
of String class225
rounding
using a character string as a numket,
RUN method
of Object class175
running off the end of a prograrby
RXFUNCADD function
description 326
example 326
RXFUNCDROP function
description 327
example 327
RXFUNCQUERY function
description 327
example 327
RXFUNCQUEUE function
example 328
RxMessageBox356
example 358
RXQUEUE filter,495
RXQUEUE function
description327
RXSUBCOM command492
RXTRACE envirinment variable485
RxWinExec,358

613

614

samples (WSH enginél1
Sandbox, Object Rex516
SAVE method

of WindowsRegistry clas®75
SAY instruction

description68

displaying data68

example 68

role in output474
SAY method

of Stream clas201
scientific notation436
SCIENTIFIC subkeyword

in a NUMERIC instruction56
scope

alternating exclusive acce<th8

description88
search order

external functions292

for functions,292

for methods

changing90
default,89

for subroutines43
seconds calculated from midnigi3g1
SECTION method

of Array class110

of List class,128
Security Manage#67

calls to,467
SEEK method

of Stream clas201
SELECT instruction

description68

example 69
selecting a default with ABBREV function,
296
selecting a default with ABBREV method,
210
SELF special variable

description489
semaphore459
semicolons

implied, 15

omission of 39

within a clause9

SEND method

of Message clas4,64
SENDCHAR method

of WindowsObiject clas®57
SENDCOMMAND method

of WindowsObiject clas53
SENDKEY method

of WindowsObiject clas256
SENDKEYDOWN method

of WindowsObiject clas257
SENDKEYUP method

of WindowsObiject clas®57
SENDMENUCOMMAND method

of WindowsObiject clas253
SENDMESSAGE method

of WindowsObject clas®53
SENDMOUSECLICK method

of WindowsObiject clas253
SENDSYSCOMMAND method

of WindowsObiject clas55
SENDTEXT method

of WindowsObiject clas257
SENDTEXTTOWINDOW method

of WindowsManager clas245
sequence, collating using XRANGE50
serial input and outpu73
Set class137
set-operator method$43
SETBUFFERSIZE method

of MutableBuffer class]171
SETENTRY method

of Directory class121
SETGUARDED method

of Method class]166
SETLOCAL function

description 329

example 329
SETMETHOD method

of Directory class121

of Object class176
SETPRIVATE method

of Method class166
SETPROTECTED method

of Method class167
SETSECURITYMANAGER method

of Method class167
SETUNGUARDED method457

of Method class167

SETVALUE method

of WindowsRegistry clas75
shared library (RexxUtil)353
SHOWGROUP method

of WindowsProgramManager clag§5
SIGL

in CALL instruction,44

in condition trapping448

in SIGNAL instruction,71
SIGL special variable

description489
SIGN function

description 329

example 329
SIGN method

of String class225
SIGNAL instruction

description 69

example,70

execution of in subroutineg5
significant digits in arithmetic}34
simple

repetitive loopsp19

symbols,30
SIZE method

of Array class,110

of CircularQueue clas4,16
source

of program and retrieval of informatio69

string,417
SOURCE method

of Method class167
SOURCE option of PARSE instructioB9
SOURCE subkeyword

in a PARSE instructior58, 425
sourceless programé97
SOURCELINE function

description 330

example 330
SPACE function

description 330

example 330
SPACE method

of String class225
spacing, formatting, SPACE functioB30
spacing, formatting, SPACE methd5
special

characters and examplEs

parsing case428
variable
RC, 489
RESULT, 44, 67, 295, 489
SELF,489
SIGL, 44, 489
SUPER 489
variables
RC, 36,447,489
RESULT, 67, 295 489
SELF,489
SIGL, 448 489
SUPER 489
specification (WSH engine, 512
standard input and outputy7
Standard option of DATE functiorg12
START method
of Message clas4,64
of Object class176
State method481
of Stream clas203
of WindowsObiject clas49
Stem class]183
stem of a variable
assignment ta30
description 32
used in DROP instructiorl7
used in PROCEDURE instructiofi2
steps in parsing}29
stream473
character positioning}78
function overview479
line positioning,478
Stream classl86
stream errors481
STREAM function
command options331
command strings332
description 330
example 334, 335
options,332
query options335
write options,332
strict comparisonl9, 20
strictly equal operatog0, 21
strictly greater than operat&, 21
strictly greater than or equal operatdt,
strictly less than operata2, 21

615

616

strictly not equal operatoR0, 21
strictly not greater than operat@l
strictly not less than operatdtl
string
as literal constant,1
as name of functiori, 1
as name of subroutind?
binary specification ofl2
centering using CENTER functio@14
centering using CENTER methao803
centering using CENTRE functio@14
centering using CENTRE metho803
comparison of19
concatenation ofl.8
copying using COPIES15, 308
DECODEBASE64 method18
deleting part, DELSTR functior§14
deleting part, DELSTR metho@18
description,11
ENCODEBASE64 method19
extracting using SUBSTR functio838
extracting using SUBSTR metho227
extracting words with SUBWORLC338
from stream303
hexidecimal specification of,2
interpretation of53
null, 11
patterns
description417
literal, 419
variable 424
quotations marks inl 1
reapting using COPIES08
repeating using COPIE&15
verifying contents of229, 347
String class203
STRING method
of CircularQueue clas4,17
of MutableBuffer class]171
of Object class177
of String class226
STRIP function
description 337
example 338
STRIP method
of String class226
structure and synta®,
SUBCLASS method

of Class classl57
SUBCLASS subkeyword

in a CLASS directive/7
subclasses§
SUBCLASSES method

of Class class]58
Subcom vs the host interface (WSH engine),
517
subexpressiori,7
subkeyword28
SUBMENU method

of MenuObject classl 60
subroutines

calling of,42

definition,291

forcing built-in or external referencé2

naming of,42

passing back values fror67

return from,67

use of labels42

variables in60
SUBSET method

of Directory class123

of Relation class]35

of Table class142
subsidary list46, 48, 61
substitution

in variable names32
SUBSTR function

description 338

example 338
SUBSTR method

of MutableBuffer class]171

of String class227
subtraction operatof,9
SUBWORD function

description 338

example 339
SUBWORD method

of String class227
summary

methods by clas§7

parsing instructiong}25
SUPER special variable

description 489
superclasses,
SUPERCLASSES method

of Class class]58

Supplier class233
SUPPLIER method

of Array class,110

of Bag class113

of CircularQueue clas4,17

of Directory class122

of List class,129

of Queue class] 32

of Relation class]135

of Set class139

of Stream clas203

of Table class141
symbol

assigning values t@9

classifying,29

compound32

constant29

description,13

simple,29

uppercase translatioh3

use of,29

valid names13
SYMBOL function

description 339

example 339
symbols

.METHODS, 286

environment34
syntax

error

traceback after75
trapping with SIGNAL instruction441

general9
SYNTAX subkeyword

in a RAISE instructionp4

in a SIGNAL instruction69, 443, 447
SysAddBootDrive 360
SysAddFileHandle360
SysAddRexxMacro360
SysClearRexxMacroSpacg60
SysCloseEventSer8g1
SysCloseMutexSen361
SysCls,362
SysCreateEventSer862
SysCreateMutexSer362
SysCreatePipe&63
SysCurPos363

example 363

SysCurState364
SysDrivelnfo,364
example 364
SysDriveMap 365
example 365
SysDropFuncs366
SysDropLibrary366
SysDropRexxMacra366
SysDumpVariables367
example 367
SysFileCopy367
example 368
SysFileDelete368
example 369
SysFileMove 369
example 369
SysFileSearch369
example370
SysFileSystemTyp&71
example371
SysFileTree372
example 374
SysFork,375
SysFromUnicode375
SysGetCollate377
SysGetErrortext378
example378
SysGetFileDateTime378
example 378
SysGetKey379
SysGetMessag&,79
example 380
SysGetMessage)380
example 381
Syslini, 381
example 382
SyslsFile, 383
SyslsFileCompressed@83
SyslisFileDirectory384
SyslsFileEncrypted384
SyslsFileLink,385
SyslsFileNotContentindexed86
SyslIsFileOffline 386
SyslsFileSpars&87
SyslsFileTemporang87
SysLoadFuncs388
SysLoadRexxMacroSpacg38
SysMapCase388

617

618

SysMkDir, 388
example 389

SysNationalLanguageCompaB89

SysOpenEventSer890
SysOpenMutexSen390
SysPostEventSer891
SysProcessTyp891
SysPulseEventSeri92
SysQueryProces892
SysQueryProcessCodePage4
SysQueryRexxMacr@94
SysReleaseMutexSed94
SysReorderRexxmacrd95
SysRequestMutexSerg95
SysResetEventSerd96
SysRmDir,396
example 397
SysSaveRexxMacroSpa&97
SysSearchPati398
example 398
SysSetFileDateTime&98
example 399
SysSetPriority399
SysSetProcessCodePage)
SysShutdownSystem01
SysSleep401
example402
SysStemCopy02
example403
SysStemDeletel03
example404
SysSteminserg04
SysStemSor405
example406
SysSwitchSessiod06
SysSystemDirectoryl06
SYSTEMMENU method
of WindowsObiject clas257
SysTempFileNamel06
example407
SysTextScreenRead)7
example408
SysTextScreenSizd08
example408
SysToUnicode408
SysUtilVersion 410
SysVersion411
SysVolumeLabel411

SysWait,411
SysWaitEventSen12
SysWaitNamedPipel12
SysWinDecryptFile412
SysWinEncryptFile413
SysWinGetDefaultPrinte414
example415
SysWinGetPrinters}14
example415
SysWinSetDefaultPrinte414
example415
SysWinVer,415

Table class139
tail, 32
template
definition, 417
list
ARG instruction41
PARSE instruction58
PULL instruction,63
temporary change 089

temporary command destination change,

ten, powers 0f436
terminal
reading from with PULL63
writing to with SAY, 68
terms and datd.,6
testing,296, 339

abbreviations with ABBREV metho®10

TEXTOF(id) method
of MenuObject classl 60
TEXTOF(position) method
of MenuObject classl 60
THEN
as free standing clausg9
following IF clause52
following WHEN clause£8
THEN subkeyword
in a SELECT instruction68
in an IF instruction52
thread,??, 392 392 409 451
tilde (~),5
TIME function
description 339

example 341, 341

implementation maximung42
tips, tracing,74
TITLE method

of WindowsObiject clas248
TITLE= method

of WindowsObiject clas48
TO phrase of DO instructiorl6
TO subkeyword

in a DO instruction45, 520
TOFOREGROUND method

of WindowsObiject clas250
tokens

binary strings12

description,11

hexadecimal string4,2

literal strings,11

numbers14

operator character$4

special characterds

symbols,13
TRACE function

description 342

example 342
TRACE instruction

alphabetical character word optio72,

description,71

example,74
TRACE setting

altering with TRACE function342

altering with TRACE instruction71

querying,342
traceback, on syntax errats
tracing

action saved during subroutine caHg}

by interactive debug}83

data identifiers74

execution of programg,1

tips, 74
tracing flag

>>>, 74

>.>,74

>C>, 75

>F>, 75

>L>,75

>M>, 75

>0>,75

>P>, 75

>V>, 75
x 74
+++,74
trailing
blank removed using STRIP functio®37
blank removed using STRIP meth@®6
transient input and outpu4,73
TRANSLATE function
description342
example 343
TRANSLATE method
of String class227
translation
with TRANSLATE function,342
with TRANSLATE method227
trap conditions
explanationg41
how to,441
information about trapped conditior)6
using CONDITION function306
trapname443
trincating numbers228
TRUNC function
description343
example 343
TRUNC method
of String class228
truncating numbers343
twiddle (~),5
Type conversion?283
type of data, checking with DATATYPE17,
309
Typelib generation (WSH enginej09
typewiter input and outpu#73

unassing variabled,6
unconditionally leaving your prograry
underflow, arithmetic438
UNGUARDED option of ::METHOD,79, 457
UNGUARDED subkeyword
in a METHOD directive,/8
UNINHERIT method
of Class class] 58
uninitialized variable29
UNION method

619

620

of Directory class123

of Relation class]136

of Table class142
UNKNOWN method

of Directory class122

of Monitor class 169

of OLEODbject class282

of Stem class]186
UNLOAD method

of WindowsRegistry clas£75
unpacking a string

with B2X, 211, 299

with C2X, 213 302
UNSETMETHOD method

of Object class177
UNTIL phrase of DO instructior45
UNTIL subkeyword

in a DO instruction45, 522
unusual change in flow of contrai41
UPPER subkeyword

in a PARSE instructior41, 58, 425

in an PARSE instructior§3
uppercase translation

during ARG instruction41

during PULL instruction63

of symbols,13

with PARSE UPPER58

with TRANSLATE function,342

with TRANSLATE method 227
Usa option of DATE function312
USE instruction

description,75

example,75
user input and outpu#i73 483
USER subkeyword

in a CALL instruction,42, 443 447

in a RAISE instruction64

in a SIGNAL instruction69, 443 447
USERID function

description343
USERS method

of WindowsRegistry clas76
USERS= method

of WindowsRegistry clas76

value,17
VALUE function
description344
example 344, 345
VALUE option of PARSE instruction60
VALUE subkeyword
in a NUMERIC instruction56
in a PARSE instructior8, 425
in a SIGNAL instruction69
in a TRACE instruction71
in an ADDRESS instructior39
VAR function
description 346
example 346
VAR option of PARSE instructior0
VAR subkeyword
in a PARSE instructiorg8, 425
variable
access with VALUE function344
checking name346
compound32
controlling loops520
description29
dropping of,46
exposing to calle60
external collections344
global,344
in internal functionsg0
in subroutines60
names]13
new level of,60
parsing of 60
patterns, parsing with
string,424
patterns, parsing with positiona25
pool interface??
positional patterns}25
reference424
resetting of 46
setting a new value9
SIGL, 448
simple,30
special
RC,36
SIGL, 44, 448
string patterns424

testing for initialization 339

valid names29
variable initialization 339
variables

aquiring,5, 9

in objects 4
VBScript,512
VERIFY function

description347

example 347
VERIFY method

of String class229
verifying contents of a strind,29, 347
VERSION option of PARSE instructior0
VERSION subkeyword

in a PARSE instructior58, 425
virtual keys,265

WCLASS method

of WindowsObiject clas48
Weekday option of DATE functior312
WHEN

as free standing clausg9
WHEN subkeyword

in a SELECT instruction68

in an GUARD instruction51
WHILE phrase of DO instructior45
WHILE subkeyword

in a DO instruction45, 522
whole numbers

checking with DATATYPE 217, 309

description,14
WINDOWATPOSITION method

of WindowsManager clas245
Windows Scripting enginet99
Windows Scripting Host engine

.wsc file type 504

.wsf file type,502

and Microsoft Internet Explore500, 512

boolean value$11

cancelling Internet Explorer events] 1

COM events510

COM object registratior509

CScript,500, 512

dll vs COM,517

Domain Object Model (DOM)513
events510
features duplicated inObject Rexx1.6
file types,502
Internet Explorer event§11
invocation as a COM objecE09
invocation by browse500
invocation from a command promg&Q7
invoking a script509
JScript,513
Object Rexx SandboX16
propertiesb15
samplesb11
specification, interpretation of and
deviation from 512
Subcom vs the host interface] 7
Typelib generation509
VBScript,513
WScript,500, 512
WindowsClipboard clas235
WindowsEventLog clas236
WindowsManager clas@44
WindowsObject clas46
WindowsProgramManager clagf8
WindowsRegistry clas®68
WITH subkeyword
in a PARSE instructior68
word
alphabetical character options in TRACE,
72
counting in a string231, 348
deleting from a string219, 314
extracting from a string?27, 231, 338 348
finding length of 222 320
in parsing417
locating in a string230, 348
parsing
conceptual view432
examples417
WORD function
description347
example 347
WORD method
of String class229
WORDINDEX function
description 347
example 348
WORDINDEX method

621

622

of String class230
WORDLENGTH function

description 348

example 348
WORDLENGTH method

of String class230
WORDPOS function

description 348

example 348
WORDPOS method

of String class230
WORDS function

description 348

example 349
WORDS method

of String class231
writ position in a stream474
WRITE method

of WindowsEventLog clas240
writing to external data queue

with PUSH,63

with QUEUE, 64
WScript,500, 512
WSH engine499

X2B function
description 349
example 349

X2B method
of String class231

X2C function
description 349
example 349

X2C method
of String class232

X2D function
description 350
example 350, 350

X2D method
of String class232

XOR method
of Directory class123
of Relation class]136
of Table class142

XOR, logical,22

XORing character strings togeth&d 2, 301
XRANGE function

description 350

example 350

YO subkeyword
in a FORWARD instruction49

zeros
added on left with RIGHT functior326
added on left with RIGHT metho@25
removal with STRIP function337
removal with STRIP metho®26

	Open Object Rexx
	Table of Contents
	List of Tables
	List of Figures
	About This Book
	1. Related Information
	2. How to Read the Syntax Diagrams
	3. A Note About Program Examples in this Document
	4. Getting Help
	4.1. The Rexx Language Association Mailing List
	4.2. The Open Object Rexx SourceForge Site
	4.3. comp.lang.rexx Newsgroup

	Chapter 1. Rexx General Concepts
	1.1. What Is ObjectOriented Programming?
	1.2. Modularizing Data
	1.3. Modeling Objects
	1.4. How Objects Interact
	1.5. Methods
	1.6. Polymorphism
	1.7. Classes and Instances
	1.8. Data Abstraction
	1.9. Subclasses, Superclasses, and Inheritance
	1.10. Structure and General Syntax
	1.10.1. Characters
	1.10.2. Comments
	1.10.3. Tokens
	1.10.3.1. Literal Strings
	1.10.3.2. Hexadecimal Strings
	1.10.3.3. Binary Strings
	1.10.3.4. Symbols
	1.10.3.5. Numbers
	1.10.3.6. Operator Characters
	1.10.3.7. Special Characters
	1.10.3.8. Example

	1.10.4. Implied Semicolons
	1.10.5. Continuations

	1.11. Terms, Expressions, and Operators
	1.11.1. Terms and Expressions
	1.11.2. Operators
	1.11.2.1. String Concatenation
	1.11.2.2. Arithmetic
	1.11.2.3. Comparison
	1.11.2.4. Logical (Boolean)

	1.11.3. Parentheses and Operator Precedence
	1.11.4. Message Terms
	1.11.5. Message Sequences

	1.12. Clauses and Instructions
	1.12.1. Null Clauses
	1.12.2. Directives
	1.12.3. Labels
	1.12.4. Instructions
	1.12.5. Assignments
	1.12.6. Message Instructions
	1.12.7. Keyword Instructions
	1.12.8. Commands

	1.13. Assignments and Symbols
	1.13.1. Constant Symbols
	1.13.2. Simple Symbols
	1.13.3. Stems
	1.13.4. Compound Symbols
	1.13.4.1. Evaluated Compound Variables

	1.13.5. Environment Symbols

	1.14. Message Instructions
	1.15. Commands to External Environments
	1.15.1. Environment
	1.15.2. Commands

	1.16. Using Rexx on Windows and Unix

	Chapter 2. Keyword Instructions
	2.1. ADDRESS
	2.2. ARG
	2.3. CALL
	2.4. DO
	2.5. DROP
	2.6. EXIT
	2.7. EXPOSE
	2.8. FORWARD
	2.9. GUARD
	2.10. IF
	2.11. INTERPRET
	2.12. ITERATE
	2.13. LEAVE
	2.14. NOP
	2.15. NUMERIC
	2.16. PARSE
	2.17. PROCEDURE
	2.18. PULL
	2.19. PUSH
	2.20. QUEUE
	2.21. RAISE
	2.22. REPLY
	2.23. RETURN
	2.24. SAY
	2.25. SELECT
	2.26. SIGNAL
	2.27. TRACE
	2.27.1. Alphabetic Character (Word) Options
	2.27.2. Prefix Option
	2.27.3. Numeric Options
	2.27.3.1. Tracing Tips
	2.27.3.2. Example
	2.27.3.3. The Format of Trace Output

	2.28. USE

	Chapter 3. Directives
	3.1. ::CLASS
	3.2. ::METHOD
	3.3. ::REQUIRES
	3.4. ::ROUTINE

	Chapter 4. Objects and Classes
	4.1. Types of Classes
	4.1.1. Object Classes
	4.1.2. Mixin Classes
	4.1.3. Abstract Classes
	4.1.3.1. Metaclasses
	4.1.3.2. Creating Classes and Methods
	4.1.3.3. Using Classes
	4.1.3.4. Scope
	4.1.3.5. Defining Instance Methods with SETMETHOD or ENHANCED
	4.1.3.6. Method Names
	4.1.3.7. Default Search Order for Method Selection
	4.1.3.8. Defining an UNKNOWN Method
	4.1.3.9. Changing the Search Order for Methods
	4.1.3.10. Public and Private Methods
	4.1.3.11. The Class Hierarchy
	4.1.3.12. Initialization
	4.1.3.13. Object Destruction and Uninitialization
	4.1.3.14. Required String Values
	4.1.3.15. Concurrency
	4.1.3.16. Classes and Methods Provided by Rexx
	4.1.3.17. Summary of Methods by Class

	Chapter 5. The Collection Classes
	5.1. The Array Class
	5.1.1. NEW (Class Method)
	5.1.2. OF (Class Method)
	5.1.3. []
	5.1.4. []=
	5.1.5. AT
	5.1.6. DIMENSION
	5.1.7. FIRST
	5.1.8. HASINDEX
	5.1.9. ITEMS
	5.1.10. LAST
	5.1.11. MAKEARRAY
	5.1.12. MAKESTRING
	5.1.13. NEXT
	5.1.14. PREVIOUS
	5.1.15. PUT
	5.1.16. REMOVE
	5.1.17. SECTION
	5.1.18. SIZE
	5.1.19. SUPPLIER
	5.1.20. Examples

	5.2. The Bag Class
	5.2.1. OF (Class Method)
	5.2.2. []
	5.2.3. []=
	5.2.4. HASINDEX
	5.2.5. MAKEARRAY
	5.2.6. PUT
	5.2.7. SUPPLIER
	5.2.8. Examples

	5.3. The CircularQueue Class
	5.3.1. OF (Class Method)
	5.3.2. INIT
	5.3.3. MAKEARRAY
	5.3.4. PUSH
	5.3.5. QUEUE
	5.3.6. RESIZE
	5.3.7. SIZE
	5.3.8. STRING
	5.3.9. SUPPLIER
	5.3.10. Example

	5.4. The Directory Class
	5.4.1. []
	5.4.2. []=
	5.4.3. AT
	5.4.4. ENTRY
	5.4.5. HASENTRY
	5.4.6. HASINDEX
	5.4.7. ITEMS
	5.4.8. MAKEARRAY
	5.4.9. PUT
	5.4.10. REMOVE
	5.4.11. SETENTRY
	5.4.12. SETMETHOD
	5.4.13. SUPPLIER
	5.4.14. UNKNOWN
	5.4.15. DIFFERENCE
	5.4.16. INTERSECTION
	5.4.17. SUBSET
	5.4.18. UNION
	5.4.19. XOR
	5.4.20. Examples

	5.5. The List Class
	5.5.1. OF (Class Method)
	5.5.2. []
	5.5.3. []=
	5.5.4. AT
	5.5.5. FIRST
	5.5.6. FIRSTITEM
	5.5.7. HASINDEX
	5.5.8. INSERT
	5.5.9. ITEMS
	5.5.10. LAST
	5.5.11. LASTITEM
	5.5.12. MAKEARRAY
	5.5.13. NEXT
	5.5.14. PREVIOUS
	5.5.15. PUT
	5.5.16. REMOVE
	5.5.17. SECTION
	5.5.18. SUPPLIER

	5.6. The Queue Class
	5.6.1. []
	5.6.2. []=
	5.6.3. AT
	5.6.4. HASINDEX
	5.6.5. ITEMS
	5.6.6. MAKEARRAY
	5.6.7. PEEK
	5.6.8. PULL
	5.6.9. PUSH
	5.6.10. PUT
	5.6.11. QUEUE
	5.6.12. REMOVE
	5.6.13. SUPPLIER

	5.7. The Relation Class
	5.7.1. []
	5.7.2. []=
	5.7.3. ALLAT
	5.7.4. ALLINDEX
	5.7.5. AT
	5.7.6. HASINDEX
	5.7.7. HASITEM
	5.7.8. INDEX
	5.7.9. ITEMS
	5.7.10. MAKEARRAY
	5.7.11. PUT
	5.7.12. REMOVE
	5.7.13. REMOVEITEM
	5.7.14. SUPPLIER
	5.7.15. DIFFERENCE
	5.7.16. INTERSECTION
	5.7.17. SUBSET
	5.7.18. UNION
	5.7.19. XOR
	5.7.20. Examples

	5.8. The Set Class
	5.8.1. OF (Class Method)
	5.8.2. []
	5.8.3. []=
	5.8.4. AT
	5.8.5. HASINDEX
	5.8.6. ITEMS
	5.8.7. MAKEARRAY
	5.8.8. PUT
	5.8.9. REMOVE
	5.8.10. SUPPLIER

	5.9. The Table Class
	5.9.1. []
	5.9.2. []=
	5.9.3. AT
	5.9.4. HASINDEX
	5.9.5. ITEMS
	5.9.6. MAKEARRAY
	5.9.7. PUT
	5.9.8. REMOVE
	5.9.9. SUPPLIER
	5.9.10. DIFFERENCE
	5.9.11. INTERSECTION
	5.9.12. SUBSET
	5.9.13. UNION
	5.9.14. XOR

	5.10. The Concept of Set Operations
	5.10.1. The Principles of Operation
	5.10.1.1. Set Operations on Collections without Duplicates
	5.10.1.2. SetLike Operations on Collections with Duplicates

	5.10.2. Determining the Identity of an Item
	5.10.3. The Argument Collection Classes
	5.10.4. The Receiver Collection Classes
	5.10.5. Classifying Collections

	Chapter 6. Other Classes
	6.1. The Alarm Class
	6.1.1. CANCEL
	6.1.2. INIT
	6.1.3. Examples

	6.2. The Class Class
	6.2.1. BASECLASS
	6.2.2. DEFAULTNAME
	6.2.3. DEFINE
	6.2.4. DELETE
	6.2.5. ENHANCED
	6.2.6. ID
	6.2.7. INHERIT
	6.2.8. INIT
	6.2.9. METACLASS
	6.2.10. METHOD
	6.2.11. METHODS
	6.2.12. MIXINCLASS
	6.2.13. NEW
	6.2.14. QUERYMIXINCLASS
	6.2.15. SUBCLASS
	6.2.16. SUBCLASSES
	6.2.17. SUPERCLASSES
	6.2.18. UNINHERIT

	6.3. The WindowsMenuObject Class
	6.3.1. ISMENU
	6.3.2. ITEMS
	6.3.3. IDOF
	6.3.4. TEXTOF(position)
	6.3.5. TEXTOF(id)
	6.3.6. SUBMENU
	6.3.7. FINDSUBMENU
	6.3.8. FINDITEM
	6.3.9. PROCESSITEM

	6.4. The Message Class
	6.4.1. COMPLETED
	6.4.2. INIT
	6.4.3. NOTIFY
	6.4.4. RESULT
	6.4.5. SEND
	6.4.6. START
	6.4.7. Example

	6.5. The Method Class
	6.5.1. NEW (Class Method)
	6.5.2. NEWFILE (Class Method)
	6.5.3. SETGUARDED
	6.5.4. SETPRIVATE
	6.5.5. SETPROTECTED
	6.5.6. SETSECURITYMANAGER
	6.5.7. SETUNGUARDED
	6.5.8. SOURCE

	6.6. The Monitor Class
	6.6.1. CURRENT
	6.6.2. DESTINATION
	6.6.3. INIT
	6.6.4. UNKNOWN
	6.6.5. Examples

	6.7. The MutableBuffer Class
	6.7.1. INIT
	6.7.2. APPEND
	6.7.3. DELETE
	6.7.4. GETBUFFERSIZE
	6.7.5. INSERT
	6.7.6. LENGTH
	6.7.7. OVERLAY
	6.7.8. SETBUFFERSIZE
	6.7.9. STRING
	6.7.10. SUBSTR

	6.8. The Object Class
	6.8.1. NEW (Class Method)
	6.8.2. Operator Methods
	6.8.3. CLASS
	6.8.4. COPY
	6.8.5. DEFAULTNAME
	6.8.6. HASMETHOD
	6.8.7. INIT
	6.8.8. OBJECTNAME
	6.8.9. OBJECTNAME=
	6.8.10. REQUEST
	6.8.11. RUN
	6.8.12. SETMETHOD
	6.8.13. START
	6.8.14. STRING
	6.8.15. UNSETMETHOD

	6.9. The RegularExpression Class
	6.9.1. INIT
	6.9.2. MATCH
	6.9.3. PARSE
	6.9.4. POS
	6.9.5. POSITION

	6.10. The Stem Class
	6.10.1. NEW (Class Method)
	6.10.2. []
	6.10.3. []=
	6.10.4. MAKEARRAY
	6.10.5. REQUEST
	6.10.6. UNKNOWN

	6.11. The Stream Class
	6.11.1. ARRAYIN
	6.11.2. ARRAYOUT
	6.11.3. CHARIN
	6.11.4. CHAROUT
	6.11.5. CHARS
	6.11.6. CLOSE
	6.11.7. COMMAND
	6.11.7.1. Command Strings

	6.11.8. DESCRIPTION
	6.11.9. FLUSH
	6.11.10. INIT
	6.11.11. LINEIN
	6.11.12. LINEOUT
	6.11.13. LINES
	6.11.14. MAKEARRAY
	6.11.15. OPEN
	6.11.16. POSITION
	6.11.17. QUALIFY
	6.11.18. QUERY
	6.11.19. SAY
	6.11.20. SEEK
	6.11.21. STATE
	6.11.22. SUPPLIER

	6.12. The String Class
	6.12.1. NEW (Class Method)
	6.12.2. Arithmetic Methods
	6.12.3. Comparison Methods
	6.12.4. Logical Methods
	6.12.5. Concatenation Methods
	6.12.6. ABBREV
	6.12.7. ABS
	6.12.8. B2X
	6.12.9. BITAND
	6.12.10. BITOR
	6.12.11. BITXOR
	6.12.12. C2D
	6.12.13. C2X
	6.12.14. CENTER/CENTRE
	6.12.15. CHANGESTR
	6.12.16. COMPARE
	6.12.17. COPIES
	6.12.18. COUNTSTR
	6.12.19. D2C
	6.12.20. D2X
	6.12.21. DATATYPE
	6.12.22. DECODEBASE64
	6.12.23. DELSTR
	6.12.24. DELWORD
	6.12.25. ENCODEBASE64
	6.12.26. FORMAT
	6.12.27. INSERT
	6.12.28. LASTPOS
	6.12.29. LEFT
	6.12.30. LENGTH
	6.12.31. MAKEARRAY
	6.12.32. MAKESTRING
	6.12.33. MAX
	6.12.34. MIN
	6.12.35. OVERLAY
	6.12.36. POS
	6.12.37. REVERSE
	6.12.38. RIGHT
	6.12.39. SIGN
	6.12.40. SPACE
	6.12.41. STRING
	6.12.42. STRIP
	6.12.43. SUBSTR
	6.12.44. SUBWORD
	6.12.45. TRANSLATE
	6.12.46. TRUNC
	6.12.47. VERIFY
	6.12.48. WORD
	6.12.49. WORDINDEX
	6.12.50. WORDLENGTH
	6.12.51. WORDPOS
	6.12.52. WORDS
	6.12.53. X2B
	6.12.54. X2C
	6.12.55. X2D

	6.13. The Supplier Class
	6.13.1. NEW (Class Method)
	6.13.2. AVAILABLE
	6.13.3. INDEX
	6.13.4. ITEM
	6.13.5. NEXT
	6.13.6. Examples

	6.14. The WindowsClipboard Class
	6.14.1. COPY
	6.14.2. MAKEARRAY
	6.14.3. PASTE
	6.14.4. EMPTY
	6.14.5. ISDATAAVAILABLE

	6.15. The WindowsEventLog Class
	6.15.1. INIT
	6.15.2. OPEN
	6.15.3. CLOSE
	6.15.4. READ
	6.15.5. WRITE
	6.15.6. CLEAR
	6.15.7. GETNUMBER

	6.16. The WindowsManager Class
	6.16.1. FIND
	6.16.2. FOREGROUNDWINDOW
	6.16.3. WINDOWATPOSITION
	6.16.4. CONSOLETITLE
	6.16.5. CONSOLETITLE=
	6.16.6. SENDTEXTTOWINDOW
	6.16.7. PUSHBUTTONINWINDOW
	6.16.8. PROCESSMENUCOMMAND

	6.17. The WindowObject Class
	6.17.1. ASSOCWINDOW
	6.17.2. HANDLE
	6.17.3. TITLE
	6.17.4. TITLE=
	6.17.5. WCLASS
	6.17.6. ID
	6.17.7. COORDINATES
	6.17.8. STATE
	6.17.9. RESTORE
	6.17.10. HIDE
	6.17.11. MINIMIZE
	6.17.12. MAXIMIZE
	6.17.13. RESIZE
	6.17.14. ENABLE
	6.17.15. DISABLE
	6.17.16. MOVETO
	6.17.17. TOFOREGROUND
	6.17.18. FOCUSNEXTITEM
	6.17.19. FOCUSPREVIOUSITEM
	6.17.20. FOCUSITEM
	6.17.21. FINDCHILD
	6.17.22. CHILDATPOSITION
	6.17.23. NEXT
	6.17.24. PREVIOUS
	6.17.25. FIRST
	6.17.26. LAST
	6.17.27. OWNER
	6.17.28. FIRSTCHILD
	6.17.29. ENUMERATECHILDREN
	6.17.30. SENDMESSAGE
	6.17.31. SENDCOMMAND
	6.17.32. SENDMENUCOMMAND
	6.17.33. SENDMOUSECLICK
	6.17.34. SENDSYSCOMMAND
	6.17.35. PUSHBUTTON
	6.17.36. SENDKEY
	6.17.37. SENDCHAR
	6.17.38. SENDKEYDOWN
	6.17.39. SENDKEYUP
	6.17.40. SENDTEXT
	6.17.41. MENU
	6.17.42. SYSTEMMENU
	6.17.43. ISMENU
	6.17.44. PROCESSMENUCOMMAND

	6.18. The WindowsProgramManager Class
	6.18.1. ADDDESKTOPICON
	6.18.2. ADDSHORTCUT
	6.18.3. ADDGROUP
	6.18.4. ADDITEM
	6.18.5. DELETEDESKTOPICON
	6.18.6. DELETEGROUP
	6.18.7. DELETEITEM
	6.18.8. INIT
	6.18.9. SHOWGROUP
	6.18.10. Symbolic Names for Virtual Keys

	6.19. The WindowsRegistry Class
	6.19.1. CLASSESROOT
	6.19.2. CLASSESROOT=
	6.19.3. CLOSE
	6.19.4. CONNECT
	6.19.5. CREATE
	6.19.6. CURRENTKEY
	6.19.7. CURRENTKEY=
	6.19.8. CURRENTUSER
	6.19.9. CURRENTUSER=
	6.19.10. DELETE
	6.19.11. DELETEVALUE
	6.19.12. FLUSH
	6.19.13. GETVALUE
	6.19.14. INIT
	6.19.15. LIST
	6.19.16. LISTVALUES
	6.19.17. LOAD
	6.19.18. LOCALMACHINE
	6.19.19. LOCALMACHINE=
	6.19.20. OPEN
	6.19.21. QUERY
	6.19.22. REPLACE
	6.19.23. RESTORE
	6.19.24. SAVE
	6.19.25. SETVALUE
	6.19.26. UNLOAD
	6.19.27. USERS
	6.19.28. USERS=

	6.20. The Windows OLEObject Class
	6.20.1. DISPATCH
	6.20.2. INIT
	6.20.3. GETCONSTANT
	6.20.4. GETKNOWNEVENTS
	6.20.5. GETKNOWNMETHODS
	6.20.6. GETOBJECT
	6.20.7. GETOUTPARAMETERS
	6.20.8. UNKNOWN
	6.20.9. Type Conversion

	Chapter 7. Other Objects
	7.1. The Environment Object (.ENVIRONMENT)
	7.2. The Local Environment Object (.LOCAL)
	7.2.1. The Error Object (.ERROR)
	7.2.2. The Input Object (.INPUT)
	7.2.3. The Output Object (.OUTPUT)

	7.3. .METHODS
	7.4. The NIL Object (.NIL)
	7.5. .RS

	Chapter 8. Functions
	8.1. Syntax
	8.2. Functions and Subroutines
	8.2.1. Search Order
	8.2.2. Errors during Execution

	8.3. Return Values
	8.4. Builtin Functions
	8.4.1. ABBREV (Abbreviation)
	8.4.2. ABS (Absolute Value)
	8.4.3. ADDRESS
	8.4.4. ARG (Argument)
	8.4.5. B2X (Binary to Hexadecimal)
	8.4.6. BEEP
	8.4.7. BITAND (Bit by Bit AND)
	8.4.8. BITOR (Bit by Bit OR)
	8.4.9. BITXOR (Bit by Bit Exclusive OR)
	8.4.10. C2D (Character to Decimal)
	8.4.11. C2X (Character to Hexadecimal)
	8.4.12. CENTER (or CENTRE)
	8.4.13. CHANGESTR
	8.4.14. CHARIN (Character Input)
	8.4.15. CHAROUT (Character Output)
	8.4.16. CHARS (Characters Remaining)
	8.4.17. COMPARE
	8.4.18. CONDITION
	8.4.19. COPIES
	8.4.20. COUNTSTR
	8.4.21. D2C (Decimal to Character)
	8.4.22. D2X (Decimal to Hexadecimal)
	8.4.23. DATATYPE
	8.4.24. DATE
	8.4.25. DELSTR (Delete String)
	8.4.26. DELWORD (Delete Word)
	8.4.27. DIGITS
	8.4.28. DIRECTORY
	8.4.29. ENDLOCAL (Linux only)
	8.4.30. ERRORTEXT
	8.4.31. FILESPEC
	8.4.32. FORM
	8.4.33. FORMAT
	8.4.34. FUZZ
	8.4.35. INSERT
	8.4.36. LASTPOS (Last Position)
	8.4.37. LEFT
	8.4.38. LENGTH
	8.4.39. LINEIN (Line Input)
	8.4.40. LINEOUT (Line Output)
	8.4.41. LINES (Lines Remaining)
	8.4.42. MAX (Maximum)
	8.4.43. MIN (Minimum)
	8.4.44. OVERLAY
	8.4.45. POS (Position)
	8.4.46. QUEUED
	8.4.47. RANDOM
	8.4.48. REVERSE
	8.4.49. RIGHT
	8.4.50. RXFUNCADD
	8.4.51. RXFUNCDROP
	8.4.52. RXFUNCQUERY
	8.4.53. RXQUEUE
	8.4.54. SETLOCAL (Linux only)
	8.4.55. SIGN
	8.4.56. SOURCELINE
	8.4.57. SPACE
	8.4.58. STREAM
	8.4.58.1. Stream Commands
	8.4.58.1.1. Command Strings
	8.4.58.1.2. QUERY Stream Commands

	8.4.59. STRIP
	8.4.60. SUBSTR (Substring)
	8.4.61. SUBWORD
	8.4.62. SYMBOL
	8.4.63. TIME
	8.4.64. TRACE
	8.4.65. TRANSLATE
	8.4.66. TRUNC (Truncate)
	8.4.67. USERID
	8.4.68. VALUE
	8.4.69. VAR
	8.4.70. VERIFY
	8.4.71. WORD
	8.4.72. WORDINDEX
	8.4.73. WORDLENGTH
	8.4.74. WORDPOS (Word Position)
	8.4.75. WORDS
	8.4.76. X2B (Hexadecimal to Binary)
	8.4.77. X2C (Hexadecimal to Character)
	8.4.78. X2D (Hexadecimal to Decimal)
	8.4.79. XRANGE (Hexadecimal Range)

	Chapter 9. Rexx Utilities (RexxUtil)
	9.1. List of Rexx Utility Functions
	9.2. RxMessageBox (Windows only)
	9.3. RxWinExec (Windows only)
	9.4. SysAddFileHandle (Windows only)
	9.5. SysAddRexxMacro
	9.6. SysBootDrive (Windows only)
	9.7. SysClearRexxMacroSpace
	9.8. SysCloseEventSem
	9.9. SysCloseMutexSem
	9.10. SysCls
	9.11. SysCreateEventSem
	9.12. SysCreateMutexSem
	9.13. SysCreatePipe (AIX only)
	9.14. SysCurPos (Windows only)
	9.15. SysCurState (Windows only)
	9.16. SysDriveInfo (Windows only)
	9.17. SysDriveMap (Windows only)
	9.18. SysDropFuncs
	9.19. SysDropLibrary (Windows only)
	9.20. SysDropRexxMacro
	9.21. SysDumpVariables
	9.22. SysFileCopy (Windows only)
	9.23. SysFileDelete
	9.24. SysFileMove (Windows only)
	9.25. SysFileSearch
	9.26. SysFileSystemType (Windows only)
	9.27. SysFileTree
	9.28. SysFork (Linux, AIX, Solaris only)
	9.29. SysFromUnicode (Windows only)
	9.30. SysGetCollate (Windows only)
	9.31. SysGetErrortext
	9.32. SysGetFileDateTime
	9.33. SysGetKey
	9.34. SysGetMessage
	9.35. SysGetMessageX (Unix only)
	9.36. SysIni (Windows only)
	9.37. SysIsFile
	9.38. SysIsFileCompressed (Windows only)
	9.39. SysIsFileDirectory
	9.40. SysIsFileEncrypted (Windows only)
	9.41. SysIsFileLink
	9.42. SysIsFileNotContentIndexed (Windows only)
	9.43. SysIsFileOffline (Windows only)
	9.44. SysIsFileSparse (Windows only)
	9.45. SysIsFileTemporary (Windows only)
	9.46. SysLoadFuncs
	9.47. SysLoadRexxMacroSpace
	9.48. SysMapCase (Windows only)
	9.49. SysMkDir
	9.50. SysNationalLanguageCompare (Windows only)
	9.51. SysOpenEventSem
	9.52. SysOpenMutexSem
	9.53. SysPostEventSem
	9.54. SysProcessType (Windows only)
	9.55. SysPulseEventSem (Windows only)
	9.56. SysQueryProcess
	9.57. SysQueryProcessCodePage
	9.58. SysQueryRexxMacro
	9.59. SysReleaseMutexSem
	9.60. SysReorderRexxMacro
	9.61. SysRequestMutexSem
	9.62. SysResetEventSem
	9.63. SysRmDir
	9.64. SysSaveRexxMacroSpace
	9.65. SysSearchPath
	9.66. SysSetFileDateTime
	9.67. SysSetPriority
	9.68. SysSetProcessCodePage (Windows only)
	9.69. SysShutdownSystem (Windows only)
	9.70. SysSleep
	9.71. SysStemCopy
	9.72. SysStemDelete
	9.73. SysStemInsert
	9.74. SysStemSort
	9.75. SysSwitchSession (Windows only)
	9.76. SysSystemDirectory (Windows only)
	9.77. SysTempFileName
	9.78. SysTextScreenRead (Windows only)
	9.79. SysTextScreenSize (Windows only)
	9.80. SysToUnicode (Windows only)
	9.81. SysUtilVersion
	9.82. SysVersion
	9.83. SysVolumeLabel (Windows only)
	9.84. SysWait (AIX only)
	9.85. SysWaitEventSem
	9.86. SysWaitNamedPipe (Windows only)
	9.87. SysWinDecryptFile (Windows only)
	9.88. SysWinEncryptFile (Windows only)
	9.89. SysWinGetDefaultPrinter (Windows only)
	9.90. SysWinGetPrinters (Windows only)
	9.91. SysWinSetDefaultPrinter (Windows only)
	9.92. SysWinVer Windows only)

	Chapter 10. Parsing
	10.1. Simple Templates for Parsing into Words
	10.1.1. The Period as a Placeholder

	10.2. Templates Containing String Patterns
	10.3. Templates Containing Positional (Numeric) Patterns
	10.3.1. Combining Patterns and Parsing into Words

	10.4. Parsing with Variable Patterns
	10.5. Using UPPER, LOWER, and CASELESS
	10.6. Parsing Instructions Summary
	10.7. Parsing Instructions Examples
	10.8. Advanced Topics in Parsing
	10.8.1. Parsing Several Strings
	10.8.2. Combining String and Positional Patterns
	10.8.3. Conceptual Overview of Parsing

	Chapter 11. Numbers and Arithmetic
	11.1. Precision
	11.2. Arithmetic Operators
	11.2.1. Power
	11.2.2. Integer Division
	11.2.3. Remainder
	11.2.4. Operator Examples

	11.3. Exponential Notation
	11.4. Numeric Comparisons
	11.5. Limits and Errors when Rexx Uses Numbers Directly

	Chapter 12. Conditions and Condition Traps
	12.1. Action Taken when a Condition Is Not Trapped
	12.2. Action Taken when a Condition Is Trapped
	12.3. Condition Information
	12.3.1. Descriptive Strings
	12.3.2. Additional Object Information
	12.3.3. The Special Variable RC
	12.3.4. The Special Variable SIGL
	12.3.5. Condition Objects

	Chapter 13. Concurrency
	13.1. Early Reply
	13.2. Message Objects
	13.3. Default Concurrency
	13.3.1. Sending Messages within an Activity

	13.4. Using Additional Concurrency Mechanisms
	13.4.1. SETUNGUARDED Method and UNGUARDED Option
	13.4.2. GUARD ON and GUARD OFF
	13.4.3. Guarded Methods
	13.4.4. Additional Examples
	13.4.4.1. Semaphores
	13.4.4.2. Monitors (Bounded Buffer)
	13.4.4.3. Readers and Writers

	Chapter 14. The Security Manager
	14.1. Calls to the Security Manager
	14.1.1. Example

	Chapter 15. Input and Output Streams
	15.1. The Input and Output Model
	15.1.1. Input Streams
	15.1.2. Output Streams
	15.1.3. External Data Queue
	15.1.3.1. Unnamed Queues
	15.1.3.2. Named Queues
	15.1.3.3. Multiprogramming Considerations

	15.1.4. Default Stream Names
	15.1.5. Line versus Character Positioning

	15.2. Implementation
	15.3. Operating System Specifics
	15.4. Examples of Input and Output
	15.5. Errors during Input and Output
	15.6. Summary of Rexx I/O Instructions and Methods

	Chapter 16. Debugging Aids
	16.1. Interactive Debugging of Programs
	16.2. Debugging Aids
	16.3. RXTRACE Variable

	Chapter 17. Reserved Keywords
	Chapter 18. Special Variables
	Chapter 19. Useful Services
	19.1. Windows Commands
	19.2. Linux Commands
	19.3. Subcommand Handler Services
	19.3.1. The RXSUBCOM Command
	19.3.1.1. RXSUBCOM REGISTER
	19.3.1.2. RXSUBCOM DROP
	19.3.1.3. RXSUBCOM QUERY
	19.3.1.4. RXSUBCOM LOAD

	19.3.2. The RXQUEUE Filter

	19.4. Distributing Programs without Source

	Chapter 20. Windows Scripting Host Engine
	20.1. Object Rexx as a Windows Scripting Host Engine
	20.1.1. Windows Scripting Host Overview
	20.1.1.1. The Gestation of WSH
	20.1.1.2. Hosts Provided by Microsoft

	20.2. Scripting in the Windows Style
	20.2.1. Invocation by the Browser
	20.2.2. WSH File Types and Formats
	20.2.2.1. .wsf
	20.2.2.2. .wsc

	20.2.3. Invocation from a Command Prompt
	20.2.3.1. As a Conventional Object Rexx File
	20.2.3.2. As a Windows Scripting Host File

	20.2.4. Invocation as a COM Object
	20.2.4.1. Registering the COM Object
	20.2.4.2. Generating a Typelib
	20.2.4.3. Invoking
	20.2.4.4. Events
	20.2.4.4.1. COM Events
	20.2.4.4.2. Internet Explorer Events

	20.2.5. WSH Samples

	20.3. Interpretation of and Deviation from the WSH Specification
	20.3.1. Windows Scripting Host (WSH) Advanced Overview
	20.3.1.1. Hosts Provided by Microsoft
	20.3.1.2. Additional COM Objects
	20.3.1.3. Where to Find Additional Documentation

	20.3.2. Object Rexx in the WSH Environment
	20.3.2.1. Object Rexx Features Available
	20.3.2.2. Changes in Object Rexx due to WSH
	20.3.2.3. Parameters

	20.3.3. Properties
	20.3.4. The Object Rexx "Sandbox"
	20.3.4.1. Implications of Browser Applications That Run Outside the "Sandbox"

	20.3.5. Features Duplicated in Object Rexx and WSH
	20.3.5.1. Declaring Objects with Object Rexx or WScript
	20.3.5.2. Subcom versus the Host Interface
	20.3.5.3. .dll vs COM

	Appendix A. Using the DO Keyword
	A.1. Simple DO Group
	A.2. Repetitive DO Loops
	A.2.1. Simple Repetitive Loops
	A.2.2. Controlled Repetitive Loops

	A.3. Repetitive Loops over Collections
	A.4. Conditional Phrases (WHILE and UNTIL)

	Appendix B. Migration
	B.1. Error Codes and Return Codes
	B.2. Error Detection and Reporting
	B.3. Environment Variables
	B.4. Stems versus Collections
	B.5. Input and Output Using Functions and Methods
	B.6. .Environment
	B.7. Deleting Environment Variables
	B.8. Queuing
	B.9. Trace in Macrospace
	B.10. The RxMessageBox Function

	Appendix C. Error Numbers and Messages
	C.1. Error List
	C.1.1. Error 3 Failure during initialization
	C.1.2. Error 4 Program interrupted
	C.1.3. Error 5 System resources exhausted
	C.1.4. Error 6 Unmatched "/*" or quote
	C.1.5. Error 7 WHEN or OTHERWISE expected
	C.1.6. Error 8 Unexpected THEN or ELSE
	C.1.7. Error 9 Unexpected WHEN or OTHERWISE
	C.1.8. Error 10 Unexpected or unmatched END
	C.1.9. Error 11 Control stack full
	C.1.10. Error 13 Invalid character in program
	C.1.11. Error 14 Incomplete DO/SELECT/IF
	C.1.12. Error 15 Invalid hexadecimal or binary string
	C.1.13. Error 16 Label not found
	C.1.14. Error 17 Unexpected PROCEDURE
	C.1.15. Error 18 THEN expected
	C.1.16. Error 19 String or symbol expected
	C.1.17. Error 20 Symbol expected
	C.1.18. Error 21 Invalid data on end of clause
	C.1.19. Error 22 Invalid character string
	C.1.20. Error 23 Invalid data string
	C.1.21. Error 24 Invalid TRACE request
	C.1.22. Error 25 Invalid subkeyword found
	C.1.23. Error 26 Invalid whole number
	C.1.24. Error 27 Invalid DO syntax
	C.1.25. Error 28 Invalid LEAVE or ITERATE
	C.1.26. Error 29 Environment name too long
	C.1.27. Error 30 Name or string too long
	C.1.28. Error 31 Name starts with number or "."
	C.1.29. Error 33 Invalid expression result
	C.1.30. Error 34 Logical value not 0 or 1
	C.1.31. Error 35 Invalid expression
	C.1.32. Error 36 Unmatched "(" or "[" in expression
	C.1.33. Error 37 Unexpected ",", ")", or "]"
	C.1.34. Error 38 Invalid template or pattern
	C.1.35. Error 39 Evaluation stack overflow
	C.1.36. Error 40 Incorrect call to routine
	C.1.37. Error 41 Bad arithmetic conversion
	C.1.38. Error 42 Arithmetic overflow/underflow
	C.1.39. Error 43 Routine not found
	C.1.40. Error 44 Function or message did not return data
	C.1.41. Error 45 No data specified on function RETURN
	C.1.42. Error 46 Invalid variable reference
	C.1.43. Error 47 Unexpected label
	C.1.44. Error 48 Failure in system service
	C.1.45. Error 49 Interpretation error
	C.1.46. Error 90 External name not found
	C.1.47. Error 91 No result object
	C.1.48. Error 92 OLE error
	C.1.49. Error 93 Incorrect call to method
	C.1.50. Error 97 Object method not found
	C.1.51. Error 98 Execution error
	C.1.52. Error 99 Translation error

	C.2. RXSUBCOM Utility Program
	C.2.1. Error 116 The RXSUBCOM parameter REGISTER is incorrect.
	RXSUBCOM REGISTER EnvironmentName DllName ProcedureName

	C.2.2. Error 117 The RXSUBCOM parameter DROP is incorrect.
	RXSUBCOM DROP EnvironmentName [DllName]

	C.2.3. Error 118 The RXSUBCOM parameter LOAD is incorrect.
	RXSUBCOM LOAD EnvironmentName [DllName]

	C.2.4. Error 125 The RXSUBCOM parameter QUERY is incorrect.
	RXSUBCOM QUERY EnvironmentName [DllName]

	C.3. RXQUEUE Utility Program
	C.3.1. Error 119 The REXX queuing system is not initialized.
	C.3.2. Error 120 The size of the data is incorrect.
	C.3.3. Error 121 Storage for data queues is exhausted.
	C.3.4. Error 122 The name %1 is not a valid queue name.
	C.3.5. Error 123 The queue access mode is not correct.
	C.3.6. Error 124 The queue %1 does not exist.
	C.3.7. Error 131 The syntax of the command is incorrect
	C.3.8. Error 132 System error occurred while processing the command

	C.4. RexxC Utility Program
	C.4.1. Error 127 The REXXC command parameters are incorrect.
	C.4.2. Error 128 Output file name must be different from input file name.
	C.4.3. Error 129 SYNTAX: REXXC InProgramName [OutProgramName] [/S]
	C.4.4. Error 130 Without OutProgramName REXXC only performs a syntax check

	Appendix D. Notices
	D.1. Trademarks
	D.2. Source Code For This Document

	Appendix E. Common Public License Version 1.0
	E.1. Definitions
	E.2. Grant of Rights
	E.3. Requirements
	E.4. Commercial Distribution
	E.5. No Warranty
	E.6. Disclaimer of Liability
	E.7. General

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

