
Open Object Rexx

Reference
Version 3.1.1 Revision 4 Edition

November 7 2006

W. David Ashley
Mark Hessling

Rony G. Flatscher
Rick McGuire

Open Object Rexx: Reference
by
W. David Ashley
Mark Hessling
Rony G. Flatscher
Rick McGuire

Version 3.1.1 Revision 4 Edition
Published November 7 2006
Copyright © 1995, 2004 IBM Corporation and others. All rights reserved.
Copyright © 2005, 2006 Rexx Language Association. All rights reserved.

This program and the accompanying materials are made available under the terms of theCommon Public License Version 1.0.

Before using this information and the product it supports, be sure to read the general information underNotices.

This document was originally owned and copyrighted by IBM Corporation 1995, 2004. It was donated as open source under theCommon Public

License Version 1.0to the Rexx Language Association in 2004.

Thanks to Julian Choy for the ooRexx logo design.

Table of Contents
About This Book ...i

1. Related Information..i
2. How to Read the Syntax Diagrams...i
3. A Note About Program Examples in this Document.. ii
4. Getting Help... iii

4.1. The Rexx Language Association Mailing List.. iii
4.2. The Open Object Rexx SourceForge Site.. iii
4.3. comp.lang.rexx Newsgroup..iv

1. Rexx General Concepts...1

1.1. What Is Object-Oriented Programming?..1
1.2. Modularizing Data..1
1.3. Modeling Objects..3
1.4. How Objects Interact...4
1.5. Methods...5
1.6. Polymorphism...5
1.7. Classes and Instances..6
1.8. Data Abstraction...7
1.9. Subclasses, Superclasses, and Inheritance..8
1.10. Structure and General Syntax...8

1.10.1. Characters...9
1.10.2. Comments...9
1.10.3. Tokens...11

1.10.3.1. Literal Strings...11
1.10.3.2. Hexadecimal Strings..12
1.10.3.3. Binary Strings..12
1.10.3.4. Symbols...13
1.10.3.5. Numbers...13
1.10.3.6. Operator Characters...14
1.10.3.7. Special Characters..15
1.10.3.8. Example...15

1.10.4. Implied Semicolons..15
1.10.5. Continuations..16

1.11. Terms, Expressions, and Operators...16
1.11.1. Terms and Expressions...16
1.11.2. Operators..17

1.11.2.1. String Concatenation..18
1.11.2.2. Arithmetic..19
1.11.2.3. Comparison..19
1.11.2.4. Logical (Boolean)..21

1.11.3. Parentheses and Operator Precedence..22
1.11.4. Message Terms...24
1.11.5. Message Sequences..26

1.12. Clauses and Instructions..26
1.12.1. Null Clauses..27
1.12.2. Directives..27

iii

1.12.3. Labels...27
1.12.4. Instructions...27
1.12.5. Assignments...28
1.12.6. Message Instructions..28
1.12.7. Keyword Instructions..28
1.12.8. Commands..28

1.13. Assignments and Symbols..28
1.13.1. Constant Symbols...29
1.13.2. Simple Symbols..30
1.13.3. Stems..30
1.13.4. Compound Symbols...32

1.13.4.1. Evaluated Compound Variables...33
1.13.5. Environment Symbols..34

1.14. Message Instructions...35
1.15. Commands to External Environments...35

1.15.1. Environment...35
1.15.2. Commands..36

1.16. Using Rexx on Windows and Unix...37

2. Keyword Instructions ..39

2.1. ADDRESS..39
2.2. ARG..40
2.3. CALL ..42
2.4. DO...45
2.5. DROP..46
2.6. EXIT..47
2.7. EXPOSE..48
2.8. FORWARD...49
2.9. GUARD...51
2.10. IF...52
2.11. INTERPRET...53
2.12. ITERATE..54
2.13. LEAVE..55
2.14. NOP...56
2.15. NUMERIC..56
2.16. PARSE...57
2.17. PROCEDURE...60
2.18. PULL...62
2.19. PUSH..63
2.20. QUEUE...64
2.21. RAISE...64
2.22. REPLY..66
2.23. RETURN...67
2.24. SAY...67
2.25. SELECT..68
2.26. SIGNAL..69
2.27. TRACE..71

2.27.1. Alphabetic Character (Word) Options..72

iv

2.27.2. Prefix Option..73
2.27.3. Numeric Options..73

2.27.3.1. Tracing Tips...73
2.27.3.2. Example...74
2.27.3.3. The Format of Trace Output..74

2.28. USE...75

3. Directives..77

3.1. ::CLASS..77
3.2. ::METHOD...78
3.3. ::REQUIRES...80
3.4. ::ROUTINE...81

4. Objects and Classes...83

4.1. Types of Classes..83
4.1.1. Object Classes..83
4.1.2. Mixin Classes...83
4.1.3. Abstract Classes..84

4.1.3.1. Metaclasses..84
4.1.3.2. Creating Classes and Methods...87
4.1.3.3. Using Classes...88
4.1.3.4. Scope..88
4.1.3.5. Defining Instance Methods with SETMETHOD or ENHANCED..................88
4.1.3.6. Method Names...89
4.1.3.7. Default Search Order for Method Selection..89
4.1.3.8. Defining an UNKNOWN Method...89
4.1.3.9. Changing the Search Order for Methods...90
4.1.3.10. Public and Private Methods...90
4.1.3.11. The Class Hierarchy...91
4.1.3.12. Initialization...91
4.1.3.13. Object Destruction and Uninitialization..92
4.1.3.14. Required String Values..92
4.1.3.15. Concurrency...94
4.1.3.16. Classes and Methods Provided by Rexx..94
4.1.3.17. Summary of Methods by Class..97

5. The Collection Classes...105

5.1. The Array Class..106
5.1.1. NEW (Class Method)...107
5.1.2. OF (Class Method)...107
5.1.3. [] ...107
5.1.4. []=...107
5.1.5. AT...108
5.1.6. DIMENSION..108
5.1.7. FIRST...108
5.1.8. HASINDEX..108
5.1.9. ITEMS..108
5.1.10. LAST..109
5.1.11. MAKEARRAY...109
5.1.12. MAKESTRING..109

v

5.1.13. NEXT...109
5.1.14. PREVIOUS...109
5.1.15. PUT...109
5.1.16. REMOVE...110
5.1.17. SECTION...110
5.1.18. SIZE..110
5.1.19. SUPPLIER..110
5.1.20. Examples..111

5.2. The Bag Class...111
5.2.1. OF (Class Method)...112
5.2.2. [] ...112
5.2.3. []=...113
5.2.4. HASINDEX..113
5.2.5. MAKEARRAY...113
5.2.6. PUT...113
5.2.7. SUPPLIER..113
5.2.8. Examples..113

5.3. The CircularQueue Class..114
5.3.1. OF (Class Method)...115
5.3.2. INIT..115
5.3.3. MAKEARRAY...115
5.3.4. PUSH..115
5.3.5. QUEUE...116
5.3.6. RESIZE...116
5.3.7. SIZE..116
5.3.8. STRING..116
5.3.9. SUPPLIER..117
5.3.10. Example..117

5.4. The Directory Class..118
5.4.1. [] ...119
5.4.2. []=...120
5.4.3. AT...120
5.4.4. ENTRY...120
5.4.5. HASENTRY...120
5.4.6. HASINDEX..120
5.4.7. ITEMS..120
5.4.8. MAKEARRAY...121
5.4.9. PUT...121
5.4.10. REMOVE...121
5.4.11. SETENTRY..121
5.4.12. SETMETHOD..121
5.4.13. SUPPLIER..122
5.4.14. UNKNOWN...122
5.4.15. DIFFERENCE..122
5.4.16. INTERSECTION...122
5.4.17. SUBSET...123
5.4.18. UNION...123
5.4.19. XOR..123

vi

5.4.20. Examples..123
5.5. The List Class..124

5.5.1. OF (Class Method)...125
5.5.2. [] ...125
5.5.3. []=...125
5.5.4. AT...126
5.5.5. FIRST...126
5.5.6. FIRSTITEM...126
5.5.7. HASINDEX..126
5.5.8. INSERT..126
5.5.9. ITEMS..127
5.5.10. LAST..127
5.5.11. LASTITEM..127
5.5.12. MAKEARRAY...127
5.5.13. NEXT...128
5.5.14. PREVIOUS...128
5.5.15. PUT...128
5.5.16. REMOVE...128
5.5.17. SECTION...128
5.5.18. SUPPLIER..129

5.6. The Queue Class...129
5.6.1. [] ...130
5.6.2. []=...130
5.6.3. AT...130
5.6.4. HASINDEX..130
5.6.5. ITEMS..130
5.6.6. MAKEARRAY...130
5.6.7. PEEK..131
5.6.8. PULL..131
5.6.9. PUSH..131
5.6.10. PUT...131
5.6.11. QUEUE...131
5.6.12. REMOVE...131
5.6.13. SUPPLIER..132

5.7. The Relation Class..132
5.7.1. [] ...133
5.7.2. []=...133
5.7.3. ALLAT ...133
5.7.4. ALLINDEX..133
5.7.5. AT...133
5.7.6. HASINDEX..133
5.7.7. HASITEM..134
5.7.8. INDEX..134
5.7.9. ITEMS..134
5.7.10. MAKEARRAY...134
5.7.11. PUT...134
5.7.12. REMOVE...134
5.7.13. REMOVEITEM..135

vii

5.7.14. SUPPLIER..135
5.7.15. DIFFERENCE..135
5.7.16. INTERSECTION...135
5.7.17. SUBSET...135
5.7.18. UNION...135
5.7.19. XOR..136
5.7.20. Examples..136

5.8. The Set Class...137
5.8.1. OF (Class Method)...137
5.8.2. [] ...138
5.8.3. []=...138
5.8.4. AT...138
5.8.5. HASINDEX..138
5.8.6. ITEMS..138
5.8.7. MAKEARRAY...138
5.8.8. PUT...139
5.8.9. REMOVE...139
5.8.10. SUPPLIER..139

5.9. The Table Class...139
5.9.1. [] ...140
5.9.2. []=...140
5.9.3. AT...140
5.9.4. HASINDEX..140
5.9.5. ITEMS..141
5.9.6. MAKEARRAY...141
5.9.7. PUT...141
5.9.8. REMOVE...141
5.9.9. SUPPLIER..141
5.9.10. DIFFERENCE..141
5.9.11. INTERSECTION...142
5.9.12. SUBSET...142
5.9.13. UNION...142
5.9.14. XOR..142

5.10. The Concept of Set Operations...143
5.10.1. The Principles of Operation..143

5.10.1.1. Set Operations on Collections without Duplicates......................................144
5.10.1.2. Set-Like Operations on Collections with Duplicates...................................144

5.10.2. Determining the Identity of an Item...145
5.10.3. The Argument Collection Classes..146
5.10.4. The Receiver Collection Classes..146
5.10.5. Classifying Collections...147

6. Other Classes..149

6.1. The Alarm Class..149
6.1.1. CANCEL..150
6.1.2. INIT..150
6.1.3. Examples..150

6.2. The Class Class...151

viii

6.2.1. BASECLASS..152
6.2.2. DEFAULTNAME...152
6.2.3. DEFINE..152
6.2.4. DELETE...153
6.2.5. ENHANCED..153
6.2.6. ID..154
6.2.7. INHERIT..154
6.2.8. INIT..155
6.2.9. METACLASS...155
6.2.10. METHOD...155
6.2.11. METHODS...155
6.2.12. MIXINCLASS..156
6.2.13. NEW...156
6.2.14. QUERYMIXINCLASS..157
6.2.15. SUBCLASS..157
6.2.16. SUBCLASSES...158
6.2.17. SUPERCLASSES...158
6.2.18. UNINHERIT..158

6.3. The WindowsMenuObject Class...159
6.3.1. ISMENU...159
6.3.2. ITEMS..159
6.3.3. IDOF...159
6.3.4. TEXTOF(position)...160
6.3.5. TEXTOF(id)...160
6.3.6. SUBMENU...160
6.3.7. FINDSUBMENU...160
6.3.8. FINDITEM...160
6.3.9. PROCESSITEM...161

6.4. The Message Class..161
6.4.1. COMPLETED..162
6.4.2. INIT..162
6.4.3. NOTIFY..162
6.4.4. RESULT...163
6.4.5. SEND..164
6.4.6. START..164
6.4.7. Example..164

6.5. The Method Class...165
6.5.1. NEW (Class Method)...166
6.5.2. NEWFILE (Class Method)...166
6.5.3. SETGUARDED..166
6.5.4. SETPRIVATE...166
6.5.5. SETPROTECTED..167
6.5.6. SETSECURITYMANAGER..167
6.5.7. SETUNGUARDED..167
6.5.8. SOURCE..167

6.6. The Monitor Class...167
6.6.1. CURRENT...168
6.6.2. DESTINATION..168

ix

6.6.3. INIT..168
6.6.4. UNKNOWN...168
6.6.5. Examples..169

6.7. The MutableBuffer Class..169
6.7.1. INIT..170
6.7.2. APPEND...170
6.7.3. DELETE...170
6.7.4. GETBUFFERSIZE...170
6.7.5. INSERT..170
6.7.6. LENGTH..171
6.7.7. OVERLAY..171
6.7.8. SETBUFFERSIZE...171
6.7.9. STRING..171
6.7.10. SUBSTR...171

6.8. The Object Class...172
6.8.1. NEW (Class Method)...172
6.8.2. Operator Methods...172
6.8.3. CLASS..173
6.8.4. COPY...173
6.8.5. DEFAULTNAME...173
6.8.6. HASMETHOD...173
6.8.7. INIT..174
6.8.8. OBJECTNAME..174
6.8.9. OBJECTNAME=..174
6.8.10. REQUEST..174
6.8.11. RUN..175
6.8.12. SETMETHOD..175
6.8.13. START..176
6.8.14. STRING..177
6.8.15. UNSETMETHOD..177

6.9. The RegularExpression Class...177
6.9.1. INIT..180
6.9.2. MATCH..180
6.9.3. PARSE..180
6.9.4. POS...182
6.9.5. POSITION..183

6.10. The Stem Class..183
6.10.1. NEW (Class Method)...184
6.10.2. []...185
6.10.3. []=...185
6.10.4. MAKEARRAY...185
6.10.5. REQUEST..185
6.10.6. UNKNOWN...185

6.11. The Stream Class..186
6.11.1. ARRAYIN..187
6.11.2. ARRAYOUT..187
6.11.3. CHARIN...187
6.11.4. CHAROUT...187

x

6.11.5. CHARS...188
6.11.6. CLOSE...188
6.11.7. COMMAND...188

6.11.7.1. Command Strings..188
6.11.8. DESCRIPTION..194
6.11.9. FLUSH...195
6.11.10. INIT..195
6.11.11. LINEIN...195
6.11.12. LINEOUT...195
6.11.13. LINES...196
6.11.14. MAKEARRAY...196
6.11.15. OPEN..196
6.11.16. POSITION..198
6.11.17. QUALIFY...198
6.11.18. QUERY...199
6.11.19. SAY...201
6.11.20. SEEK..201
6.11.21. STATE..202
6.11.22. SUPPLIER..203

6.12. The String Class..203
6.12.1. NEW (Class Method)...205
6.12.2. Arithmetic Methods..205
6.12.3. Comparison Methods..206
6.12.4. Logical Methods...208
6.12.5. Concatenation Methods..209
6.12.6. ABBREV..209
6.12.7. ABS..210
6.12.8. B2X...210
6.12.9. BITAND...211
6.12.10. BITOR..211
6.12.11. BITXOR...212
6.12.12. C2D...212
6.12.13. C2X...213
6.12.14. CENTER/CENTRE..214
6.12.15. CHANGESTR..214
6.12.16. COMPARE...214
6.12.17. COPIES..215
6.12.18. COUNTSTR...215
6.12.19. D2C...215
6.12.20. D2X..216
6.12.21. DATATYPE..216
6.12.22. DECODEBASE64..218
6.12.23. DELSTR...218
6.12.24. DELWORD..219
6.12.25. ENCODEBASE64..219
6.12.26. FORMAT..219
6.12.27. INSERT..220
6.12.28. LASTPOS...221

xi

6.12.29. LEFT...221
6.12.30. LENGTH..222
6.12.31. MAKEARRAY...222
6.12.32. MAKESTRING..222
6.12.33. MAX...223
6.12.34. MIN..223
6.12.35. OVERLAY..223
6.12.36. POS...224
6.12.37. REVERSE..224
6.12.38. RIGHT..225
6.12.39. SIGN...225
6.12.40. SPACE..225
6.12.41. STRING..226
6.12.42. STRIP...226
6.12.43. SUBSTR...226
6.12.44. SUBWORD..227
6.12.45. TRANSLATE...227
6.12.46. TRUNC...228
6.12.47. VERIFY..229
6.12.48. WORD..229
6.12.49. WORDINDEX...230
6.12.50. WORDLENGTH..230
6.12.51. WORDPOS...230
6.12.52. WORDS..231
6.12.53. X2B...231
6.12.54. X2C...231
6.12.55. X2D..232

6.13. The Supplier Class..233
6.13.1. NEW (Class Method)...233
6.13.2. AVAILABLE ..234
6.13.3. INDEX..234
6.13.4. ITEM..234
6.13.5. NEXT...234
6.13.6. Examples..234

6.14. The WindowsClipboard Class...235
6.14.1. COPY...235
6.14.2. MAKEARRAY...235
6.14.3. PASTE..236
6.14.4. EMPTY...236
6.14.5. ISDATAAVAILABLE...236

6.15. The WindowsEventLog Class...236
6.15.1. INIT..237
6.15.2. OPEN..237
6.15.3. CLOSE...238
6.15.4. READ...238
6.15.5. WRITE...240
6.15.6. CLEAR...242
6.15.7. GETNUMBER...243

xii

6.16. The WindowsManager Class...244
6.16.1. FIND...245
6.16.2. FOREGROUNDWINDOW..245
6.16.3. WINDOWATPOSITION..245
6.16.4. CONSOLETITLE...245
6.16.5. CONSOLETITLE=..245
6.16.6. SENDTEXTTOWINDOW...245
6.16.7. PUSHBUTTONINWINDOW..245
6.16.8. PROCESSMENUCOMMAND..246

6.17. The WindowObject Class..246
6.17.1. ASSOCWINDOW..247
6.17.2. HANDLE..248
6.17.3. TITLE...248
6.17.4. TITLE=...248
6.17.5. WCLASS..248
6.17.6. ID..248
6.17.7. COORDINATES..248
6.17.8. STATE..248
6.17.9. RESTORE..249
6.17.10. HIDE...249
6.17.11. MINIMIZE...249
6.17.12. MAXIMIZE..249
6.17.13. RESIZE...249
6.17.14. ENABLE..250
6.17.15. DISABLE...250
6.17.16. MOVETO...250
6.17.17. TOFOREGROUND..250
6.17.18. FOCUSNEXTITEM...250
6.17.19. FOCUSPREVIOUSITEM..250
6.17.20. FOCUSITEM...250
6.17.21. FINDCHILD...251
6.17.22. CHILDATPOSITION...251
6.17.23. NEXT...251
6.17.24. PREVIOUS...251
6.17.25. FIRST...251
6.17.26. LAST..252
6.17.27. OWNER..252
6.17.28. FIRSTCHILD...252
6.17.29. ENUMERATECHILDREN..252
6.17.30. SENDMESSAGE...253
6.17.31. SENDCOMMAND..253
6.17.32. SENDMENUCOMMAND...253
6.17.33. SENDMOUSECLICK..253
6.17.34. SENDSYSCOMMAND...254
6.17.35. PUSHBUTTON..256
6.17.36. SENDKEY...256
6.17.37. SENDCHAR...256
6.17.38. SENDKEYDOWN...257

xiii

6.17.39. SENDKEYUP..257
6.17.40. SENDTEXT...257
6.17.41. MENU..257
6.17.42. SYSTEMMENU...257
6.17.43. ISMENU...258
6.17.44. PROCESSMENUCOMMAND..258

6.18. The WindowsProgramManager Class...258
6.18.1. ADDDESKTOPICON..259
6.18.2. ADDSHORTCUT...260
6.18.3. ADDGROUP..261
6.18.4. ADDITEM..261
6.18.5. DELETEDESKTOPICON...262
6.18.6. DELETEGROUP..264
6.18.7. DELETEITEM...264
6.18.8. INIT..264
6.18.9. SHOWGROUP...264
6.18.10. Symbolic Names for Virtual Keys..265

6.19. The WindowsRegistry Class...268
6.19.1. CLASSES_ROOT..269
6.19.2. CLASSES_ROOT=..269
6.19.3. CLOSE...269
6.19.4. CONNECT...270
6.19.5. CREATE...270
6.19.6. CURRENT_KEY...270
6.19.7. CURRENT_KEY=...270
6.19.8. CURRENT_USER...270
6.19.9. CURRENT_USER=...270
6.19.10. DELETE...271
6.19.11. DELETEVALUE..271
6.19.12. FLUSH...271
6.19.13. GETVALUE...271
6.19.14. INIT..271
6.19.15. LIST..272
6.19.16. LISTVALUES..272
6.19.17. LOAD...272
6.19.18. LOCAL_MACHINE..273
6.19.19. LOCAL_MACHINE=..273
6.19.20. OPEN..273
6.19.21. QUERY...274
6.19.22. REPLACE..274
6.19.23. RESTORE..274
6.19.24. SAVE..275
6.19.25. SETVALUE..275
6.19.26. UNLOAD...275
6.19.27. USERS..275
6.19.28. USERS=...276

6.20. The Windows OLEObject Class...276
6.20.1. DISPATCH...277

xiv

6.20.2. INIT..277
6.20.3. GETCONSTANT...277
6.20.4. GETKNOWNEVENTS..278
6.20.5. GETKNOWNMETHODS..279
6.20.6. GETOBJECT..281
6.20.7. GETOUTPARAMETERS..281
6.20.8. UNKNOWN...282
6.20.9. Type Conversion...283

7. Other Objects...285

7.1. The Environment Object (.ENVIRONMENT)...285
7.2. The Local Environment Object (.LOCAL)...287

7.2.1. The Error Object (.ERROR)...288
7.2.2. The Input Object (.INPUT)..288
7.2.3. The Output Object (.OUTPUT)..289

7.3. .METHODS..289
7.4. The NIL Object (.NIL)..289
7.5. .RS...289

8. Functions..291

8.1. Syntax..291
8.2. Functions and Subroutines..291

8.2.1. Search Order...292
8.2.2. Errors during Execution..293

8.3. Return Values..294
8.4. Built-in Functions...295

8.4.1. ABBREV (Abbreviation)...296
8.4.2. ABS (Absolute Value)..297
8.4.3. ADDRESS..297
8.4.4. ARG (Argument)..297
8.4.5. B2X (Binary to Hexadecimal)..299
8.4.6. BEEP..300
8.4.7. BITAND (Bit by Bit AND) ..300
8.4.8. BITOR (Bit by Bit OR)..301
8.4.9. BITXOR (Bit by Bit Exclusive OR)...301
8.4.10. C2D (Character to Decimal)...301
8.4.11. C2X (Character to Hexadecimal)...302
8.4.12. CENTER (or CENTRE)...303
8.4.13. CHANGESTR..303
8.4.14. CHARIN (Character Input)..303
8.4.15. CHAROUT (Character Output)..304
8.4.16. CHARS (Characters Remaining)...305
8.4.17. COMPARE...306
8.4.18. CONDITION..306
8.4.19. COPIES..308
8.4.20. COUNTSTR...308
8.4.21. D2C (Decimal to Character)...308
8.4.22. D2X (Decimal to Hexadecimal)...309
8.4.23. DATATYPE..309

xv

8.4.24. DATE..311
8.4.25. DELSTR (Delete String)..314
8.4.26. DELWORD (Delete Word)...314
8.4.27. DIGITS...315
8.4.28. DIRECTORY..315
8.4.29. ENDLOCAL (Linux only)...315
8.4.30. ERRORTEXT...316
8.4.31. FILESPEC..316
8.4.32. FORM...317
8.4.33. FORMAT..317
8.4.34. FUZZ..318
8.4.35. INSERT..318
8.4.36. LASTPOS (Last Position)..319
8.4.37. LEFT...319
8.4.38. LENGTH..320
8.4.39. LINEIN (Line Input)..320
8.4.40. LINEOUT (Line Output)..321
8.4.41. LINES (Lines Remaining)..323
8.4.42. MAX (Maximum)..323
8.4.43. MIN (Minimum)...324
8.4.44. OVERLAY..324
8.4.45. POS (Position)..324
8.4.46. QUEUED..325
8.4.47. RANDOM..325
8.4.48. REVERSE..326
8.4.49. RIGHT..326
8.4.50. RXFUNCADD...326
8.4.51. RXFUNCDROP...327
8.4.52. RXFUNCQUERY..327
8.4.53. RXQUEUE...327
8.4.54. SETLOCAL (Linux only)..329
8.4.55. SIGN...329
8.4.56. SOURCELINE...329
8.4.57. SPACE..330
8.4.58. STREAM..330

8.4.58.1. Stream Commands...331
8.4.58.1.1. Command Strings..331
8.4.58.1.2. QUERY Stream Commands..335

8.4.59. STRIP...337
8.4.60. SUBSTR (Substring)..338
8.4.61. SUBWORD..338
8.4.62. SYMBOL...339
8.4.63. TIME..339
8.4.64. TRACE...342
8.4.65. TRANSLATE...342
8.4.66. TRUNC (Truncate)...343
8.4.67. USERID..343
8.4.68. VALUE...343

xvi

8.4.69. VAR..346
8.4.70. VERIFY..346
8.4.71. WORD..347
8.4.72. WORDINDEX...347
8.4.73. WORDLENGTH..348
8.4.74. WORDPOS (Word Position)..348
8.4.75. WORDS..348
8.4.76. X2B (Hexadecimal to Binary)..349
8.4.77. X2C (Hexadecimal to Character)...349
8.4.78. X2D (Hexadecimal to Decimal)...349
8.4.79. XRANGE (Hexadecimal Range)..350

9. Rexx Utilities (RexxUtil)..353

9.1. List of Rexx Utility Functions...353
9.2. RxMessageBox (Windows only)...355
9.3. RxWinExec (Windows only)...358
9.4. SysAddFileHandle (Windows only)...359
9.5. SysAddRexxMacro...360
9.6. SysBootDrive (Windows only)...360
9.7. SysClearRexxMacroSpace..360
9.8. SysCloseEventSem...360
9.9. SysCloseMutexSem..361
9.10. SysCls..361
9.11. SysCreateEventSem..362
9.12. SysCreateMutexSem...362
9.13. SysCreatePipe (AIX only)..363
9.14. SysCurPos (Windows only)..363
9.15. SysCurState (Windows only)..363
9.16. SysDriveInfo (Windows only)..364
9.17. SysDriveMap (Windows only)..365
9.18. SysDropFuncs...366
9.19. SysDropLibrary (Windows only)..366
9.20. SysDropRexxMacro..366
9.21. SysDumpVariables..367
9.22. SysFileCopy (Windows only)...367
9.23. SysFileDelete..368
9.24. SysFileMove (Windows only)...369
9.25. SysFileSearch..369
9.26. SysFileSystemType (Windows only)..371
9.27. SysFileTree..371
9.28. SysFork (Linux, AIX, Solaris only)..375
9.29. SysFromUnicode (Windows only)..375
9.30. SysGetCollate (Windows only)...377
9.31. SysGetErrortext...378
9.32. SysGetFileDateTime...378
9.33. SysGetKey...379
9.34. SysGetMessage...379
9.35. SysGetMessageX (Unix only)..380

xvii

9.36. SysIni (Windows only)..381
9.37. SysIsFile..383
9.38. SysIsFileCompressed (Windows only)...383
9.39. SysIsFileDirectory..384
9.40. SysIsFileEncrypted (Windows only)...384
9.41. SysIsFileLink..385
9.42. SysIsFileNotContentIndexed (Windows only)..385
9.43. SysIsFileOffline (Windows only)..386
9.44. SysIsFileSparse (Windows only)..386
9.45. SysIsFileTemporary (Windows only)...387
9.46. SysLoadFuncs...387
9.47. SysLoadRexxMacroSpace..388
9.48. SysMapCase (Windows only)...388
9.49. SysMkDir..388
9.50. SysNationalLanguageCompare (Windows only)..389
9.51. SysOpenEventSem..390
9.52. SysOpenMutexSem...390
9.53. SysPostEventSem..391
9.54. SysProcessType (Windows only)..391
9.55. SysPulseEventSem (Windows only)...392
9.56. SysQueryProcess...392
9.57. SysQueryProcessCodePage...393
9.58. SysQueryRexxMacro..394
9.59. SysReleaseMutexSem...394
9.60. SysReorderRexxMacro...395
9.61. SysRequestMutexSem...395
9.62. SysResetEventSem..396
9.63. SysRmDir..396
9.64. SysSaveRexxMacroSpace...397
9.65. SysSearchPath...398
9.66. SysSetFileDateTime..398
9.67. SysSetPriority..399
9.68. SysSetProcessCodePage (Windows only)...400
9.69. SysShutdownSystem (Windows only)..401
9.70. SysSleep..401
9.71. SysStemCopy..402
9.72. SysStemDelete..403
9.73. SysStemInsert..404
9.74. SysStemSort..405
9.75. SysSwitchSession (Windows only)...406
9.76. SysSystemDirectory (Windows only)...406
9.77. SysTempFileName..406
9.78. SysTextScreenRead (Windows only)..407
9.79. SysTextScreenSize (Windows only)...408
9.80. SysToUnicode (Windows only)..408
9.81. SysUtilVersion..410
9.82. SysVersion...411
9.83. SysVolumeLabel (Windows only)...411

xviii

9.84. SysWait (AIX only)...411
9.85. SysWaitEventSem...411
9.86. SysWaitNamedPipe (Windows only)..412
9.87. SysWinDecryptFile (Windows only)..412
9.88. SysWinEncryptFile (Windows only)..413
9.89. SysWinGetDefaultPrinter (Windows only)...414
9.90. SysWinGetPrinters (Windows only)...414
9.91. SysWinSetDefaultPrinter (Windows only)...414
9.92. SysWinVer Windows only)...415

10. Parsing..417

10.1. Simple Templates for Parsing into Words...417
10.1.1. The Period as a Placeholder...419

10.2. Templates Containing String Patterns...419
10.3. Templates Containing Positional (Numeric) Patterns...420

10.3.1. Combining Patterns and Parsing into Words..423
10.4. Parsing with Variable Patterns..424
10.5. Using UPPER, LOWER, and CASELESS...425
10.6. Parsing Instructions Summary..425
10.7. Parsing Instructions Examples..426
10.8. Advanced Topics in Parsing..427

10.8.1. Parsing Several Strings...427
10.8.2. Combining String and Positional Patterns..428
10.8.3. Conceptual Overview of Parsing..429

11. Numbers and Arithmetic ..433

11.1. Precision..434
11.2. Arithmetic Operators...434

11.2.1. Power..434
11.2.2. Integer Division..435
11.2.3. Remainder...435
11.2.4. Operator Examples...435

11.3. Exponential Notation..436
11.4. Numeric Comparisons...437
11.5. Limits and Errors when Rexx Uses Numbers Directly...438

12. Conditions and Condition Traps..441

12.1. Action Taken when a Condition Is Not Trapped...444
12.2. Action Taken when a Condition Is Trapped..444
12.3. Condition Information...446

12.3.1. Descriptive Strings...446
12.3.2. Additional Object Information...447
12.3.3. The Special Variable RC..447
12.3.4. The Special Variable SIGL...448
12.3.5. Condition Objects...448

xix

13. Concurrency...451

13.1. Early Reply...451
13.2. Message Objects...453
13.3. Default Concurrency...453

13.3.1. Sending Messages within an Activity..455
13.4. Using Additional Concurrency Mechanisms..457

13.4.1. SETUNGUARDED Method and UNGUARDED Option.......................................457
13.4.2. GUARD ON and GUARD OFF...458
13.4.3. Guarded Methods...458
13.4.4. Additional Examples..458

13.4.4.1. Semaphores..459
13.4.4.2. Monitors (Bounded Buffer)...463
13.4.4.3. Readers and Writers...464

14. The Security Manager...467

14.1. Calls to the Security Manager...467
14.1.1. Example..469

15. Input and Output Streams..473

15.1. The Input and Output Model...473
15.1.1. Input Streams..473
15.1.2. Output Streams...474
15.1.3. External Data Queue...475

15.1.3.1. Unnamed Queues...475
15.1.3.2. Named Queues...475
15.1.3.3. Multiprogramming Considerations..477

15.1.4. Default Stream Names..477
15.1.5. Line versus Character Positioning..478

15.2. Implementation...479
15.3. Operating System Specifics..479
15.4. Examples of Input and Output..479
15.5. Errors during Input and Output...481
15.6. Summary of Rexx I/O Instructions and Methods...481

16. Debugging Aids..483

16.1. Interactive Debugging of Programs..483
16.2. Debugging Aids..483
16.3. RXTRACE Variable..484

17. Reserved Keywords...487

18. Special Variables..489

19. Useful Services...491

19.1. Windows Commands..491
19.2. Linux Commands..491
19.3. Subcommand Handler Services..492

19.3.1. The RXSUBCOM Command...492
19.3.1.1. RXSUBCOM REGISTER...492
19.3.1.2. RXSUBCOM DROP..493
19.3.1.3. RXSUBCOM QUERY...494
19.3.1.4. RXSUBCOM LOAD...494

xx

19.3.2. The RXQUEUE Filter..495
19.4. Distributing Programs without Source..497

20. Windows Scripting Host Engine...499

20.1. Object Rexx as a Windows Scripting Host Engine...499
20.1.1. Windows Scripting Host Overview..499

20.1.1.1. The Gestation of WSH...499
20.1.1.2. Hosts Provided by Microsoft...500

20.2. Scripting in the Windows Style...500
20.2.1. Invocation by the Browser..500
20.2.2. WSH File Types and Formats...502

20.2.2.1. .wsf...502
20.2.2.2. .wsc..504

20.2.3. Invocation from a Command Prompt...507
20.2.3.1. As a Conventional Object Rexx File..507
20.2.3.2. As a Windows Scripting Host File...508

20.2.4. Invocation as a COM Object..509
20.2.4.1. Registering the COM Object...509
20.2.4.2. Generating a Typelib..509
20.2.4.3. Invoking...509
20.2.4.4. Events...510

20.2.4.4.1. COM Events..510
20.2.4.4.2. Internet Explorer Events..511

20.2.5. WSH Samples...511
20.3. Interpretation of and Deviation from the WSH Specification...512

20.3.1. Windows Scripting Host (WSH) Advanced Overview...512
20.3.1.1. Hosts Provided by Microsoft...512
20.3.1.2. Additional COM Objects...513
20.3.1.3. Where to Find Additional Documentation...513

20.3.2. Object Rexx in the WSH Environment..513
20.3.2.1. Object Rexx Features Available...513
20.3.2.2. Changes in Object Rexx due to WSH..514
20.3.2.3. Parameters..514

20.3.3. Properties..515
20.3.4. The Object Rexx "Sandbox"...516

20.3.4.1. Implications of Browser Applications That Run Outside the "Sandbox"....516
20.3.5. Features Duplicated in Object Rexx and WSH..516

20.3.5.1. Declaring Objects with Object Rexx or WScript...516
20.3.5.2. Subcom versus the Host Interface..517
20.3.5.3. .dll vs COM..517

A. Using the DO Keyword...519

A.1. Simple DO Group..519
A.2. Repetitive DO Loops..519

A.2.1. Simple Repetitive Loops..519
A.2.2. Controlled Repetitive Loops..519

A.3. Repetitive Loops over Collections...521
A.4. Conditional Phrases (WHILE and UNTIL)...522

xxi

B. Migration ...525

B.1. Error Codes and Return Codes...525
B.2. Error Detection and Reporting...525
B.3. Environment Variables...525
B.4. Stems versus Collections..525
B.5. Input and Output Using Functions and Methods..526
B.6. .Environment..526
B.7. Deleting Environment Variables...526
B.8. Queuing..526
B.9. Trace in Macrospace...526
B.10. The RxMessageBox Function..526

C. Error Numbers and Messages...527

C.1. Error List..527
C.1.1. Error 3 - Failure during initialization...527
C.1.2. Error 4 - Program interrupted..528
C.1.3. Error 5 - System resources exhausted..528
C.1.4. Error 6 - Unmatched "/*" or quote...528
C.1.5. Error 7 - WHEN or OTHERWISE expected...529
C.1.6. Error 8 - Unexpected THEN or ELSE...529
C.1.7. Error 9 - Unexpected WHEN or OTHERWISE...530
C.1.8. Error 10 - Unexpected or unmatched END..530
C.1.9. Error 11 - Control stack full...531
C.1.10. Error 13 - Invalid character in program...531
C.1.11. Error 14 - Incomplete DO/SELECT/IF...532
C.1.12. Error 15 - Invalid hexadecimal or binary string...532
C.1.13. Error 16 - Label not found...533
C.1.14. Error 17 - Unexpected PROCEDURE...533
C.1.15. Error 18 - THEN expected...534
C.1.16. Error 19 - String or symbol expected...534
C.1.17. Error 20 - Symbol expected...535
C.1.18. Error 21 - Invalid data on end of clause...537
C.1.19. Error 22 - Invalid character string..538
C.1.20. Error 23 - Invalid data string..538
C.1.21. Error 24 - Invalid TRACE request...538
C.1.22. Error 25 - Invalid subkeyword found...539
C.1.23. Error 26 - Invalid whole number..541
C.1.24. Error 27 - Invalid DO syntax...542
C.1.25. Error 28 - Invalid LEAVE or ITERATE..542
C.1.26. Error 29 - Environment name too long..543
C.1.27. Error 30 - Name or string too long..543
C.1.28. Error 31 - Name starts with number or "."...544
C.1.29. Error 33 - Invalid expression result..544
C.1.30. Error 34 - Logical value not 0 or 1..545
C.1.31. Error 35 - Invalid expression..545
C.1.32. Error 36 - Unmatched "(" or "[" in expression...548
C.1.33. Error 37 - Unexpected ",", ")", or "]"...548
C.1.34. Error 38 - Invalid template or pattern..549

xxii

C.1.35. Error 39 - Evaluation stack overflow...549
C.1.36. Error 40 - Incorrect call to routine...549
C.1.37. Error 41 - Bad arithmetic conversion...552
C.1.38. Error 42 - Arithmetic overflow/underflow...553
C.1.39. Error 43 - Routine not found..553
C.1.40. Error 44 - Function or message did not return data...554
C.1.41. Error 45 - No data specified on function RETURN...554
C.1.42. Error 46 - Invalid variable reference..554
C.1.43. Error 47 - Unexpected label...555
C.1.44. Error 48 - Failure in system service...555
C.1.45. Error 49 - Interpretation error..555
C.1.46. Error 90 - External name not found...555
C.1.47. Error 91 - No result object...556
C.1.48. Error 92 - OLE error..556
C.1.49. Error 93 - Incorrect call to method..557
C.1.50. Error 97 - Object method not found...561
C.1.51. Error 98 - Execution error..561
C.1.52. Error 99 - Translation error..565

C.2. RXSUBCOM Utility Program...567
C.2.1. Error 116 - The RXSUBCOM parameter REGISTER is incorrect...........................567
C.2.2. Error 117 - The RXSUBCOM parameter DROP is incorrect....................................568
C.2.3. Error 118 - The RXSUBCOM parameter LOAD is incorrect...................................568
C.2.4. Error 125 - The RXSUBCOM parameter QUERY is incorrect.................................568

C.3. RXQUEUE Utility Program...569
C.3.1. Error 119 - The REXX queuing system is not initialized..569
C.3.2. Error 120 - The size of the data is incorrect..569
C.3.3. Error 121 - Storage for data queues is exhausted..569
C.3.4. Error 122 - The name %1 is not a valid queue name...569
C.3.5. Error 123 - The queue access mode is not correct...569
C.3.6. Error 124 - The queue %1 does not exist...570
C.3.7. Error 131 - The syntax of the command is incorrect...570
C.3.8. Error 132 - System error occurred while processing the command..........................570

C.4. RexxC Utility Program...570
C.4.1. Error 127 - The REXXC command parameters are incorrect...................................570
C.4.2. Error 128 - Output file name must be different from input file name........................570
C.4.3. Error 129 - SYNTAX: REXXC InProgramName [OutProgramName] [/S].............570
C.4.4. Error 130 - Without OutProgramName REXXC only performs a syntax check.......571

D. Notices..573

D.1. Trademarks...573
D.2. Source Code For This Document...574

E. Common Public License Version 1.0...575

E.1. Definitions..575
E.2. Grant of Rights...575
E.3. Requirements..576
E.4. Commercial Distribution..576
E.5. No Warranty..577
E.6. Disclaimer of Liability..577

xxiii

E.7. General..578

Index..579

xxiv

List of Tables
4-1. Summary of Methods and the Classes Defining Them..97
6-1. Methods Available to the WindowsProgramManager Class..258
6-2. Symbolic Names for Virtual Keys..265
6-3. Stem Information..278
6-4. Stem Information..280
6-5. OLE/Rexx Types..283
9-1. Rexx Utility Library Functions..353
10-1. Parsing Source Strings..425
11-1. Whole Number Limits..438

List of Figures
1-1. Modular Data--a Report Object..2
1-2. A Ball Object..3
1-3. Ball Object with Variable Names and Values...3
1-4. Encapsulated 5 Object..4
1-5. A Simple Class...6
1-6. Icon Class...6
1-7. Instances of the Icon Class...7
1-8. Superclass and Subclasses..8
1-9. The Screen-Object Superclass..8
1-10. Multiple Inheritance...8
4-1. Classes and Inheritance of Methods (part 1 of 4)...94
4-2. Classes and Inheritance of Methods (Part 2 of 4)..95
4-3. Classes and Inheritance of Methods (Part 3 of 4)..96
4-4. Classes and Inheritance of Methods (Part 4 of 4)..96
8-1. Function and Routine Resolution and Execution...293
10-1. Conceptual Overview of Parsing..430
10-2. Conceptual View of Finding Next Pattern..430
10-3. Conceptual View of Word Parsing...431
13-1. Early Reply...451
13-2. Before REPLY..451
13-3. After REPLY..452
13-4. Indirect Object Recursion...456
13-5. Example of a Rexx Semaphore Class...459
14-1. Agent Program...470
14-2. Example of Server Implementing Security Manager...470
15-1. Sample Rexx Procedure Using a Queue...476
A-1. Concept of a DO Loop..522
A-2. Concept of Repetitive Loop over Collection...523

xxv

xxvi

About This Book
This book describes the Open Object Rexx Interpreter, calledinterpreter or language processor in the
following, and the Object-Oriented Rexx language.

This book is intended for people who plan to develop applications using Rexx. Its users range from the
novice, who might have experience in some programming language but no Rexx experience, to the
experienced application developer, who might have had some experience with Object Rexx.

This book is a reference rather than a tutorial. It assumes you are already familiar with object-oriented
programming concepts.

Descriptions include the use and syntax of the language and explain how the language processor
"interprets" the language as a program is running.

1. Related Information
See also:Open Object Rexx: Programming Guide

2. How to Read the Syntax Diagrams
Throughout this book, syntax is described using the structure defined below.

• Read the syntax diagrams from left to right, from top to bottom, following the path of the line.

The>>--- symbol indicates the beginning of a statement.

The---> symbol indicates that the statement syntax is continued on the next line.

The>--- symbol indicates that a statement is continued from the previous line.

The--->< symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the>--- symbol and end with
the---> symbol.

• Required items appear on the horizontal line (the main path).

>>-STATEMENT--required_item------------------------------------><

• Optional items appear below the main path.

>>-STATEMENT--+---------------+--------------------------------><

+-optional_item-+

• If you can choose from two or more items, they appear vertically, in a stack. If you must choose one of
the items, one item of the stack appears on the main path.

>>-STATEMENT--+-required_choice1-+-----------------------------><

+-required_choice2-+

i

About This Book

• If choosing one of the items is optional, the entire stack appears below the main path.

>>-STATEMENT--+------------------+-----------------------------><

+-optional_choice1-+

+-optional_choice2-+

• If one of the items is the default, it appears above the main path and the remaining choices are shown
below.

+-default_choice--+

>>-STATEMENT--+-----------------+------------------------------><

+-optional_choice-+

+-optional_choice-+

• An arrow returning to the left above the main line indicates an item that can be repeated.

+-----------------+

V |

>>-STATEMENT----repeatable_item-+------------------------------><

A repeat arrow above a stack indicates that you can repeat the items in the stack.

• A set of vertical bars around an item indicates that the item is a fragment, a part of the syntax diagram
that appears in greater detail below the main diagram.

>>-STATEMENT--| fragment |-------------------------------------><

fragment:

|--expansion_provides_greater_detail----------------------------|

• Keywords appear in uppercase (for example,PARM1). They must be spelled exactly as shown but you
can type them in upper, lower, or mixed case. Variables appear in all lowercase letters (for example,
parmx). They represent user-supplied names or values.

• If punctuation marks, parentheses, arithmetic operators, or such symbols are shown, you must enter
them as part of the syntax.

The following example shows how the syntax is described:

+-,------+

V |

>>-MAX(----number-+--)---><

3. A Note About Program Examples in this Document
The program examples in this document are rendered in a mono-spaced font that is not completely
compatible for cut-and-paste functionality. Pasteing text into an editor could result in some characters

ii

About This Book

outside of the standard ASCII character set. Specifically, single-qoute and double-quote characters are
sometimes converted incorrectly when pasted into an editor.

4. Getting Help
The Open Object Rexx Project has a number of methods to obtain help for ooRexx. These methods, in
no particular order of preference, are listed below.

4.1. The Rexx Language Association Mailing List
TheRexx Language Association(http:www.rexxla.org/) maintains a mailing list for its members. This
mailing list is only available to RexxLA members thus you will need to join RexxLA in order to get on
the list. The dues for RexxLA membership are small and are charged on a yearly basis. For details on
joining RexxLA please refer to theRexxLA Home Page(http://rexxla.org/) or theRexxLA Membership
Application(http://rexxla.org/About_RexxLA/member.html) page.

4.2. The Open Object Rexx SourceForge Site
The Open Object Rexx Project (http://www.oorexx.org/) utilizesSourceForge(http://sourceforge.net/) to
house theooRexx Project(http://sourceforge.net/projects/oorexx) source repositories, mailing lists and
other project features. Here is a list of some of the most useful facilities.

The ooRexx Forums

The ooRexx project maintains a set of forums that anyone my contribute to or monitor. They are
located on theooRexx Forums(http://sourceforge.net/forum/?group_id=119701) page. There are
currently three forums available: Help, Developers and Open Discussion. In addition, you can
monitor the forums via email.

The Developer Mailing List

You can subscribe to the oorexx-devel mailing list atooRexx Mailing List Subscriptions
(http://sourceforge.net/mail/?group_id=119701) page. This list is for discussing ooRexx project
development activities. It also supports a historical archive of past messages.

The Users Mailing List

You can subscribe to the oorexx-users mailing list atooRexx Mailing List Subscriptions
(http://sourceforge.net/mail/?group_id=119701) page. This list is for discussing using ooRexx. It
also supports a historical archive of past messages.

The Announcements Mailing List

You can subscribe to the oorexx-announce mailing list atooRexx Mailing List Subscriptions
(http://sourceforge.net/mail/?group_id=119701) page. This list is only used to announce significant
ooRexx project events.

iii

About This Book

The Bug Mailing List

You can subscribe to the oorexx-bugs mailing list atooRexx Mailing List Subscriptions
(http://sourceforge.net/mail/?group_id=119701) page. This list is only used for monitoring changes
to the ooRexx bug tracking system.

Support Requests

You can create a support request atooRexx Support Request
(http://sourceforge.net/tracker/?group_id=119701&atid=684731) page. Please be sure to log in to
Sourceforge before creating the request so that it will record your e-mail address. This will allow
SourceForge (and the ooRexx developers) a way to contact you when updates are made to your
request. Otherwise you will need to manually check back on this page to track any updates to the
request.

Also, please try to provide as much information in the support request as possible so that the
developers can determine the problem as quickly as possible.

Bug Reports

You can create a bug report atooRexx Bug Report
(http://sourceforge.net/tracker/?group_id=119701&atid=684730) page. Please be sure to log in to
Sourceforge before creating the report so that it will record your e-mail address. This will allow
SourceForge (and the ooRexx developers) a way to contact you when updates are made to your
report. Otherwise you will need to manually check back on this page to track any updates to the
report.

Also, please try to provide as much information in the bug report as possible so that the developers
can determine the problem as quickly as possible.

Patch Reports

If you create an enhancement patch for ooRexx please post the pach using theooRexx Patch Report
(http://sourceforge.net/tracker/?group_id=119701&atid=684732) page. Please be sure to log in to
Sourceforge before creating the report so that it will record your e-mail address. This will allow
SourceForge (and the ooRexx developers) a way to contact you when updates are made to your
report. Otherwise you will need to manually check back on this page to track any updates to the
report.

Also, please try to provide as much information in the patch report as possible so that the developers
can evaluate the enhancement as quickly as possible.

Please do not post bug patches here, instead you should open a bug report and attach the patch to it.

4.3. comp.lang.rexx Newsgroup
The comp.lang.rexx (news:comp.lang.rexx) newsgroup is a good place to obtain help from many
individuals within the Rexx community. You can obtain help on Open Object Rexx or on any number of

iv

About This Book

other Rexx interpreters and tools.

v

About This Book

vi

Chapter 1. Rexx General Concepts
The Rexx language is particularly suitable for:

• Application scripting

• Command procedures

• Application front ends

• User-defined macros (such as editor subcommands)

• Prototyping

• Personal computing

As an object-oriented language, Rexx provides, for example, data encapsulation, polymorphism, an
object class hierarchy, class-based inheritance of methods, and concurrency. Object Rexx is compatible
with earlier Rexx versions. It has the usual structured-programming instructions, for example IF,
SELECT, DO WHILE, and LEAVE, and a number of useful built-in functions.

The language imposes few restrictions on the program format. There can be more than one clause on a
line, or a single clause can occupy more than one line. Indentation is allowed. You can, therefore, code
programs in a format that emphasizes their structure, making them easier to read.

There is no limit to the length of the values of variables, as long as all variables fit into the storage
available. There are no restrictions on the types of data that variables can contain.

The limit on the length of symbols (variable names) is 250 characters. You can use compound symbols,
such as

NAME.Y.Z

whereY andZ can be the names of variables or can be constant symbols, for constructing arrays and for
other purposes.

A language processor (interpreter) runs Rexx programs. That is, the program runs line by line and word
by word, without first being translated to another form (compiled). The advantage of this is that you can
fix the error and rerun the program faster than with a compiler.

1.1. What Is Object-Oriented Programming?
Object-oriented programming is a way to write computer programs by focusing not on the instructions
and operations a program uses to manipulate data, but on the data itself. First, the program simulates, or
models, objects in the physical world as closely as possible. Then the objects interact with each other to
produce the desired result.

Real-world objects, such as a company’s employees, money in a bank account, or a report, are stored as
data so the computer can act upon it. For example, when you print a report, print is the action and report
is the object acted upon. Often several actions apply; you could also send or erase the report.

1

Chapter 1. Rexx General Concepts

1.2. Modularizing Data
In conventional, structured programming, actions like print are often isolated from the data by placing
them in subroutines or modules. A module typically contains an operation for implementing one simple
action. You might have a PRINT module, a SEND module, an ERASE module. These actions are
independent of the data they operate on.

But with object-oriented programming, it is the data that is modularized. And each data module includes
its own operations for performing actions directly related to its data.

Figure 1-1. Modular Data--a Report Object

2

Chapter 1. Rexx General Concepts

In the case of report, the report object would contain its own built-in PRINT, SEND, ERASE, and FILE
operations.

Object-oriented programming lets you model real-world objects--even very complex ones--precisely and
elegantly. As a result, object manipulation becomes easier and computer instructions become simpler and
can be modified later with minimal effort.

Object-oriented programminghidesany information that is not important for acting on an object, thereby
concealing the object’s complexities. Complex tasks can then be initiated simply, at a very high level.

1.3. Modeling Objects
In object-oriented programming, objects are modeled to real-world objects. A real-world object has
actions related to it and characteristics of its own.

Take a ball, for example. A ball can be acted on--rolled, tossed, thrown, bounced, caught. But it also has
its own physical characteristics--size, shape, composition, weight, color, speed, position. An accurate
data model of a real ball would define not only the physical characteristics butall related actions and
characteristics in one package:

Figure 1-2. A Ball Object

In object-oriented programming, objects are the basic building blocks--the fundamental units of data.

There are many kinds of objects; for example, character strings, collections, and input and output
streams. An object--such as a character string--always consists of two parts: the possible actions or
operations related to it, and its characteristics or variables. A variable has a variablename, and an
associated data value that can change over time. These actions and characteristics are so closely
associated that they cannot be separated:

3

Chapter 1. Rexx General Concepts

Figure 1-3. Ball Object with Variable Names and Values

To access an object’s data, you must always specify an action. For example, suppose the object is the
number5. Its actions might include addition, subtraction, multiplication, and division. Each of these
actions is an interface to the object’s data. The data is said to beencapsulatedbecause the only way to
access it is through one of these surrounding actions. The encapsulated internal characteristics of an
object are itsvariables. Variables are associated with an object and exist for the lifetime of that object:

Figure 1-4. Encapsulated 5 Object

Rexx comes with a basic set of classes for creating objects (seeObjects and Classes). Therefore, you can
create objects that exactly match the needs of a particular application.

1.4. How Objects Interact
The actions within an object are its only interface to other objects. Actions form a kind of "wall" that
encapsulates the object, and shields its internal information from outside objects. This shielding is called
information hiding.Information hiding protects an object’s data from corruption by outside objects, and

4

Chapter 1. Rexx General Concepts

also protects outside objects from relying on another object’s private data, which can change without
warning.

One object can act upon another (or cause it to act) only by calling that object’s actions, namely by
sendingmessages. Objects respond to these messages by performing an action, returning data, or both. A
message to an object must specify:

• A receiving object

• The "message send" symbol, ~, which is called thetwiddle

• The action and, optionally in parentheses, any parameters required

So the message format looks like this:

object~action(parameters)

Assume that the object is the string!iH. Sending it a message to use its REVERSE action:

"!iH"~reverse

returns the string objectHi!.

1.5. Methods
Sending a message to an object results in performing some action; that is, it results in running some
underlying code. The action-generating code is called amethod. When you send a message to an object,
you specify its method name in the message. Method names are character strings like REVERSE. In the
preceding example, sending thereverse message to the!iH object causes it to run the REVERSE
method. Most objects are capable of more than one action, and so have a number of available methods.

The classes Rexx provides include their own predefined methods. The Message class, for example, has
the COMPLETED, INIT, NOTIFY, RESULT, SEND, and START methods. When you create your own
classes, you can write new methods for them in Rexx code. Much of the object programming in Rexx is
writing the code for the methods you create.

1.6. Polymorphism
Rexx lets you send the same message to objects that are different:

"!iH"~reverse /* Reverses the characters "!iH" to form "Hi!" */

pen~reverse /* Reverses the direction of a plotter pen */

ball~reverse /* Reverses the direction of a moving ball */

As long as each object has its own REVERSE method, REVERSE runs even if the programming
implementation is different for each object. This ability to hide different functions behind a common
interface is calledpolymorphism. As a result of information hiding, each object in the previous example

5

Chapter 1. Rexx General Concepts

knows only its own version of REVERSE. And even though the objects are different, each reverses itself
as dictated by its own code.

Although the!iH object’s REVERSE code is different from the plotter pen’s, the method name can be
the same because Rexx keeps track of the methods each object owns. The ability to reuse the same
method name so that one message can initiate more than one function is another feature of
polymorphism. You do not need to have several message names like REVERSE_STRING,
REVERSE_PEN, REVERSE_BALL. This keeps method-naming schemes simple and makes complex
programs easy to follow and modify.

The ability to hide the various implementations of a method while leaving the interface the same
illustrates polymorphism at its lowest level. On a higher level, polymorphism permits extensive code
reuse.

1.7. Classes and Instances
In Rexx, objects are organized intoclasses. Classes are like templates; they define the methods and
variables that a group of similar objects have in common and store them in one place.

If you write a program to manipulate some screen icons, for example, you might create an Icon class. In
that Icon class you can include all the icon objects with similar actions and characteristics:

Figure 1-5. A Simple Class

All the icon objects might use common methods like DRAW or ERASE. They might contain common
variables like position, color, or size. What makes each icon object different from one another is the data
assigned to its variables. For the Windows system icon, it might be position="20,20", while for the
shredder it is "20,30" and for information it is "20,40":

6

Chapter 1. Rexx General Concepts

Figure 1-6. Icon Class

Objects that belong to a class are calledinstancesof that class. As instances of the Icon class, the
Windows system icon, shredder icon, and information iconacquirethe methods and variables of that
class. Instances behave as if they each had their own methods and variables of the same name. All
instances, however, have their own unique properties--thedataassociated with the variables. Everything
else can be stored at the class level.

Figure 1-7. Instances of the Icon Class

If you must update or change a particular method, you only have to change it at one place, at the class
level. This single update is then acquired by every new instance that uses the method.

A class that can create instances of an object is called anobject class. The Icon class is an object class
you can use to create other objects with similar properties, such as an application icon or a drives icon.

An object class is like a factory for producing instances of the objects.

7

Chapter 1. Rexx General Concepts

1.8. Data Abstraction
The ability to create new, high-level data types and organize them into a meaningful class structure is
calleddata abstraction. Data abstraction is at the core of object-oriented programming. Once you model
objects with real-world properties from the basic data types, you can continue creating, assembling, and
combining them into increasingly complex objects. Then you can use these objects as if they were part of
the original programming language.

1.9. Subclasses, Superclasses, and Inheritance
When you write your first object-oriented program, you do not have to begin your real-world modeling
from scratch. Rexx provides predefined classes and methods. From there you can create additional
classes and methods of your own, according to your needs.

Rexx classes are hierarchical. Any subclass (a class below another class in the hierarchy)inheritsthe
methods and variables of one or moresuperclasses(classes above a class in the hierarchy):

Figure 1-8. Superclass and Subclasses

You can add a class to an existing superclass. For example, you might add the Icon class to the
Screen-Object superclass:

Figure 1-9. The Screen-Object Superclass

In this way, the subclass inherits additional methods from the superclass. A class can have more than one
superclass, for example, subclass Bitmap might have the superclasses Screen-Object and Art-Object.
Acquiring methods and variables from more than one superclass is known asmultiple inheritance:

Figure 1-10. Multiple Inheritance

8

Chapter 1. Rexx General Concepts

1.10. Structure and General Syntax
On Windows and *nix, Rexx programs are not required to start with a standard comment. However, for
portability reasons, start each Rexx program with a standard comment that begins in the first column of
the first line. For more information on comments, refer toComments.

A Rexx program is built from a series ofclausesthat are composed of:

• Zero or more blanks (which are ignored)

• A sequence of tokens (seeTokens)

• Zero or more blanks (again ignored)

• A semicolon (;) delimiter that the line end, certain keywords, or the colon (:) implies.

Conceptually, each clause is scanned from left to right before processing, and the tokens composing it
are identified. Instruction keywords are recognized at this stage, comments are removed, and several
blanks (except within literal strings) are converted to single blanks. Blanks adjacent to operator
characters and special characters are also removed.

1.10.1. Characters
A characteris a member of a defined set of elements that is used for the control or representation of data.
You can usually enter a character with a single keystroke. The coded representation of a character is its
representation in digital form. A character, the letter A, for example, differs from itscoded
representationor encoding. Various coded character sets (such as ASCII and EBCDIC) use different
encodings for the letter A (decimal values 65 and 193, respectively). This book uses characters to convey
meanings and not to imply a specific character code, except where otherwise stated. The exceptions are
certain built-in functions that convert between characters and their representations. The functions C2D,
C2X, D2C, X2C, and XRANGE depend on the character set used.

A code page specifies the encodings for each character in a set. Be aware that:

• Some code pages do not contain all characters that Rexx defines as valid (for example, the logical
NOT character).

• Some characters that Rexx defines as valid have different encodings in different code pages, for
example the exclamation mark (!).

1.10.2. Comments
A comment is a sequence of characters delimited by specific characters. It is ignored by the program but
acts as a separator. For example, a token containing one comment is treated as two tokens.

The interpreter recognizes the following types of comments:

• A line comment, where the comment is limited to one line

• The standard Rexx comment, where the comment can cover several lines

9

Chapter 1. Rexx General Concepts

A line commentis started by two subsequent minus signs (--) and ends at the end of a line. Example:

"Fred"

"Don't Panic!"

'You shouldn''t' -- Same as "You shouldn't"

""

In this example, the language processor processes the statements from'Fred' to 'You shouldn''t', ignores
the words following the line comment, and continues to process the statement''.

A standard commentis a sequence of characters (on one or more lines) delimited by /* and */. Within
these delimiters any characters are allowed. Standard comments can contain other standard comments, as
long as each begins and ends with the necessary delimiters. They are callednested comments. Standard
comments can be anywhere and of any length.

/* This is an example of a valid Rexx comment */

Take special care when commenting out lines of code containing/* or */ as part of a literal string.
Consider the following program segment:

01 parse pull input

02 if substr(input,1,5) = "/*123"

03 then call process

04 dept = substr(input,32,5)

To comment out lines 2 and 3, the following change would be incorrect:

01 parse pull input

02 /* if substr(input,1,5) = "/*123"

03 then call process

04 */ dept = substr(input,32,5)

This is incorrect because the language processor would interpret the/* that is part of the literal string
/*123 as the start of a nested standard comment. It would not process the rest of the program because it
would be looking for a matching standard comment end (*/).

You can avoid this type of problem by using concatenation for literal strings containing/* or */; line 2
would be:

if substr(input,1,5) = "/" || "*123"

You could comment out lines 2 and 3 correctly as follows:

01 parse pull input

02 /* if substr(input,1,5) = "/" || "*123"

03 then call process

04 */ dept = substr(input,32,5)

Both types of comments can be mixed and nested. However, when you nest the two types, the type of
comment that comes first takes precedence over the one nested. Here is an example:

"Fred"

"Don't Panic!"

'You shouldn''t' /* Same as "You shouldn't"

10

Chapter 1. Rexx General Concepts

"" -- The null string */

In this example, the language processor ignores everything after'You shouldn''t' up to the end of the last
line. In this case, the standard comment has precedence over the line comment.

When nesting the two comment types, make sure that the start delimiter of the standard comment/* is
not in the line commented out with the line comment signs.

Example:

"Fred"

"Don't Panic!"

'You shouldn''t' -- Same as /* "You shouldn't"

"" The null string */

This example produces an error because the language processor ignores the start delimiter of the
standard comment, which is commented out using the line comment.

1.10.3. Tokens
A tokenis the unit of low-level syntax from which clauses are built. Programs written in Rexx are
composed of tokens. Tokens can be of any length, up to an implementation-restricted maximum. They are
separated by blanks or comments, or by the nature of the tokens themselves. The classes of tokens are:

• Literal strings

• Hexadecimal strings

• Binary strings

• Symbols

• Numbers

• Operator characters

• Special characters

1.10.3.1. Literal Strings

A literal string is a sequence includinganycharacters except line feed (X"10") and delimited by a single
quotation mark (') or a double quotation mark ("). You use two consecutive double quotation marks ("")
to represent one double quotation mark (") within a string delimited by double quotation marks.
Similarly, you use two consecutive single quotation marks ('') to represent one single quotation mark (')
within a string delimited by single quotation marks. A literal string is a constant and its contents are
never modified when it is processed. Literal strings must be complete on a single line. This means that
unmatched quotation marks can be detected on the line where they occur.

A literal string with no characters (that is, a string of length0) is called anull string.

These are valid strings:

"Fred"

"Don't Panic!"

11

Chapter 1. Rexx General Concepts

'You shouldn''t' /* Same as "You shouldn't" */

"" /* The null string */

Implementation maximum: A literal string can contain an unlimited number of characters. The length
of the evaluated result of an expression, however, is limited only by the available virtual storage of your
computer, with an additional limit of 512MB maximum per process.

Note that a string immediately followed by a right bracket is considered to be the name of a function. If
immediately followed by the symbolX or x, it is considered to be a hexadecimal string. If followed
immediately by the symbolB or b, it is considered to be a binary string.

1.10.3.2. Hexadecimal Strings

A hexadecimal string is a literal string, expressed using a hexadecimal notation of its encoding. It is any
sequence of zero or more hexadecimal digits (0-9, a-f, A-F), grouped in pairs. A single leading 0 is
assumed, if necessary, at the beginning of the string to make an even number of hexadecimal digits. The
groups of digits are optionally separated by one or more blanks, and the whole sequence is delimited by
single or double quotation marks and immediately followed by the symbolX or x. Neitherx norX can be
part of a longer symbol. The blanks, which can only be byte boundaries (and not at the beginning or end
of the string), are to improve readability. The language processor ignores them.

A hexadecimal string is a literal string formed by packing the hexadecimal digits given. Packing the
hexadecimal digits removes blanks and converts each pair of hexadecimal digits into its equivalent
character, for example, "41"X to A.

Hexadecimal strings let you include characters in a program even if you cannot directly enter the
characters themselves. These are valid hexadecimal strings:

"ABCD"x

"1d ec f8"X

"1 d8"x

Note: A hexadecimal string is not a representation of a number. It is an escape mechanism that lets
a user describe a character in terms of its encoding (and, therefore, is machine-dependent). In
ASCII, "20"X is the encoding for a blank. In every case, a string of the form "....."x is an alternative to
a straightforward string. In ASCII "41"x and "A" are identical, as are "20"x and a blank, and must be
treated identically.

Implementation maximum: The packed length of a hexadecimal string (the string with blanks
removed) is unlimited.

1.10.3.3. Binary Strings

A binary string is a literal string, expressed using a binary representation of its encoding. It is any
sequence of zero or more binary digits (0 or 1) in groups of 8 (bytes) or 4 (nibbles). The first group can
have less than four digits; in this case, up to three 0 digits are assumed to the left of the first digit, making
a total of four digits. The groups of digits are optionally separated by one or more blanks, and the whole
sequence is delimited by matching single or double quotation marks and immediately followed by the

12

Chapter 1. Rexx General Concepts

symbolb or B. Neitherb norB can be part of a longer symbol. The blanks, which can only be byte or
nibble boundaries (and not at the beginning or end of the string), are to improve readability. The
language processor ignores them.

A binary string is a literal string formed by packing the binary digits given. If the number of binary digits
is not a multiple of 8, leading zeros are added on the left to make a multiple of 8 before packing. Binary
strings allow you to specify characters explicitly, bit by bit. These are valid binary strings:

"11110000"b /* == "f0"x */

"101 1101"b /* == "5d"x */

"1"b /* == "00000001"b and "01"x */

"10000 10101010"b /* == "0001 0000 1010 1010"b */

""b /* == "" */

Implementation maximum: The packed length of a binary-literal string is unlimited.

1.10.3.4. Symbols

Symbols are groups of characters, selected from the:

• English alphabetic characters (A-Z anda-z). Note that some code pages do not include lowercase
English characters a-z.

• Numeric characters (0-9)

• Characters. ! ? and underscore (_). Note that the encoding of the exclamation mark depends on the
code page used.

Any lowercase alphabetic character in a symbol is translated to uppercase (that is, lowercasea-z to
uppercaseA-Z) before use.

These are valid symbols:

Fred

Albert.Hall

WHERE?

If a symbol does not begin with a digit or a period, you can use it as a variable and can assign it a value.
If you have not assigned a value to it, its value is the characters of the symbol itself, translated to
uppercase (that is, lowercasea-z to uppercaseA-Z). Symbols that begin with a number or a period are
constant symbols and cannot directly be assigned a value. (SeeEnvironment Symbols.)

One other form of symbol is allowed to support the representation of numbers in exponential format. The
symbol starts with a digit (0-9) or a period, and it can end with the sequenceE or e, followed immediately
by an optional sign (- or +), followed immediately by one or more digits (which cannot be followed by
any other symbol characters). The sign in this context is part of the symbol and is not an operator.

These are valid numbers in exponential notation:

17.3E-12

.03e+9

13

Chapter 1. Rexx General Concepts

1.10.3.5. Numbers

Numbers are character strings consisting of one or more decimal digits, with an optional prefix of a plus
(+) or minus (-) sign, and optionally including a single period (.) that represents a decimal point. A
number can also have a power of 10 suffixed in conventional exponential notation: anE (uppercase or
lowercase), followed optionally by a plus or minus sign, then followed by one or more decimal digits
defining the power of 10. Whenever a character string is used as a number, rounding can occur to a
precision specified by the NUMERIC DIGITS instruction (the default is nine digits). SeeNumbers and
Arithmetic for a full definition of numbers.

Numbers can have leading blanks (before and after the sign) and trailing blanks. Blanks cannot be
embedded among the digits of a number or in the exponential part. Note that a symbol or a literal string
can be a number. A number cannot be the name of a variable.

These are valid numbers:

12

"-17.9"

127.0650

73e+128

" + 7.9E5 "

You can specify numbers with or without quotation marks around them. Note that the sequence-17.9

(without quotation marks) in an expression is not simply a number. It is a minus operator (which can be
prefix minus if no term is to the left of it) followed by a positive number. The result of the operation is a
number.

A whole numberis a number that has a no decimal part and that the language processor would not
usually express in exponential notation. That is, it has no more digits before the decimal point than the
current setting of NUMERIC DIGITS (the default is nine).

Implementation maximum: The exponent of a number expressed in exponential notation can have up
to nine digits.

1.10.3.6. Operator Characters

The characters+ - \ / % * | | & = ¬ > < and the sequences>= <= \> \< \= >< <> == \== //

&& || ** ¬> ¬< ¬= ¬== >> << >>= \<< ¬<< \>> ¬>> <<= indicate operations (seeOperators).
(The|| can also be used as the concatenation symbol.) A few of these are also used in parsing templates,
and the equal sign is also used to indicate assignment. Blanks adjacent to operator characters are
removed. Therefore, the following are identical in meaning:

345>=123

345 >=123

345 >= 123

345 > = 123

Some of these characters (and some special characters--see the next section) might not be available in all
character sets. In this case, appropriate translations can be used. In particular, the vertical bar (|) is often
shown as a split vertical bar (¦).

Throughout the language, the NOT (¬) character is synonymous with the backslash (\). You can use
the two characters interchangeably according to availability and personal preference.

14

Chapter 1. Rexx General Concepts

Note: The Rexx interpreter uses ASCII character 124 in the concatenation operator and as the
logical OR operator. Depending on the code page or keyboard for your particular country, ASCII 124
can be shown as a solid vertical bar (|) or a split vertical bar (). The character on the screen might not
match the character engraved on the key. If you receive error 13, Invalid character in program, on
an instruction including a vertical bar character, make sure this character is ASCII 124.

The Rexx interpreter uses ASCII character 170 for the logical NOT operator. Depending on your
country, the¬ might not appear on your keyboard. If the character is not available, you can use the
backslash (\) in place of¬.

1.10.3.7. Special Characters

The following characters, together with the operator characters, have special significance when found
outside of literal strings:

, ; : () [] ~

These characters constitute the set of special characters. They all act as token delimiters, and blanks
adjacent to any of these are removed. There is an exception: a blank adjacent to the outside of a
parenthesis or bracket is deleted only if it is also adjacent to another special character (unless the
character is a parenthesis or bracket and the blank is outside it, too). For example, the language processor
does not remove the blank inA (Z). This is a concatenation that is not equivalent toA(Z), a function call.
The language processor removes the blanks in(A) + (Z) because this is equivalent to(A)+(Z).

1.10.3.8. Example

The following example shows how a clause is composed of tokens:

"REPEAT" A + 3;

This example is composed of six tokens--a literal string ("REPEAT"), a blank operator, a symbol (A, which
can have an assigned value), an operator (+), a second symbol (3, which is a number and a symbol), and
the clause delimiter (;). The blanks between theA and the+ and between the+ and the3 are removed.
However, one of the blanks between the"REPEAT" and theA remains as an operator. Thus, this clause is
treated as though written:

"REPEAT" A+3;

1.10.4. Implied Semicolons
The last element in a clause is the semicolon (;) delimiter. The language processor implies the semicolon
at a line end, after certain keywords, and after a colon if it follows a single symbol. This means that you
need to include semicolons only when there is more than one clause on a line or to end an instruction
whose last character is a comma.

15

Chapter 1. Rexx General Concepts

A line end usually marks the end of a clause and, thus, Rexx implies a semicolon at most end of lines.
However, there are the following exceptions:

• The line ends in the middle of a comment. The clause continues on to the next line.

• The last token was the continuation character (a comma) and the line does not end in the middle of a
comment. (Note that a comment is not a token.)

Rexx automatically implies semicolons after colons (when following a single symbol, a label) and after
certain keywords when they are in the correct context. The keywords that have this effect are ELSE,
OTHERWISE, and THEN. These special cases reduce typographical errors significantly.

Note: The two characters forming the comment delimiters, /* and */, must not be split by a line end
(that is, / and * should not appear on different lines) because they could not then be recognized
correctly; an implied semicolon would be added. The two consecutive characters forming a literal
quotation mark within a string are also subject to this line-end ruling.

1.10.5. Continuations
One way to continue a clause on the next line is to use the comma or the minus sign (-), which is referred
to as thecontinuation character. The continuation character is functionally replaced by a blank, and,
thus, no semicolon is implied. One or more comments can follow the continuation character before the
end of the line.

The following example shows how to use the continuation character to continue a clause:

say "You can use a comma", -- this line is continued

"to continue this clause."

or

say "You can use a minus"- -- this line is continued

"to continue this clause."

1.11. Terms, Expressions, and Operators
Expressions in Rexx are a general mechanism for combining one or more pieces of data in various ways
to produce a result, usually different from the original data. All expressions evaluate to objects.

Everything in Rexx is an object. Rexx provides some objects, which are described in later sections. You
can also define and create objects that are useful in particular applications--for example, a menu object
for user interaction. SeeModeling Objectsfor more information.

16

Chapter 1. Rexx General Concepts

1.11.1. Terms and Expressions
Termsare literal strings, symbols, message terms, function calls, or subexpressions interspersed with
zero or more operators that denote operations to be carried out on terms.

Literal strings, which are delimited by quotation marks, are constants.

Symbols(no quotation marks) are translated to uppercase. A symbol that does not begin with a digit or a
period can be the name of a variable; in this case the value of that variable is used. A symbol that begins
with a period can identify an object that the current environment provides; in this case, that object is
used. Otherwise a symbol is treated as a constant string. A symbol can also becompound.

Message termsare described inMessage Terms.

Function calls(seeFunctions), which are of the following form:

+-,--------------+

V |

>>-symbolorstring(----+------------+-+--)----------------------><

+-expression-+

Thesymbolorstringis a symbol or literal string.

An expressionconsists of one or more terms. Asubexpressionis a term in an expression surrounded
with a left and a right parenthesis.

Evaluation of an expression is left to right, modified by parentheses and operator precedence in the usual
algebraic manner (seeParentheses and Operator Precedence). Expressions are wholly evaluated, unless
an error occurs during evaluation.

As each term is used in an expression, it is evaluated as appropriate. The result is an object.
Consequently, the result of evaluating any expression is itself an object (such as a character string).

1.11.2. Operators
An operatoris a representation of an operation, such as an addition, to be carried out on one or two
terms. Each operator, except for the prefix operators, acts on two terms, which can be symbols, strings,
function calls, message terms, intermediate results, or subexpressions. Each prefix operator acts on the
term or subexpression that follows it. Blanks (and comments) adjacent to operator characters have no
effect on the operator; thus, operators constructed from more than one character can have embedded
blanks and comments. In addition, one or more blanks, if they occur in expressions but are not adjacent
to another operator, also act as an operator. The language processor functionally translates operators into
message terms. For dyadic operators, which operate on two terms, the language processor sends the
operator as a message to the term on the left, passing the term on the right as an argument. For example,
the sequence

say 1+2

is functionally equivalent to:

say 1~"+"(2)

17

Chapter 1. Rexx General Concepts

The blank concatenation operator sends the message " " (a single blank), and the abuttal concatenation
operator sends the "" message (a null string). When the¬ character is used in an operator, it is changed
to a\. That is, the operators¬= and \= both send the message \= to the target object.

For an operator that works on a single term (for example, the prefix - and prefix + operators), Rexx sends
a message to the operand, with no arguments. This means-z has the same effect asz~"-".

SeeOperator Methodsfor operator methods of the Object class andArithmetic Methodsfor operator
methods of the String class.

There are four types of operators:

• Concatenation

• Arithmetic

• Comparison

• Logical

1.11.2.1. String Concatenation

The concatenation operators combine two strings to form one string by appending the second string to
the right-hand end of the first string. The concatenation may occur with or without an intervening blank.
The concatenation operators are:

(blank)

Concatenate terms with one blank in between

||

Concatenate without an intervening blank

(abuttal)

Concatenate without an intervening blank

You can force concatenation without a blank by using the|| operator.

The abuttal operator is assumed between two terms that are not separated by another operator. This can
occur when two terms are syntactically distinct, such as a literal string and a symbol, or when they are
only separated by a comment.

Examples:

An example of syntactically distinct terms is: ifFred has the value37.4, thenFred"%" evaluates to37.4%.

If the variablePETER has the value1, then(Fred)(Peter) evaluates to37.41.

The two adjoining strings, one hexadecimal and one literal,"4a 4b"x"LMN" evaluate toJKLMN.

In the case of

Fred/* The NOT operator precedes Peter. */¬Peter

18

Chapter 1. Rexx General Concepts

there is no abuttal operator implied, and the expression is not valid. However,

(Fred)/* The NOT operator precedes Peter. */(¬Peter)

results in an abuttal, and evaluates to37.40.

1.11.2.2. Arithmetic

You can combine character strings that are valid numbers (seeNumbers) using the following arithmetic
operators:

+

Add

-

Subtract

*

Multiply

/

Divide

%

Integer divide (divide and return the integer part of the result)

//

Remainder (divide and return the remainder--not modulo, because the result can be negative)

**

Power (raise a number to a whole-number power)

Prefix -

Same as the subtraction:0 - number

Prefix +

Same as the addition:0 + number

SeeNumbers and Arithmeticfor details about precision, the format of valid numbers, and the operation
rules for arithmetic. Note that if an arithmetic result is shown in exponential notation, it is likely that
rounding has occurred.

1.11.2.3. Comparison

The comparison operators compare two terms and return the value1 if the result of the comparison is
true, or0 otherwise.

19

Chapter 1. Rexx General Concepts

The strict comparison operators all have one of the characters defining the operator doubled. The==,
\==, and¬== operators test for an exact match between two strings. The two strings must be identical
(character by character) and of the same length to be considered strictly equal. Similarly, the strict
comparison operators such as>> or << carry out a simple character-by-character comparison, with
no padding of either of the strings being compared. The comparison of the two strings is from left to
right. If one string is shorter than the other and is a leading substring of another, then it is smaller than
(less than) the other. The strict comparison operators also do not attempt to perform a numeric
comparison on the two operands.

For all other comparison operators, if both terms involved are numeric, a numeric comparison (see
Numeric Comparisons) is effected. Otherwise, both terms are treated as character strings, leading and
trailing blanks are ignored, and the shorter string is padded with blanks on the right.

Character comparison and strict comparison operations are both case-sensitive, and the exact collating
order might depend on the character set used for the implementation. In an ASCII environment, such as
Windows and *nix, the ASCII character value of digits is lower than that of the alphabetic characters,
and that of lowercase alphabetic characters is higher than that of uppercase alphabetic characters.

The comparison operators and operations are:

=

True if the terms are equal (numerically or when padded)

\=, ¬=

True if the terms are not equal (inverse of =)

>

Greater than

<

Less than

><

Greater than or less than (same as not equal)

<>

Greater than or less than (same as not equal)

>=

Greater than or equal to

\<, ¬<

Not less than

<=

Less than or equal to

20

Chapter 1. Rexx General Concepts

\>, ¬>

Not greater than

==

True if terms are strictly equal (identical)

\==,¬==

True if the terms are not strictly equal (inverse of ==)

>>

Strictly greater than

<<

Strictly less than

>>=

Strictly greater than or equal to

\<<, ¬<<

Strictly not less than

<<=

Strictly less than or equal to

\>>, ¬>>

Strictly not greater than

Note: Throughout the language, the NOT (¬) character is synonymous with the backslash(\). You
can use the two characters interchangeably, according to availability and personal preference. The
backslash can appear in the following operators: \ (prefix not),\=, \==, \<, \>, \<<, and \>>.

1.11.2.4. Logical (Boolean)

A character string has the value false if it is0, and true if it is1. A logical operator can take at least two
values and return0 or 1 as appropriate:

&

AND -- returns1 if both terms are true.

|

Inclusive OR -- returns1 if either term or both terms are true.

21

Chapter 1. Rexx General Concepts

&&

Exclusive OR -- returns1 if either term, but not both terms, is true.

Prefix \, ¬

Logical NOT-- negates;1 becomes0, and0 becomes1.

1.11.3. Parentheses and Operator Precedence
Expression evaluation is from left to right; parentheses and operator precedence modify this:

• When parentheses are encountered--other than those that identify the arguments on messages (see
Message Terms) and function calls--the entire subexpression between the parentheses is evaluated
immediately when the term is required.

• When the sequence

term1 operator1 term2 operator2 term3

is encountered, andoperator2 has precedence overoperator1, the subexpression (term2 operator2

term3) is evaluated first.

Note, however, that individual terms are evaluated from left to right in the expression (that is, as soon
as they are encountered). The precedence rules affect only the order ofoperations.

For example,* (multiply) has a higher priority than+ (add), so3+2*5 evaluates to13 (rather than the25
that would result if a strict left-to-right evaluation occurred). To force the addition to occur before the
multiplication, you could rewrite the expression as(3+2)*5. Adding the parentheses makes the first three
tokens a subexpression. Similarly, the expression-3**2 evaluates to9 (instead of-9) because the prefix
minus operator has a higher priority than the power operator.

The order of precedence of the operators is (highest at the top):

+ - ¬ \

(prefix operators)

**

(power)

* / % //

(multiply and divide)

+ -

(add and subtract)

22

Chapter 1. Rexx General Concepts

(blank) || (abuttal)

(concatenation with or without blank)

= > <

(comparison operators)

== >> <<

\= ¬=

>< <>

\> ¬>

\< ¬<

\== ¬==

\>> ¬>>

\<< ¬<<

>= >>=

<= <<=

&

(and)

| &&

(or, exclusive or)

Examples:

Suppose the symbolA is a variable whose value is3, DAY is a variable whose value isMonday, and other
variables are uninitialized. Then:

23

Chapter 1. Rexx General Concepts

A+5 -> "8"

A-4*2 -> "-5"

A/2 -> "1.5"

0.5**2 -> "0.25"

(A+1)>7 -> "0" /* that is, False */

" "="" -> "1" /* that is, True */

" "=="" -> "0" /* that is, False */

" "\=="" -> "1"

/* that is, True */

(A+1)*3=12 -> "1" /* that is, True */

"077">"11" -> "1" /* that is, True */

"077" >> "11" -> "0" /* that is, False */

"abc" >> "ab" -> "1" /* that is, True */

"abc" << "abd" -> "1" /* that is, True */

"ab " << "abd" -> "1" /* that is, True */

Today is Day -> "TODAY IS Monday"

"If it is" day -> "If it is Monday"

Substr(Day,2,3) -> "ond" /* Substr is a function */

"!"xxx"!" -> "!XXX!"

Note: The Rexx order of precedence usually causes no difficulty because it is the same as in
conventional algebra and other computer languages. There are two differences from common
notations:

• The prefix minus operator always has a higher priority than the power operator.

• Power operators (like other operators) are evaluated from left to right.

For example:

-3**2 == 9 /* not -9 */

-(2+1)**2 == 9 /* not -9 */

2**2**3 == 64 /* not 256 */

1.11.4. Message Terms
You can includemessagesto objects in an expression wherever a term, such as a literal string, is valid. A
message can be sent to an object to perform an action, obtain a result, or both.

A message termcan have one of the following forms:

>>-receiver-+- ~ --+-messagename--+---------+------------------->

+- ~~ -+ +-:symbol-+

>--+--------------------------+--------------------------------><

+-(--+----------------+--)-+

| .-,----------+ |

24

Chapter 1. Rexx General Concepts

| V | |

+---expression-+-+

>>-receiver[--+----------------+--]----------------------------><

| +-,----------+ |

| V | |

+---expression-+-+

Thereceiveris a term (seeTerms and Expressionsfor a definition of term). It receives the message. The
~ or ~~ indicates sending a message. Themessagenameis a literal string or a symbol that is taken as a
constant. Theexpressions (separated by commas) between the parentheses or brackets are the arguments
for the message. Thereceiverand the argumentexpressionscan themselves include message terms. If the
message has no arguments, you can omit the parentheses.

The left parenthesis, if present, must immediately follow a token (messagenameor symbol) with no
blank in between them. Otherwise, only the first part of the construct is recognized as a message term. (A
blank operator would be assumed at that point.) Only a comment (which has no effect) can appear
between a token and the left parenthesis.

You can use any number ofexpressions, separated by commas. Theexpressionsare evaluated from left to
right and form the argument during the execution of the routine. Any ARG, PARSE ARG, or USE ARG
instruction or ARG built-in function in the called routine accesses these objects while the called routine
is running. You can omitexpressions, if appropriate, by including extra commas.

Thereceiveris evaluated, followed by one or moreexpressionarguments. The message name (in
uppercase) and the resulting argument objects are then sent to the receiver object. The receiver object
selects a method to be run based on the message name (seeClasses and Inheritance of Methods), and
runs the selected method with the specified argument objects. The receiver eventually returns, allowing
processing to continue.

If the message term uses ~, the receiver must return a result object. This object is included in the original
expression as if the entire message term had been replaced by the name of a variable whose value is the
returned object.

For example, the message POS is valid for strings, and you could code:

c="escape"

a="Position of 'e' is:" c~pos("e",3)

/* would set A to "Position of 'e' is: 6" */

If the message term uses ~~, the receiver needs not return a result object. Any result object is discarded,
and the receiver object is included in the original expression in place of the message term.

For example, the messages INHERIT and SUBCLASS are valid for classes (seeThe Class Class) and,
assuming the existence of the Persistent class, you could code:

account = .object~subclass("Account")~~inherit(.persistent)

/* would set ACCOUNT to the object returned by SUBCLASS, */

/* after sending that object the message INHERIT */

If the message term uses brackets, the message [] is sent to the receiver object. (Theexpressions within
the brackets are available to the receiver object as arguments.) The effect is the same as for the
corresponding ~ form of the message term. Thus,a[b] is the same asa~"[]"(b).

For example, the message [] is valid for arrays (seeThe Array Class) and you could code:

25

Chapter 1. Rexx General Concepts

a = .array~of(10,20)

say "Second item is" a[2] /* Same as: a~at(2) */

/* or a~"[]"(2) */

/* Produces: "Second item is 20" */

A message can have a variable number of arguments. You need to specify only those required. For
example,"ESCAPE"~POS("E") returns1.

A colon (:) and symbol can follow the message name. In this case, the symbol must be the name of a
variable (usually the special variable SUPER--see pageSUPER) or an environment symbol (see
Environment Symbols). The resulting value changes the usual method selection. For more information,
seeChanging the Search Order for Methods.

1.11.5. Message Sequences
The ~ and ~~ forms of message terms differ only in their treatment of the result object. Using~ returns
the result of the method. Using~~ returns the object that received the message. Here is an example:

/* Two ways to use the INSERT method to add items to a list */

/* Using only ~ */

team = .list~of("Bob","Mary")

team~insert("Jane")

team~insert("Joe")

team~insert("Steve")

say "First on the team is:" team~firstitem /* Bob */

say "Last on the team is:" team~lastitem /* Steve */

/* Do the same thing using ~~ */

team=.list~of("Bob","Mary")

/* Because ~~ returns the receiver of the message */

/* each INSERT message following returns the list */

/* object (after inserting the argument value). */

team~~insert("Jane")~~insert("Joe")~~insert("Steve")

say "First on the team is:" team~firstitem /* Bob */

say "Last on the team is:" team~lastitem /* Steve */

Thus, you would use ~ when you want the returned result to incorporate the methods included in each
stage of the message.

1.12. Clauses and Instructions
Clauses can be subdivided into the following types:

• Null clauses

• Directives

• Labels

26

Chapter 1. Rexx General Concepts

• Instructions

• Assignments

• Message instructions

• Keyword instructions

• Commands

1.12.1. Null Clauses
A clause consisting only of blanks, comments, or both is anull clause. It is completely ignored.

Note: A null clause is not an instruction; for example, putting an extra semicolon after the THEN or
ELSE in an IF instruction is not equivalent to using a dummy instruction (as it would be in the C
language). The NOP instruction is provided for this purpose.

1.12.2. Directives
A clause that begins with two colons is adirective. Directives are nonexecutable code and can start in
any column. They divide a program into separate executable units (methods and routines) and supply
information about the program or its executable units. Directives perform various functions, such as
associating methods with a particular class (::CLASS directive) or defining a method (::METHOD
directive). SeeDirectivesfor more information about directives.

1.12.3. Labels
A clause that consists of a single symbol or string followed by a colon is alabel. The colon in this
context implies a semicolon (clause separator), so no semicolon is required.

The label’s name is taken from the string or symbol part of the label. If the label uses a symbol for the
name, the label’s name is in uppercase. If a label uses a string, the name can contain mixed-case
characters.

Labels identify the targets of CALL instructions, SIGNAL instructions, and internal function calls. Label
searches for CALL, SIGNAL, and internal function calls are case-sensitive. Label-search targets
specified as symbols cannot match labels with lowercase characters. Literal-string or computed-label
searches can locate labels with lowercase characters. More than one label can precede an instruction.
Labels are treated as null clauses and can be traced selectively to aid debugging.

Labels can be any number of successive clauses. Several labels can precede other clauses. Duplicate
labels are permitted, but control is only passed to the first of any duplicates in a program. The duplicate
labels occurring later can be traced but cannot be used as a target of a CALL, SIGNAL, or function
invocation.

27

Chapter 1. Rexx General Concepts

1.12.4. Instructions
An instructionconsists of one or more clauses describing some course of action for the language
processor to take. Instructions can be assignments, message instructions, keyword instructions, or
commands.

1.12.5. Assignments
A single clause of the formsymbol=expressionis an instruction known as anassignment. An assignment
gives a (new) value to a variable. SeeAssignments and Symbols.

1.12.6. Message Instructions
A message instructionis a single clause in the form of a message term (seeMessage Terms) or in the
form messageterm=expression. A message is sent to an object, which responds by performing some
action. SeeMessage Instructions.

1.12.7. Keyword Instructions
A keyword instructionis one or more clauses, the first of which starts with a keyword that identifies the
instruction. Keyword instructions control, for example, the external interfaces and the flow of control.
Some keyword instructions can include nested instructions. In the following example, the DO construct
(DO, the group of instructions that follow it, and its associated END keyword) is considered a single
keyword instruction.

DO

instruction

instruction

instruction

END

A subkeywordis a keyword that is reserved within the context of a particular instruction, for example, the
symbols TO and WHILE in the DO instruction.

1.12.8. Commands
A commandis a clause consisting of an expression only. The expression is evaluated and the result is
passed as a command string to an external environment.

28

Chapter 1. Rexx General Concepts

1.13. Assignments and Symbols
A variable is an object whose value can change during the running of a Rexx program. The process of
changing the value of a variable is calledassigninga new value to it. The value of a variable is a single
object. Note that an object can be composed of other objects, such as an array or directory object.

You can assign a new value to a variable with the ARG, PARSE, PULL, or USE instructions, the VALUE
built-in function, or the variable pool interface, but the most common way of changing the value of a
variable is the assignment instruction itself. Any clause in the form

symbol=expression;

is taken to be an assignment. The result ofexpressionbecomes the new value of the variable named by
the symbol to the left of the equal sign.

Example:

/* Next line gives FRED the value "Frederic" */

Fred="Frederic"

The symbol naming the variable cannot begin with a digit (0-9) or a period.

You can use a symbol in an expression even if you have not assigned a value to it, because a symbol has
a defined value at all times. A variable to which you have not assigned a value isuninitialized. Its value
is the characters of the symbol itself, translated to uppercase (that is, lowercasea-z to uppercaseA-Z).
However, if it is a compound symbol (described underCompound Symbols), its value is the derived
name of the symbol.

Example:

/* If Freda has not yet been assigned a value, */

/* then next line gives FRED the value "FREDA" */

Fred=Freda

The meaning of a symbol in Rexx varies according to its context. As a term in an expression, a symbol
belongs to one of the following groups: constant symbols, simple symbols, compound symbols,
environment symbols, and stems. Constant symbols cannot be assigned new values. You can use simple
symbols for variables where the name corresponds to a single value. You can use compound symbols and
stems for more complex collections of variables although the collection classes might be preferable in
many cases. SeeThe Collection Classes.

1.13.1. Constant Symbols
A constant symbolstarts with a digit (0-9) or a period.

You cannot change the value of a constant symbol. It is simply the string consisting of the characters of
the symbol (that is, with any lowercase alphabetic characters translated to uppercase).

These are constant symbols:

77

827.53

.12345

12e5 /* Same as 12E5 */

29

Chapter 1. Rexx General Concepts

3D

17E-3

Symbols where the first character is a period and the second character is alphabetic are environment
symbols.

1.13.2. Simple Symbols
A simple symboldoes not contain any periods and does not start with a digit (0-9).

By default, its value is the characters of the symbol (that is, translated to uppercase). If the symbol has
been assigned a value, it names a variable and its value is the value of that variable.

These are simple symbols:

FRED

Whatagoodidea? /* Same as WHATAGOODIDEA? */

?12

1.13.3. Stems
A stemis a symbol that contains a period as the last character. It cannot start with a digit or a period.

These are stems:

FRED.

A.

By default, the value of a stem is a Stem object. (SeeThe Stem Class.) The stem variable’s Stem object is
automatically created the first time you use the stem variable or a compound variable (seeCompound
Symbols) containing the stem variable name. The Stem object’s assigned name is the name of the stem
variable (with the characters translated to uppercase). If the stem variable has been assigned a value, or
the Stem object has been given a default value, a reference to the stem variable returns the assigned
default value.

Further, when a stem is the target of an assignment, a new Stem object is created and assigned to the stem
variable. The new value assigned to the stem variable is given to the new Stem object as a default value.
Following the assignment, a reference to any compound symbol with that stem variable returns the new
value until another value is assigned to the stem, the Stem object, or the individual compound variable.

Example:

hole. = "empty"

hole.19 = "full"

say hole.1 hole.mouse hole.19

/* says "empty empty full" */

Thus, you can give a whole collection of variables the same value.

If the object assigned to a stem variable is already a Stem object, then a new Stem object is not created.
The assignment updates the stem variable to refer to the existing Stem object.

30

Chapter 1. Rexx General Concepts

Example:

hole. = "empty"

hole.19 = "full"

say hole.1 hole.mouse hole.19

/* Says "empty empty full" */

hole2. = hole. /* copies reference to hole. stem to hole2. */

say hole2.1 hole2.mouse hole2.19

/* Also says "empty empty full" */

You can pass stem collections as function, subroutine, or method arguments.

Example:

/* CALL RANDOMIZE count, stem. calls routine */

Randomize: Use Arg count, stem.

do i = 1 to count

stem.i = random(1,100)

end

return

Note: USE ARG must be used to access the stem variable as a collection. PARSE and PARSE ARG
force the stem to be a string value.

Stems can also be returned as function, subroutine, or method results.

Example:

/* RANDOMIZE(count) calls routine */

Randomize: Use Arg count

do i = 1 to count

stem.i = random(1,100)

end

return stem.

Note: The value that has been assigned to the whole collection of variables can always be obtained
by using the stem. However, this is not the same as using a compound variable whose derived name
is the null string.

Example:

total. = 0

null = ""

total.null = total.null + 5

say total. total.null /* says "0 5" */

31

Chapter 1. Rexx General Concepts

You can use the DROP, EXPOSE, and PROCEDURE instructions to manipulate collections of variables,
referred to by their stems.DROP FRED. assigns a new Stem object to the specified stem. (SeeDROP.)
EXPOSE FRED. andPROCEDURE EXPOSE FRED. expose all possible variables with that stem (seeEXPOSE
andPROCEDURE).

The DO instruction can also iterate over all of the values assigned to a stem variable. SeeDO for more
details.

Notes:

1. When the ARG, PARSE, PULL, or USE instruction, the VALUE built-in function, or the variable
pool interface changes a variable, the effect is identical with an assignment. Wherever a value can be
assigned, using a stem sets an entire collection of variables.

2. Any clause that starts with a symbol and whose second token is (or starts with) an equal sign (=) is
an assignment, rather than an expression (or a keyword instruction). This is not a restriction, because
you can ensure that the clause is processed as a command, such as by putting a null string before the
first name, or by enclosing the first part of the expression in parentheses.

If you unintentionally use a Rexx keyword as the variable name in an assignment, this should not
cause confusion. For example, the following clause is an assignment, not an ADDRESS instruction:

Address="10 Downing Street";

3. You can use the VAR function (seeVAR) to test whether a symbol has been assigned a value. In
addition, you can set SIGNAL ON NOVALUE to trap the use of any uninitialized variables (except
when they are tails in compound variables--seeUNINIT-or stems).

1.13.4. Compound Symbols
A compound symbolcontains at least one period and two other characters. It cannot start with a digit or a
period, and if there is only one period it cannot be the last character.

The name begins with a stem (that part of the symbol up to and including the first period) and is followed
by a tail, which are parts of the name (delimited by periods) that are constant symbols, simple symbols,
or null. Note that you cannot use constant symbols with embedded signs (for example, 12.3E+5) after a
stem; in this case the whole symbol would not be valid.

These are compound symbols:

FRED.3

Array.I.J

AMESSY..One.2.

Before the symbol is used, that is, at the time of reference, the language processor substitutes in the
compound symbol the character string values of any simple symbols in the tail (I, J, andOne in the
examples), thus generating a new, derived name. The value of a compound symbol is, by default, its
derived name (used exactly as is) or, if it has been used as the target of an assignment, the value of the
variable named by the derived name.

32

Chapter 1. Rexx General Concepts

The substitution in the symbol permits arbitrary indexing (subscripting) of collections of variables that
have a common stem. Note that the values substituted can containanycharacters (including periods and
blanks). Substitution is done only once.

More formally, the derived name of a compound variable that is referenced by the symbol

s0.s1.s2. --- .sn

is given by

d0.v1.v2. --- .vn

whered0 is the name of the Stem object associated with the stem variables0 andv1 to vn are the values
of the constant or simple symbolss1 throughsn. Any of the symbolss1 to sn can be null. The valuesv1
to vn can also be null and can containanycharacters. Lowercase characters are not translated to
uppercase, blanks are not removed, and periods have no special significance. There is no limit on the
length of the evaluated name.

Some examples of simple and compound symbols follow in the form of a small extract from a Rexx
program:

a=3 /* assigns "3" to the variable A */

z=4 /* "4" to Z */

c="Fred" /* "Fred" to C */

a.z="Fred" /* "Fred" to A.4 */

a.fred=5 /* "5" to A.FRED */

a.c="Bill" /* "Bill" to A.Fred */

c.c=a.fred /* "5" to C.Fred */

y.a.z="Annie" /* "Annie" to Y.3.4 */

say a z c a.a a.z a.c c.a a.fred y.a.4

/* displays the string: */

/* "3 4 Fred A.3 Fred Bill C.3 5 Annie" */

You can use compound symbols to set up arrays and lists of variables in which the subscript is not
necessarily numeric, thus offering a great scope for the creative programmer. A useful application is to
set up an array in which the subscripts are taken from the value of one or more variables, producing a
form of associative memory (content-addressable).

1.13.4.1. Evaluated Compound Variables

The value of a stem variable is always a Stem object (seeThe Stem Classfor details). A Stem object is a
type of collection that supports the [] and []= methods used by other collection classes. The [] provides
an alternate means of accessing compound variables that also allows embedded subexpressions.

Examples:

a=3 /* assigns "3" to the variable A */

z=4 /* "4" to Z */

c="Fred" /* "Fred" to C */

a.[z]="Fred" /* "Fred" to A.4 */

a.[z+1]="Rick" /* "Rick" to A.5 */

a.[fred]=5 /* "5" to A.FRED */

a.[c]="Bill" /* "Bill" to A.Fred */

33

Chapter 1. Rexx General Concepts

c.[c]=a.fred /* "5" to C.Fred */

y.[a,z]="Annie" /* "Annie" to Y.3.4 */

say a z c a.[a] a.[z] a.[z+1]

a.[c] c.[a] a.[fred] y.[a,z]

/* displays the string: */

/* "3 4 Fred A.3 Fred Rick Bill C.3 5 Annie" */

1.13.5. Environment Symbols
An environment symbol starts with a period and has at least one other character. This character must not
be a digit. By default the value of an environment symbol is the string consisting of the characters of the
symbol (translated to uppercase). If the symbol identifies an object in the current environment, its value
is that object.

These are environment symbols:

.method /* Same as .METHOD */

.true

When you use an environment symbol, the language processor performs a series of searches to see if the
environment symbol has an assigned value. The search locations and their ordering are:

1. The directory of classes declared on ::CLASS directives (see::CLASS) within the current program
file.

2. The directory of PUBLIC classes declared on ::CLASS directives of other files included with a
::REQUIRES directive.

3. The local environment directory. The local environment includes process-specific objects such as the
.INPUT and .OUTPUT objects. You can directly access the local environment directory by using the
.LOCAL environment symbol. (SeeThe Local Environment Object (.LOCAL).)

4. The global environment directory. The global environment includes all permanent Rexx objects such
as the Rexx supplied classes (.ARRAY and so on) and constants such as .TRUE and .FALSE. You
can directly access the global environment by using the .ENVIRONMENT environment symbol (see
The Environment Object) or the VALUE built-in function (seeVALUE) with a null string for the
selectorargument.

5. Rexx defined symbols. Other simple environment symbols are reserved for use by Rexx built-in
objects. The currently defined built-in objects are .RS and .METHODS.

If an entry is not found for an environment symbol, then the default character string value is used.

Note: You can place entries in both the .LOCAL and the .ENVIRONMENT directories for programs to
use. To avoid conflicts with future Rexx defined entries, it is recommended that the entries that you
place in either directory include at least one period in the entry name.

Example:

34

Chapter 1. Rexx General Concepts

/* establish settings directory */

.local~setentry("MyProgram.settings", .directory~new)

1.14. Message Instructions
You can send a message to an object to perform an action, obtain a result, or both. You use a message
instruction if the main purpose of the message is to perform an action. You use a message term (see
Message Terms) if the main purpose of the message is to obtain a result.

A message instructionis a clause of the form:

>>-messageterm--+-------------+--;-----------------------------><

+-=expression-+

If there is only amessageterm, the message is sent in exactly the same way as for a message term (see
Message Terms). If the message yields a result object, it is assigned to the sender’s special variable
RESULT. If you use the ~~ form of message term, the receiver object is used as the result. If there is no
result object, the variable RESULT is dropped (becomes uninitialized).

Example:

mytable~add("John",123)

This sends the message ADD to the object MYTABLE. The ADD method need not return a result. If
ADD returns a result, the result is assigned to the variable RESULT.

The equal sign (=) sets a value. If=expression follows the message term, a message is sent to the
receiver object with an= concatenated to the end of the message name. The result of evaluating the
expression is passed as the first argument of the message.

Example:

person~age = 39 /* Same as person~"AGE="(39) */

table[i] = 5 /* Same as table~"[]="(5,i) */

The expressions are evaluated in the order in which the arguments are passed to the method. That is, the
language processor evaluates the=expression first. Then it evaluates the argument expressions within
any [] pairs from left to right.

1.15. Commands to External Environments
Issuing commands to the surrounding environment is an integral part of Rexx.

35

Chapter 1. Rexx General Concepts

1.15.1. Environment
The base system for the language processor is assumed to include at least one environment for
processing commands. An environment is selected by default on entry to a Rexx program. You can
change the environment by using the ADDRESS instruction. You can find out the name of the current
environment by using the ADDRESS built-in function. The underlying operating system defines
environments external to the Rexx program. The environments selected depend on the caller. Normally
the default environment is the used shell, mostly "CMD" on Windows systems and "bash" on Linux
systems. If called from an editor that accepts subcommands from the language processor, the default
environment can be that editor.

A Rexx program can issue commands--calledsubcommands--to other application programs. For
example, a Rexx program written for a text editor can inspect a file being edited, issue subcommands to
make changes, test return codes to check that the subcommands have been processed as expected, and
display messages to the user when appropriate.

An application that uses Rexx as a macro language must register its environment with the Rexx language
processor. See theOpen Object Rexx: Programming Guidefor a discussion of this mechanism.

1.15.2. Commands
To send a command to the currently addressed environment, use a clause of the form:

expression;

The expression (which must not be an expression that forms a valid message instruction--seeMessage
Instructions) is evaluated, resulting in a character string value (which can be the null string), which is
then prepared as appropriate and submitted to the underlying system. Any part of the expression not to
be evaluated must be enclosed in quotation marks.

The environment then processes the command and returns control to the language processor after setting
a return code. Areturn codeis a string, typically a number, that returns some information about the
command processed. A return code usually indicates if a command was successful but can also represent
other information. The language processor places this return code in the Rexx special variable RC. See
Special Variables.

In addition to setting a return code, the underlying system can also indicate to the language processor if
an error or failure occurred. Anerror is a condition raised by a command to which a program that uses
that command can respond. For example, a locate command to an editing system might reportrequested

string not found as an error. Afailure is a condition raised by a command to which a program that
uses that command cannot respond, for example, a command that is not executable or cannot be found.

Errors and failures in commands can affect Rexx processing if a condition trap for ERROR or FAILURE
is ON (seeConditions and Condition Traps). They can also cause the command to be traced ifTRACE E

or TRACE F is set.TRACE Normal is the same asTRACE F and is the default--seeTRACE.

The .RS environment symbol can also be used to detect command failures and errors. When the
command environment indicates that a command failure has occurred, the Rexx environment symbol .RS
has the value-1. When a command error occurs, .RS has a value of1. If the command did not have a
FAILURE or ERROR condition, .RS is0.

Here is an example of submitting a command. Where the default environment is Windows, the sequence:

36

Chapter 1. Rexx General Concepts

fname = "CHESHIRE"

exten = "CAT"

"TYPE" fname"."exten

would result in passing the stringTYPE CHESHIRE.CAT to the command processor. On Windows 95, this is
COMMAND.COM. On Windows NT®, this is CMD.EXE. The simpler expression:

"TYPE CHESHIRE.CAT"

has the same effect.

On return, the return code placed in RC will have the value 0 if the file CHESHIRE.CAT were typed, or a
nonzero value if the file could not be found in the current directory.

Note: Remember that the expression is evaluated before it is passed to the environment. Enclose in
quotation marks any part of the expression that is not to be evaluated.

Windows Example:

delete "*".lst /* not "multiplied by" */

var.003 = anyvalue

type "var.003" /* not a compound symbol */

w = any

dir"/w" /* not "divided by ANY" */

Linux Example:

rm "*".lst /* not "multiplied by" */

var.003 = anyvalue

cat "var.003" /* not a compound symbol */

w = any

ls "/w" /* not "divided by ANY" */

Enclosing an entire message instruction in parentheses causes the message result to be used as a
command. Any clause that is a message instruction is not treated as a command. Thus, for example, the
clause

myfile~linein

causes the returned line to be assigned to the variable RESULT, not to be used as a command to an
external environment.

1.16. Using Rexx on Windows and Unix

Rexx programs can call other Rexx programs as external functions or subroutines with thecall
instruction.

37

Chapter 1. Rexx General Concepts

If a program is called with thecall instruction, the program runs in the same process as the calling
program. If you call another program by a Rexx command, the program is executed in a new process and
therefore does not share .environment, .local, or the Windows/Unix shell environment.

Examples:

call "other.REX" /* runs in the same process */

"rexx other.REX" /* runs in a new child process */

"start rexx other.REX" /* runs in a new detached process */

When Rexx programs call other Rexx programs as commands, the return code of the command is the exit
value of the called program provided that this value is a whole number in the range -32768 to 32767.
Otherwise, the exit value is ignored and the called program is given a return code of 0.

38

Chapter 2. Keyword Instructions
A keyword instructionis one or more clauses, the first of which starts with a keyword that identifies the
instruction. Some keyword instructions affect the flow of control, while others provide services to the
programmer. Some keyword instructions, like DO, can include nested instructions.

In the syntax diagrams on the following pages, symbols (words) in capitals denote keywords or
subkeywords. Other words, such asexpression, denote a collection of tokens as defined previously. Note,
however, that the keywords and subkeywords are not case-dependent. The symbolsif, If, andiF all
have the same effect. Note also that you can usually omit most of the clause delimiters (;) shown
because the end of a line implies them.

A keyword instruction is recognizedonly if its keyword is the first token in a clause and if the second
token does not start with an equal (=) character (implying an assignment) or a colon (implying a label).
The keywords ELSE, END, OTHERWISE, THEN, and WHEN are treated in the same way. Note that
any clause that starts with a keyword defined by Rexx cannot be a command. Therefore,

arg(fred) rest

is an ARG keyword instruction, not a command that starts with a call to the ARG built-in function. A
syntax error results if the keywords are not in their correct positions in a DO, IF, or SELECT instruction.
The keyword THEN is also recognized in the body of an IF or WHEN clause. In other contexts,
keywords are not reserved and can be used as labels or as the names of variables (though this is generally
not recommended).

Subkeywordsare reserved within the clauses of individual instructions. For example, the symbols
VALUE and WITH are subkeywords in the ADDRESS and PARSE instructions, respectively. For
details, see the description of each instruction.

Blanks adjacent to keywords separate the keyword from the subsequent token. One or more blanks
following VALUE are required to separate theexpressionfrom the subkeyword in the example following:

ADDRESS VALUE expression

However, no blank is required after the VALUE subkeyword in the following example, although it would
improve readability:

ADDRESS VALUE"ENVIR"||number

2.1. ADDRESS
>>-ADDRESS--+-----------------------------+--;-----------------><

+-environment--+------------+-+

| +-expression-+ |

+-+-------+--expression1------+

+-VALUE-+

ADDRESS temporarily or permanently changes the destination of commands. Commands are strings
sent to an external environment. You can send commands by specifying clauses consisting of only an
expression or by using the ADDRESS instruction. (SeeCommands to External Environments.)

39

Chapter 2. Keyword Instructions

To send a single command to a specified environment, code anenvironment, a literal string or a single
symbol, which is taken to be a constant, followed by anexpression. The environment name is the name
ofan external procedure or process that can process commands. Theexpressionis evaluated to produce a
character string value, and this string is routed to theenvironmentto be processed as a command.
(Enclose in quotation marks any part of the expression you do not want to be evaluated.) After execution
of the command,environmentis set back to its original state, thus temporarily changing the destination
for a single command. The special variable RC and the environment symbol .RS are set and errors and
failures in commands processed in this way are trapped or traced.

Windows Example:

ADDRESS CMD "DIR C:\CONFIG.SYS"

Linux Example:

ADDRESS "bash" "ls /usr/lib"

If you specify onlyenvironment, a lasting change of destination occurs: all commands (seeCommands)
that follow are routed to the specified command environment, until the next ADDRESS instruction is
processed. The previously selected environment is saved.

Examples:

Assume that the environment for a Windows text editor is registered by the nameEDIT:

address CMD

"DIR C:\AUTOEXEC.BAT"

if rc=0 then "COPY C:\AUTOEXEC.BAT C:*.TMP"

address EDIT

Subsequent commands are passed to the editor until the next ADDRESS instruction.

Similarly, you can use the VALUE form to make a lasting change to the environment. Hereexpression1,
which can be a variable name, is evaluated, and the resulting character string value forms the name of the
environment. You can omit the subkeyword VALUE ifexpression1does not begin with a literal string or
symbol, that is, if it starts with a special character such as an operator character or parenthesis.

Example:

ADDRESS ("ENVIR"||number) /* Same as ADDRESS VALUE "ENVIR"||number */

With no arguments, commands are routed back to the environment that was selected before the previous
change of the environment, and the current environment name is saved. After changing the environment,
repeated execution of ADDRESS alone, therefore, switches the command destination between two
environments. Using a null string for the environment name ("") is the same as using the default
environment.

The two environment names are automatically saved across internal and external subroutine and function
calls. See the CALL instruction (CALL) for more details.

The address setting is the currently selected environment name. You can retrieve the current address
setting by using the ADDRESS built-in function. (SeeADDRESS.) TheOpen Object Rexx:
Programming Guidedescribes the registration of alternative subcommand environments.

40

Chapter 2. Keyword Instructions

2.2. ARG
>>-ARG--+---------------+--;-----------------------------------><

+-template_list-+

ARG retrieves the argument strings provided to a program, internal routine, or method and assigns them
to variables. It is a short form of the instruction:

>>-PARSE UPPER ARG--+---------------+--;-----------------------><

+-template_list-+

Thetemplate_listcan be a single template orlist of templates separated by commas. Each template
consists of one or more symbols separated by blanks, patterns, or both.

Unless a subroutine, internal function, or method is processed, the objects passed as parameters to the
program are converted to string values and parsed into variables according to the rules described in
Parsing.

If a subroutine, internal function, or method is processed, the data used are the argument objects that the
caller passes to the routine.

The language processor converts the objects to strings and translates the strings to uppercase (that is,
lowercasea-z to uppercaseA-Z) before processing them. Use the PARSE ARG instruction if you do not
want uppercase translation.

You can use the ARG and PARSE ARG instructions repeatedly on the same source objects (typically
with different templates). The source objects do not change. The only restrictions on the length or
content of the data parsed are those the caller imposes.

Example:

/* String passed is "Easy Rider" */

Arg adjective noun .

/* Now: ADJECTIVE contains "EASY" */

/* NOUN contains "RIDER" */

If you expect more than one object to be available to the program or routine, you can use a comma in
the parsingtemplate_listso each template is selected in turn.

Example:

/* Function is called by FRED("data X",1,5) */

Fred: Arg string, num1, num2

/* Now: STRING contains "DATA X" */

/* NUM1 contains "1" */

/* NUM2 contains "5" */

Notes:

1. The ARG built-in function can also retrieve or check the arguments. SeeARG (Argument).

2. The USE ARG instruction (seeUSE) is an alternative way of retrieving arguments. USE ARG
performs a direct, one-to-one assignment of argument objects to Rexx variables. You should use this

41

Chapter 2. Keyword Instructions

when your program needs a direct reference to the argument object, without string conversion or
parsing. USE ARG also allows access to both string and non-string argument objects. ARG and
PARSE ARG produce string values from the arguments, and the language processor then parses
these.

2.3. CALL
+-,--------------+

V |

>>-CALL--+-+-name--+----+------------+-+-------------------+--;-->

| +-(var)-+ +-expression-+ |

+-OFF--+-ANY-----------------+--------------------+

| +-ERROR---------------+ |

| +-FAILURE-------------+ |

| +-HALT----------------+ |

| +-NOTREADY------------+ |

| +-USER--usercondition-+ |

+-ON--+-ANY-----------------+--+----------------+-+

+-ERROR---------------+ +-NAME--trapname-+

+-FAILURE-------------+

+-HALT----------------+

+-NOTREADY------------+

+-USER--usercondition-+

CALL calls a routine (if you specifyname) or controls the trapping of certain conditions (if you specify
ON or OFF).

To control trapping, you specify OFF or ON and the condition you want to trap. OFF turns off the
specified condition trap. ON turns on the specified condition trap. All information on condition traps is
contained inConditions and Condition Traps.

To call a routine, specifyname, which must be a literal string or symbol that is taken as a constant. The
userconditionis a single symbol that is taken as a constant. Thetrapnameis a symbol or string taken as a
constant. The routine called can be:

An internal routine

A function or subroutine that is in the same program as the CALL instruction or function call that
calls it.

A built-in routine

A function or subroutine that is defined as part of the Rexx language.

An external routine

A function or subroutine that is neither built-in nor in the same program as the CALL instruction or
function call that calls it.

If nameis a string in which case you specify it in quotation marks, the search for internal routines is
bypassed, and only a built-in function or an external routine is called. Note that the names of built-in

42

Chapter 2. Keyword Instructions

functions and external routines are in uppercase. Therefore, write the name in the literal string in
uppercase characters.

For Windows, file names can be in uppercase, lowercase, or mixed case. The search for files is
case-insensitive to case. Therefore, when using CALL to run a Rexx subroutine contained on a disk file
(external routine), the case does not matter.

For Unix, file names can be in uppercase, lowercase, or mixed case. The search for files is case-sensitive
to case. Therefore, when using CALL to run a Rexx subroutine contained on a disk file (external
routine), specify the filename that contains lowercase or mixed-case characters in quotes, for example,
"myprogram". Otherwise the filename is translated to uppercase characters and the call fails.

You can also specify (var), a single variable name enclosed in parentheses. The variable is evaluated
before any of the argument expressions, and the value is the target of the CALL instruction. The
language processor does not translate the variable value into uppercase, so the evaluated name must
exactly match any label name. (SeeLabelsfor a description of label names.)

The called routine can optionally return a result. In this case, the CALL instruction is functionally
identical with the clause:

+-,--------------+

V |

>>-result=name(----+------------+-+--)--;----------------------><

+-expression-+

If the called routine does not return a result, you get an error if you call it as a function.

You can use any number ofexpressions, separated by commas. The expressions are evaluated from left
to right and form the arguments during execution of the routine. Any ARG, PARSE ARG, or USE ARG
instruction or ARG built-in function in the called routine accesses these objects while the called routine
is running. You can omit expressions, if appropriate, by including extra commas.

The CALL then branches to the routine calledname, using exactly the same mechanism as function
calls. SeeFunctions. The search order is as follows:

Internal routines

These are sequences of instructions inside the same program, starting at the label that matchesname
in the CALL instruction. If you specify the routine name in quotation marks, then an internal
routine is not considered for that search order. The RETURN instruction completes the execution of
an internal routine.

Built-in routines

These are routines built into the language processor for providing various functions. They always
return an object that is the result of the routine. (SeeARG (Argument).)

Note: You can call any built-in function as a subroutine. Any result is stored in RESULT. Simply
specify CALL, the function name (with no parenthesis) and any arguments:

call length "string" /* Same as length("string") */

say result /* Produces: 6 */

43

Chapter 2. Keyword Instructions

However, if you include a trailing comma, you must include the semicolon to prevent the
interpretation of the last comma as a continuation character.

External routines

Users can write or use routines that are external to the language processor and the calling program.
You can code an external routine in Rexx or in any language that supports the system-dependent
interfaces. If the CALL instruction calls an external routine written in Rexx as a subroutine, you can
retrieve any argument strings with the ARG, PARSE ARG, or USE ARG instructions or the ARG
built-in function.

For more information on the search order, seeSearch Order.

During execution of an internal routine, all variables previously known are generally accessible.
However, the PROCEDURE instruction can set up a local variables environment to protect the
subroutine and caller from each other. The EXPOSE option on the PROCEDURE instruction can expose
selected variables to a routine.

Calling an external program as a subroutine is similar to calling an internal routine. The external routine,
however, is an implicit PROCEDURE in that all the caller’s variables are always hidden. The status of
internal values, for example NUMERIC settings, start with their defaults (rather than inheriting those of
the caller). In addition, you can use EXIT to return from the routine.

When control reaches an internal routine but not a built-in function or external routine, the line number
of the CALL instruction is available in the variable SIGL (in the caller’s variable environment). This can
be used as a debug aid because it is possible to find out how control reached a routine. Note that if the
internal routine uses the PROCEDURE instruction, it needs to EXPOSE SIGL to get access to the line
number of the CALL.

After the subroutine processed the RETURN instruction, control returns to the clause following the
original CALL. If the RETURN instruction specified an expression, the variable RESULT is set to the
value of that expression. Otherwise, the variable RESULT is dropped (becomes uninitialized).

An internal routine can include calls to other internal routines, as well as recursive calls to itself.

Example:

/* Recursive subroutine execution... */

arg z

call factorial z

say z"! =" result

exit

factorial: procedure /* Calculate factorial by */

arg n /* recursive invocation. */

if n=0 then return 1

call factorial n-1

return result * n

During internal subroutine (and function) execution, all important pieces of information are
automatically saved and then restored upon return from the routine. These are:

44

Chapter 2. Keyword Instructions

• The status of DO loops and other structures:Executing a SIGNAL within a subroutine is safe
because DO loops and other structures that were active when the subroutine was called are not ended.
However, those currently active within the subroutine are ended.

• Trace action: After a subroutine is debugged, you can insert a TRACE Off at the beginning of it
without affecting the tracing of the caller. If you want to debug a subroutine, you can insert a TRACE
Results at the start and tracing is automatically restored to the conditions at entry (for example, Off)
upon return. Similarly,? (interactive debug) is saved across routines.

• NUMERIC settings: The DIGITS, FUZZ, and FORM of arithmetic operations (inNUMERIC) are
saved and then restored on return. A subroutine can, therefore, set the precision, for example, that it
needs to use without affecting the caller.

• ADDRESS settings: The current and previous destinations for commands (seeADDRESS) are saved
and then restored on return.

• Condition traps: CALL ON and SIGNAL ON are saved and then restored on return. This means that
CALL ON, CALL OFF, SIGNAL ON, and SIGNAL OFF can be used in a subroutine without
affecting the conditions the caller set up.

• Condition information: This information describes the state and origin of the current trapped
condition. The CONDITION built-in function returns this information. SeeCONDITION.

• .RS value:The value of the .RS environment symbol. (See.RS.)

• Elapsed-time clocks: A subroutine inherits the elapsed-time clock from its caller (seeTIME), but
because the time clock is saved across routine calls, a subroutine or internal function can
independently restart and use the clock without affecting its caller. For the same reason, a clock started
within an internal routine is not available to the caller.

• OPTIONS settings:ETMODE and EXMODE are saved and then restored on return.

2.4. DO
>>-DO--+---------------+--+-----------------+--;---------------->

+-| repetitor |-+ +-| conditional |-+

>--+-----------------+--END------------------------------------><

| +-------------+ |

| V | |

+---instruction-+-+

repetitor:

|--+-control1=expri--+-----------+--+-----------+--+------------+-+--|

| +-TO--exprt-+ +-BY--exprb-+ +-FOR--exprf-+ |

+-control2--OVER--collection-----------------------------------+

+-FOREVER--+

+-exprr--+

conditional:

|--+-WHILE--exprw-+---|

45

Chapter 2. Keyword Instructions

+-UNTIL--expru-+

DO groups instructions and optionally processes them repetitively. During repetitive execution, a control
variable (control1or control2) can be stepped through some range of values.

Notes:

1. Theexprr, expri, exprb, exprt, andexprf options, if present, are any expressions that evaluate to a
number. Theexprr andexprf options are further restricted to resultin a positive whole number or
zero. If necessary, the numbers are rounded according to the setting of NUMERIC DIGITS.

2. Theexprwor expruoptions, if present, can be any expression that evaluates to1 or 0.

3. The TO, BY, and FOR phrases can be in any order, if used, and are evaluated in the order in which
they are written.

4. The instructioncan be any instruction, including assignments, commands, message instructions, and
keyword instructions (including any of the more complex constructs such as IF, SELECT, and the
DO instruction itself).

5. The subkeywords WHILE and UNTIL are reserved within a DO instruction in that they cannot be
used as symbols in any of the expressions. Similarly, TO, BY, and FOR cannot be used inexpri,
exprt, exprb, or exprf. FOREVER is also reserved, but only if it immediately follows the keyword
DO and is not followed by an equal sign.

6. Theexprboption defaults to1, if relevant.

7. Thecollectioncan be any expression that evaluates to an object that supports a MAKEARRAY
method. Array and List items return an array with the items in the appropriate order, as do Streams.
Tables, Stems, Directories, etc. are not ordered so the items get placed in the array in no particular
order.

For more information, refer toUsing the DO Keyword.

2.5. DROP
+------------+

V |

>>-DROP----+-name---+-+--;-------------------------------------><

+-(name)-+

DROP "unassigns" variables, that is, restores them to their original uninitialized state. Ifnameis not
enclosed in parentheses, it identifies a variable you want to drop and must be a symbol that is a valid
variable name, separated from any othernameby one or more blanks or comments.

If parentheses enclose a singlename, then its value is used as a subsidiary list of variables to drop.
Blanks are not necessary inside or outside the parentheses, but you can add them if desired. This
subsidiary list must follow the same rules as the original list, that is, be valid character strings separated
by blanks, except that no parentheses are allowed. The list needs not contain any names--that is, it can be
empty.

46

Chapter 2. Keyword Instructions

Variables are dropped from left to right. It is not an error to specify a name more than once or to drop a
variable that is not known. If an exposed variable is named (seeEXPOSEandPROCEDURE), then the
original variable is dropped.

Example:

j=4

Drop a z.3 z.j

/* Drops the variables: A, Z.3, and Z.4 */

/* so that reference to them returns their names. */

Here, a variable name in parentheses is used as a subsidiary list.

Example:

mylist="c d e"

drop (mylist) f

/* Drops the variables C, D, E, and F */

/* Does not drop MYLIST */

Specifying a stem (that is, a symbol that contains only one period as the last character) assigns the stem
variable to a new, empty stem object.

Example:

Drop z.

/* Assigns stem variable z. to a new empty stem object */

2.6. EXIT
>>-EXIT--+------------+--;-------------------------------------><

+-expression-+

EXIT leaves a program unconditionally. Optionally, EXIT returns a result object to the caller. The
program is stopped immediately, even if an internal routine is being run. If no internal routine is active,
RETURN (seeRETURN) and EXIT are identical in their effect on the program running.

If you specifyexpression, it is evaluated and the object resulting from the evaluation is passed back to the
caller when the program stops.

Example:

j=3

Exit j*4

/* Would exit with the string "12" */

If you do not specifyexpression, no data is passed back to the caller. If the program was called as an
external function, this is detected as an error--either immediately (if RETURN was used), or on return to
the caller (if EXIT was used).

You can also use EXIT within a method. The method is stopped immediately, and the result object, if
specified, is returned to the sender. If the method has previously issued a REPLY instruction (see
REPLY), the EXIT instruction must not include a result expression.

47

Chapter 2. Keyword Instructions

Notes:

1. If the program was called through a command interface, an attempt is made to convert the returned
value to a return code acceptable by the underlying operating system. The returned string must be a
whole number whose value fits in a 16-bit signed integer (within the range -(2**15) to (2**15-1). If
the conversion fails, no error is raised, and a return code of 0 is returned.

2. If you do not specify EXIT, EXIT is implied but no result string is returned.

2.7. EXPOSE
+------------+

V |

>>-EXPOSE----+-name---+-+--;-----------------------------------><

+-(name)-+

EXPOSE causes the object variables identified innameto be exposed to a method. References to
exposed variables, including assigning and dropping, access variables in the current object’s variable
pool. (An object variable pool is a collection of variables that is associated with an object rather than
with any individual method.) Therefore, the values of existing variables are accessible, and any changes
are persistent even after RETURN or EXIT from the method.

Any changes a method makes to an object variable pool are immediately visible to any other methods
that share the same object variable pool. All other variables that a method uses are local to the method
and are dropped on RETURN or EXIT. If an EXPOSE instruction is included, it must be the first
instruction of the method.

If parentheses enclose a singlename, then, after the variablenameis exposed, the character string value
of nameis immediately used as a subsidiary list of variables. Blanks are not necessary inside or outside
the parentheses, but you can add them if desired. This subsidiary list must follow the same rules as the
original list, that is, valid variable names separated by blanks, except that no parentheses are allowed.

Variables are exposed in sequence from left to right. It is not an error to specify a name more than once,
or to specify a name that has not been used as a variable.

Example:

/* Example of exposing object variables */

myobj = .myclass~new

myobj~c

myobj~d /* Would display "Z is: 120" */

::class myclass /* The ::CLASS directive */

/* (see ::CLASS) */

::method c /* The ::METHOD directive */

/* (see ::METHOD) */

expose z

z = 100 /* Would assign 100 to the object variable z */

return

::method d

48

Chapter 2. Keyword Instructions

expose z

z=z+20 /* Would add 20 to the same object variable z */

say "Z is:" z

return

You can expose an entire collection of compound variables (seeCompound Symbols) by specifying their
stem in the variable list or a subsidiary list. The variables are exposed for all operations.

Example:

expose j k c. d.

/* This exposes "J", "K", and all variables whose */

/* name starts with "C." or "D." */

c.1="7." /* This sets "C.1" in the object */

/* variable pool, even if it did not */

/* previously exist. */

2.8. FORWARD
>>-FORWARD--+----------+--+------------------------+------------>

+-CONTINUE-+ +-ARGUMENTS--expra-------+

| +-,-----+ |

| V | |

+-ARRAY--(----expri-+--)-+

>--+----------------+--+--------------+--+-----------+---------><

+-MESSAGE--exprm-+ +-CLASS--exprs-+ +-TO--exprt-+

Note: You can specify the options in any order.

FORWARD forwards the message that caused the currently active method to begin running. The
FORWARD instruction can change parts of the forwarded message, such as the target object, the
message name, the arguments, and the superclass override.

If you specify the TO option, the language processor evaluatesexprt to produce a new target object for
the forwarded message. Theexprt is a literal string, constant symbol, or expression enclosed in
parentheses. If you do not specify the TO option, the initial value of the Rexx special variable SELF is
used.

If you specify the ARGUMENTS option, the language processor evaluatesexprato produce an array
object that supplies the set of arguments for the forwarded message. Theexpracan be a literal string,
constant symbol, or expression enclosed in parentheses. The ARGUMENTS value must evaluate to a
Rexx array object.

If you specify the ARRAY option, eachexpri is an expression (use commas to separate the expressions).
The language processor evaluates the expression list to produce a set of arguments for the forwarded
message. It is an error to use both the ARRAY and the ARGUMENTS options on the same FORWARD
instruction.

49

Chapter 2. Keyword Instructions

If you specify neither ARGUMENTS nor ARRAY, the language processor does not change the
arguments used to call the method.

If you specify the MESSAGE option, theexprmis a literal string, a constant symbol, or an expression
enclosed in parentheses. If you specify an expression enclosed in parentheses, the language processor
evaluates the expression to obtain its value. The uppercase character string value of the MESSAGE
option is the name of the message that the FORWARD instruction issues.

If you do not specify MESSAGE, FORWARD uses the message name used to call the currently active
method.

If you specify the CLASS option, theexprsis a literal string, a constant symbol, or an expression
enclosed in parentheses. This is the class object used as a superclass specifier on the forwarded message.

If you do not specify CLASS, the message is forwarded without a superclass override.

If you do not specify the CONTINUE option, the language processor immediately exits the current
method before forwarding the message. Results returned from the forwarded message are the return
value from the original message that called the active method (the caller of the method that issued the
FORWARD instruction). Any conditions the forwarded message raises are raised in the calling program
(without raising a condition in the method issuing the FORWARD instruction).

If you specify the CONTINUE option, the current method does not exit and continues with the next
instruction when the forwarded message completes. If the forwarded message returns a result, the
language processor assigns it to the special variable RESULT. If the message does not return a result, the
language processor drops (uninitializes) the variable RESULT.

The FORWARD instruction passes all or part of an existing message invocation to another method. For
example, the FORWARD instruction can forward a message to a different target object, using the same
message name and arguments.

Example:

::method substr

forward to (self~string) /* Forward to the string value */

You can use FORWARD in an UNKNOWN method to reissue to another object the message that the
UNKNOWN method traps.

Example:

::method unknown

use arg msg, args

/* Forward to the string value */

/* passing along the arguments */

forward to (self~string) message (msg) arguments (args)

You can use FORWARD in a method to forward a message to a superclass’s methods, passing the same
arguments. This is very common usage in object INIT methods.

Example:

::class savings subclass account

::method init

expose type penalty

forward class (super) continue /* Send to the superclass */

50

Chapter 2. Keyword Instructions

type = "Savings" /* Now complete initialization */

penalty = "1% for balance under 500"

In the preceding example, the CONTINUE option causes the FORWARD message to continue with the
next instruction, rather than exiting the Savings class INIT method.

2.9. GUARD
>>-GUARD--+-ON--+------------------+--+--;---------------------><

| +-WHEN--expression-+ |

+-OFF--+------------------+-+

+-WHEN--expression-+

GUARD controls a method’s exclusive access to an object.

GUARD ON acquires for an active method exclusive use of its object variable pool. This prevents other
methods that also require exclusive use of the same variable pool from running on the same object. If
another method has already acquired exclusive access, the GUARD instruction causes the issuing
method to wait until the variable pool is available.

GUARD OFF releases exclusive use of the object variable pool. Other methods that require exclusive use
of the same variable pool can begin running.

If you specify WHEN, the method delays running until theexpressionevaluates to1 (true). If the
expressionevaluates to0 (false), GUARD waits until another method assigns or drops an object variable
(that is, a variable named on an EXPOSE instruction) used in the WHENexpression. When an object
variable changes, GUARD reevaluates the WHENexpression. If the expressionevaluates to true, the
method resumes running. If theexpressionevaluates to false, GUARD resumes waiting.

Example:

::method c

expose y

if y>0 then

return 1

else

return 0

::method d

expose z

guard on when z>0

self~c /* Reevaluated when Z changes */

say "Method D"

If you specify WHEN and the method has exclusive access to the object’s variable pool, then the
exclusive access is released while GUARD is waiting for an object variable to change. Exclusive access
is reacquired before the WHENexpressionis evaluated. Once the WHENexpressionevaluates to1
(true), exclusive access is either retained (for GUARD ON WHEN) or released (for GUARD OFF
WHEN), and the method resumes running.

51

Chapter 2. Keyword Instructions

Note: If the condition expression cannot be met, GUARD ON WHEN puts the program in a
continuous wait condition. This can occur in particular when several activities run concurrently. See
Guarded Methods for more information.

2.10. IF
>>-IF--expression--+---+--THEN--+---+--instruction-------------->

+-;-+ +-;-+

>--+--------------------------+--------------------------------><

+-ELSE--+---+--instruction-+

+-;-+

IF conditionally processes an instruction or group of instructions depending on the evaluation of the
expression. Theexpressionis evaluated and must result in0 or 1.

The instruction after the THEN is processed only if the result is1 (true). If you specify an ELSE, the
instruction after ELSE is processed only if the result of the evaluation is0 (false).

Example:

if answer="YES" then say "OK!"

else say "Why not?"

Remember that if the ELSE clause is on the same line as the last clause of the THEN part, you need a
semicolon before ELSE.

Example:

if answer="YES" then say "OK!"; else say "Why not?"

ELSE binds to the nearest IF at the same level. You can use the NOP instruction to eliminate errors and
possible confusion when IF constructs are nested, as in the following example.

Example:

If answer = "YES" Then

If name = "FRED" Then

say "OK, Fred."

Else

nop

Else

say "Why not?"

Notes:

1. The instructioncan be any assignment, message instruction, command, or keyword instruction,
including any of the more complex constructs such as DO, SELECT, or the IF instruction itself. A
null clause is not an instruction, so putting an extra semicolon (or label) after THEN or ELSE is not

52

Chapter 2. Keyword Instructions

equivalent to putting a dummy instruction (as it would be in C). The NOP instruction is provided for
this purpose.

2. The symbol THEN cannot be used withinexpression, because the keyword THEN is treated
differently in that it need not start a clause. This allows the expression on the IF clause to be ended
by THEN, without a semicolon (;) being required.

2.11. INTERPRET
>>-INTERPRET--expression--;------------------------------------><

INTERPRET processes instructions that have been built dynamically by evaluatingexpression.

Theexpressionis evaluated to produce a character string, and is then processed (interpreted) just as
though the resulting string were a line inserted into the program and bracketed by a DO; and an END;.

Any instructions (including INTERPRET instructions) are allowed, but note that constructions such as
DO...END and SELECT...END must be complete. For example, a string of instructions being interpreted
cannot contain a LEAVE or ITERATE instruction (valid only within a repetitive DO loop) unless it also
contains the whole repetitive DO...END construct.

A semicolon is implied at the end of the expression during execution, if one was not supplied.

Examples:

/* INTERPRET example */

data="FRED"

interpret data "= 4"

/* Builds the string "FRED = 4" and */

/* Processes: FRED = 4; */

/* Thus the variable FRED is set to "4" */

/* Another INTERPRET example */

data="do 3; say "Hello there!"; end"

interpret data /* Displays: */

/* Hello there! */

/* Hello there! */

/* Hello there! */

Notes:

1. Labels within the interpreted string are not permanent and are, therefore, an error.

2. Executing the INTERPRET instruction withTRACE R or TRACE I can be helpful in interpreting the
results you get.

Example:

/* Here is a small Rexx program. */

Trace Int

name="Kitty"

indirect="name"

interpret 'say "Hello"' indirect'"!"'

53

Chapter 2. Keyword Instructions

When this is run, you get the following trace:

C:\>RexxC kitty

3 *-* name='Kitty'

>L> "Kitty"

4 *-* indirect='name'

>L> "name"

5 *-* interpret 'say "Hello"' indirect'"!"'

>L> "say "Hello""

>V> "name"

>O> "say "Hello" name"

>L> ""!""

>O> "say "Hello" name"!""

- say "Hello" name"!"

>L> "Hello"

>V> "Kitty"

>O> "Hello Kitty"

>L> "!"

>O> "Hello Kitty!"

Hello Kitty!

C:\>

Lines 3 and 4 set the variables used in line 5. Execution of line 5 then proceeds in two stages. First
the string to be interpreted is built up, using a literal string, a variable (INDIRECT), and another literal
string. The resulting pure character string is then interpreted, just as though it were actually part of
the original program. Because it is a new clause, it is traced as such (the second*-* trace flag under
line 5) and is then processed. Again a literal string is concatenated to the value of a variable (NAME)
and another literal, and the final result (Hello Kitty!) is then displayed.

3. For many purposes, you can use the VALUE function (seeVALUE) instead of the INTERPRET
instruction. The following line could, therefore, have replaced line 5 in the previous example:

say "Hello" value(indirect)"!"

INTERPRET is usually required only in special cases, such as when two or more statements are to
be interpreted together, or when an expression is to be evaluated dynamically.

4. You cannot use a directive (seeDirectives) within an INTERPRET instruction.

2.12. ITERATE
>>-ITERATE--+------+--;--><

+-name-+

ITERATE alters the flow within a repetitive DO loop (that is, any DO construct other than that with a
simple DO).

Execution of the group of instructions stops, and control is passed to the DO instruction just as though
the END clause had been encountered. The control variable, if any, is incremented and tested, as usual,
and the group of instructions is processed again, unless the DO instruction ends the loop.

54

Chapter 2. Keyword Instructions

Thenameis a symbol, taken as a constant. Ifnameis not specified, ITERATE continues with the current
repetitive loop. Ifnameis specified, it must be the name of the control variable of a currently active loop,
which can be the innermost, and this is the loop that is stepped. Any active loops inside the one selected
for iteration are ended (as though by a LEAVE instruction).

Example:

do i=1 to 4

if i=2 then iterate

say i

end

/* Displays the numbers: "1" "3" "4" */

Notes:

1. If specified,namemust match the symbol naming the control variable in the DO clause in all
respects except the case. No substitution for compound variables is carried out when the comparison
is made.

2. A loop is active if it is currently being processed. If a subroutine is called, or an INTERPRET
instruction is processed, during the execution of a loop, the loop becomes inactive until the
subroutine has returned or the INTERPRET instruction has completed. ITERATE cannot be used to
continue with an inactive loop.

3. If more than one active loop uses the same control variable, ITERATE selects the innermost loop.

2.13. LEAVE
>>-LEAVE--+------+--;--><

+-name-+

LEAVE causes an immediate exit from one or more repetitive DO loops, that is, any DO construct other
than a simple DO.

Processing of the group of instructions is ended, and control is passed to the instruction following the
END clause, just as though the END clause had been encountered and the termination condition had
been met. However, on exit, the control variable, if any, contains the value it had when the LEAVE
instruction was processed.

Thenameis a symbol, taken as a constant. Ifnameis not specified, LEAVE ends the innermost active
repetitive loop. Ifnameis specified, it must be the name of the control variable of a currently active loop,
which can be the innermost, and that loop, and any active loops inside it, are then ended. Control then
passes to the clause following the END that matches the DO clause of the selected loop.

Example:

do i=1 to 5

say i

if i=3 then leave

end

/* Displays the numbers: "1" "2" "3" */

55

Chapter 2. Keyword Instructions

Notes:

1. If specified,namemust match the symbol naming the control variable in the DO clause in all
respects except the case. No substitution for compound variables is carried out when the comparison
is made.

2. A loop is active if it is currently being processed. If a subroutine is called, or an INTERPRET
instruction is processed, during execution of a loop, the loop becomes inactive until the subroutine
has returned or the INTERPRET instruction has completed. LEAVE cannot be used to end an
inactive loop.

3. If more than one active loop uses the same control variable, LEAVE selects the innermost loop.

2.14. NOP
>>-NOP;--><

NOP is a dummy instruction that has no effect. It can be useful as the target of a THEN or ELSE clause.

Example:

Select

when a=c then nop /* Do nothing */

when a>c then say "A > C"

otherwise say "A < C"

end

Note: Putting an extra semicolon instead of the NOP would merely insert a null clause, which would
be ignored. The second WHEN clause would be seen as the first instruction expected after the
THEN, and would, therefore, be treated as a syntax error. NOP is a true instruction, however, and is,
therefore, a valid target for the THEN clause.

2.15. NUMERIC
>>-NUMERIC--+-DIGITS--+-------------+----------+--;------------><

| +-expression1-+ |

| +-SCIENTIFIC-------------+ |

+-FORM--+------------------------+-+

| +-ENGINEERING------------+ |

| +-+-------+--expression2-+ |

| +-VALUE-+ |

+-FUZZ--+-------------+------------+

+-expression3-+

NUMERIC changes the way in which a program carries out arithmetic operations. The options of this
instruction are described in detail inNumbers and Arithmetic.

56

Chapter 2. Keyword Instructions

NUMERIC DIGITS

controls the precision to which arithmetic operations and built-in functions are evaluated. If you
omit expression1, the precision defaults to 9 digits. Otherwise, the character string value result of
expression1must evaluate to a positive whole number and must be larger than the current
NUMERIC FUZZ setting.

There is no limit to the value for DIGITS (except the amount of storage available), but high
precisions are likely to require a great amount of processing time. It is recommended that you use
the default value whenever possible.

You can retrieve the current NUMERIC DIGITS setting with the DIGITS built-in function. See
DIGITS.

NUMERIC FORM

controls the form of exponential notation for the result of arithmetic operations and built-in
functions. This can be either SCIENTIFIC (in which case only one, nonzero digit appears before the
decimal point) or ENGINEERING (in which case the power of 10 is always a multiple of 3). The
default is SCIENTIFIC. The subkeywords SCIENTIFIC or ENGINEERING set the FORM directly,
or it is taken from the character string result of evaluating the expression (expression2) that follows
VALUE. The result in this case must be eitherSCIENTIFIC or ENGINEERING. You can omit the
subkeyword VALUE ifexpression2does not begin with a symbol or a literal string, that is, if it
starts with a special character, such as an operator character or parenthesis.

You can retrieve the current NUMERIC FORM setting with the FORM built-in function. See
FORM.

NUMERIC FUZZ

controls how many digits, at full precision, are ignored during a numeric comparison operation.
(SeeNumeric Comparisons.) If you omit expression3, the default is 0 digits. Otherwise, the
character string value result ofexpression3must evaluate to 0 or a positive whole number rounded,
if necessary, according to the current NUMERIC DIGITS setting, and must be smaller than the
current NUMERIC DIGITS setting.

NUMERIC FUZZ temporarily reduces the value of NUMERIC DIGITS by the NUMERIC FUZZ
value during every numeric comparison. The numbers are subtracted under a precision of DIGITS
minus FUZZ digits during the comparison and are then compared with 0.

You can retrieve the current NUMERIC FUZZ setting with the FUZZ built-in function. SeeFUZZ.

Note: The three numeric settings are automatically saved across internal subroutine and function
calls. See the CALL instruction (CALL) for more details.

57

Chapter 2. Keyword Instructions

2.16. PARSE
>>-PARSE--+-------+--+----------+------------------------------->

+-UPPER-+ +-CASELESS-+

+-LOWER-+

>--+-ARG-------------------------+--+---------------+--;-------><

+-LINEIN----------------------+ +-template_list-+

+-PULL------------------------+

+-SOURCE----------------------+

+-VALUE--+------------+--WITH-+

| +-expression-+ |

+-VAR--name-------------------+

+-VERSION---------------------+

Note: You can specify UPPER and CASELESS or LOWER and CASELESS in either order.

PARSE assigns data from various sources to one or more variables according to the rules of parsing. (See
Parsing.)

If you specify UPPER or LOWER, any character strings to be parsed are first translated. Otherwise no
translation takes place during the parsing. If you specify UPPER, the strings are translated to uppercase.
If you specify LOWER, the strings are translated to lowercase.

If you specify CASELESS, character string matches during parsing are made independent of the case.
This means a letter in uppercase is equal to the same letter in lowercase.

Thetemplate_listcan be a single template or list of templates separated by commas. Each template
consists of one or more symbols separated by blanks, patterns, or both.

Each template is applied to a single source string. Specifying several templates is not a syntax error, but
only the PARSE ARG variant can supply more than one non-null source string. SeeParsing Several
Stringsfor information on parsing several source strings.

If you do not specify a template, no variables are set but the data is prepared for parsing, if necessary.
Thus for PARSE PULL, a data string is removed from the current data queue, for PARSE LINEIN (and
PARSE PULL if the queue is empty), a line is taken from the default input stream, and for PARSE
VALUE, expressionis evaluated. For PARSE VAR, the specified variable is accessed. If it does not have
a value, the NOVALUE condition is raised, if it is enabled.

The following list describes the data for each variant of the PARSE instruction.

PARSE ARG

parses the strings passed to a program or internal routine as input arguments. (See the ARG
instruction inARG for details and examples.)

Note: Parsing uses the argument string values. The USE ARG instruction provides access to string
and non-string argument objects. You can also retrieve or check the argument objects to a Rexx
program or internal routine with the ARG built-in function (see ARG (Argument)).

58

Chapter 2. Keyword Instructions

PARSE LINEIN

parses the next line of the default input stream. (SeeInput and Output Streamsfor a discussion of
Rexx input and output.) PARSE LINEIN is a shorter form of the following instruction:

>>-PARSE VALUE LINEIN()WITH--+---------------+--;--------------><

+-template_list-+

If no line is available, program execution usually pauses until a line is complete. Use PARSE
LINEIN only when direct access to the character input stream is necessary. Use the PULL or
PARSE PULL instructions for the usual line-by-line dialog with the user to maintain generality.

To check if any lines are available in the default input stream, use the built-in function LINES. See
LINES (Lines Remaining)andLINEIN (Line Input).

PARSE PULL

parses the next string of the external data queue. If the external data queue is empty, PARSE PULL
reads a line of the default input stream (the user’s terminal), and the program pauses, if necessary,
until a line is complete. You can add data to the head or tail of the queue by using the PUSH and
QUEUE instructions, respectively. You can find the number of lines currently in the queue with the
QUEUED built-in function. (SeeQUEUED.) The queue remains active as long as the language
processor is active. Other programs in the system can alter the queue and use it to communicate
with programs written in Rexx. See also the PULL instruction inPULL.

Note: PULL and PARSE PULL read the current data queue. If the queue is empty, they read the
default input stream, STDIN (typically, the keyboard).

PARSE SOURCE

parses data describing the source of the program running. The language processor returns a string
that does not change while the program is running.

The source string contains operating system name, followed by eitherCOMMAND, FUNCTION, METHOD,
or SUBROUTINE, depending on whether the program was called as a host command or from a
function call in an expression or as a method of an object or using the CALL instruction. These two
tokens are followed by the complete path specification of the program file.

The string parsed might, therefore, look like this:

Windows95 COMMAND C:\MYDIR\RexxTRY.CMD

or

WindowsNT COMMAND C:\MYDIR\RexxTRY.CMD

or

LINUX COMMAND /opt/orexx/bin/rexxtry.cmd

59

Chapter 2. Keyword Instructions

PARSE VALUE

parses the data, a character string, that is the result of evaluatingexpression. If you specify no
expression, the null string is used. Note that WITH is a subkeyword in this context and cannot be
used as a symbol withinexpression.

Thus, for example:

PARSE VALUE time() WITH hours ":" mins ":" secs

gets the current time and splits it into its constituent parts.

PARSE VAR name

parses the character string value of the variablename. Thenamemust be a symbol that is valid as a
variable name, which means it cannot start with a period or a digit. Note that the variablenameis
not changed unless it appears in the template, so that, for example:

PARSE VAR string word1 string

removes the first word fromstring, puts it in the variableword1, and assigns the remainder back to
string.

PARSE UPPER VAR string word1 string

also translates the data fromstring to uppercase before it is parsed.

PARSE VERSION

parses information describing the language level and the date of the language processor. This
information consists of five blank-delimited words:

• The stringREXX-ooRexx

• The language level description, for example6.00.

• Three tokens that describe the language processor release date in the same format as the default
for the DATE built-in function (seeDATE), for example, "27 Sep 1997".

2.17. PROCEDURE
>>-PROCEDURE--+------------------------+--;--------------------><

| +------------+ |

| V | |

+-EXPOSE----+-name---+-+-+

+-(name)-+

PROCEDURE, within an internal routine (subroutine or function), protects the caller’s variables by
making them unknown to the instructions that follow it. After a RETURN instruction is processed, the
original variables environment is restored and any variables used in the routine (that were not exposed)
are dropped. (An exposed variable is one belonging the caller of a routine that the PROCEDURE
instruction has exposed. When the routine refers to, or alters, the variable, the original (caller’s) copy of

60

Chapter 2. Keyword Instructions

the variable is used.) An internal routine need not include a PROCEDURE instruction. In this case the
variables it is manipulating are those the caller owns. If the PROCEDURE instruction is used, it must be
the first instruction processed after the CALL or function invocation; that is, it must be the first
instruction following the label.

If you use the EXPOSE option, any variable specified by thenameis exposed. Any reference to it
(including setting and dropping) is made to the variables environment the caller owns. Hence, the values
of existing variables are accessible, and any changes are persistent even on RETURN from the routine. If
thenameis not enclosed in parentheses, it identifies a variable you want to expose and must be a symbol
that is a valid variable name, separated from any othernamewith one or more blanks.

If parentheses enclose a singlename, then, after the variablenameis exposed, the character string value
of nameis immediately used as a subsidiary list of variables. Blanks are not necessary inside or outside
the parentheses, but you can add them if desired. This subsidiary list must follow the same rules as the
original list, that is, valid variable names separated by blanks, except that no parentheses are allowed.

Variables are exposed from left to right. It is not an error to specify a name more than once, or to specify
a name that the caller has not used as a variable.

Any variables in the main program that are not exposed are still protected. Therefore, some of the caller’s
variables can be made accessible and can be changed, or new variables can be created. All these changes
are visible to the caller upon RETURN from the routine.

Example:

/* This is the main Rexx program */

j=1; z.1="a"

call toft

say j k m /* Displays "1 7 M" */

exit

/* This is a subroutine */

toft: procedure expose j k z.j

say j k z.j /* Displays "1 K a" */

k=7; m=3 /* Note: M is not exposed */

return

Note that ifZ.J in the EXPOSE list is placed beforeJ, the caller’s value ofJ is not visible, soZ.1 is not
exposed.

The variables in a subsidiary list are also exposed from left to right.

Example:

/* This is the main Rexx program */

j=1;k=6;m=9

a ="j k m"

call test

exit

/* This is a subroutine */

test: procedure expose (a) /* Exposes A, J, K, and M */

say a j k m /* Displays "j k m 1 6 9" */

return

61

Chapter 2. Keyword Instructions

You can use subsidiary lists to more easily expose a number of variables at a time or, with the VALUE
built-in function, to manipulate dynamically named variables.

Example:

/* This is the main Rexx program */

c=11; d=12; e=13

Showlist="c d" /* but not E */

call Playvars

say c d e f /* Displays "11 New 13 9" */

exit

/* This is a subroutine */

Playvars: procedure expose (showlist) f

say word(showlist,2) /* Displays "d" */

say value(word(showlist,2),"New") /* Displays "12" and sets new value */

say value(word(showlist,2)) /* Displays "New" */

e=8 /* E is not exposed */

f=9 /* F was explicitly exposed */

return

Specifying a stem asnameexposes this stem and all possible compound variables whose names begin
with that stem. (See .)

Example:

/* This is the main Rexx program */

a.=11; i=13; j=15

i = i + 1

C.5 = "FRED"

call lucky7

say a. a.1 i j c. c.5

say "You should see 11 7 14 15 C. FRED"

exit

lucky7:Procedure Expose i j a. c.

/* This exposes I, J, and all variables whose */

/* names start with A. or C. */

A.1="7" /* This sets A.1 in the caller's */

/* environment, even if it did not */

/* previously exist. */

return

Note: Variables can be exposed through several generations of routines if they are included in all
intermediate PROCEDURE instructions.

See the CALL instruction and function descriptions inCALL andFunctionsfor details and examples of
how routines are called.

62

Chapter 2. Keyword Instructions

2.18. PULL
>>-PULL--+---------------+--;----------------------------------><

+-template_list-+

PULL reads a string from the head of the external data queue. (SeeInput and Output Streamsfor a
discussion of Rexx input and output.) It is a short form of the following instruction:

>>-PARSE UPPER PULL--+---------------+--;----------------------><

+-template_list-+

The current head of the queue is read as one string. Without atemplate_listspecified, no further action is
taken and the string is thus effectively discarded. Thetemplate_listcan be a single template or list of
templates separated by commas, but PULL parses only one source string. Each template consists of one
or more symbols separated by blanks, patterns, or both.

If you specify several comma-separated templates, variables in templates other than the first one are
assigned the null string. The string is translated to uppercase (that is, lowercasea-z to uppercaseA-Z) and
then parsed into variables according to the rules described inParsing. Use the PARSE PULL instruction
if you do not desire uppercase translation.

Note: If the current data queue is empty, PULL reads from the standard input (typically, the
keyboard). If there is a PULL from the standard input, the program waits for keyboard input with no
prompt. The length of data read by the PULL instruction is restricted to the length of strings
contained by variables.

Example:

Say "Do you want to erase the file? Answer Yes or No:"

Pull answer .

if answer="NO" then say "The file will not be erased."

Here the dummy placeholder, a period (.), is used in the template to isolate the first word the user enters.

If the external data queue is empty, a line is read from the default input stream and the program pauses, if
necessary, until a line is complete. (This is as though PARSE UPPER LINEIN had been processed. See
PARSE LINEIN.)

The QUEUED built-in function (seeQUEUED) returns the number of lines currently in the external data
queue.

2.19. PUSH
>>-PUSH--+------------+--;-------------------------------------><

+-expression-+

PUSH stacks the string resulting from the evaluation ofexpressionLIFO (Last In, First Out) into the
external data queue. (SeeInput and Output Streamsfor a discussion of Rexx input and output.)

If you do not specifyexpression, a null string is stacked.

63

Chapter 2. Keyword Instructions

Example:

a="Fred"

push /* Puts a null line onto the queue */

push a 2 /* Puts "Fred 2" onto the queue */

The QUEUED built-in function (described inQUEUED) returns the number of lines currently in the
external data queue.

2.20. QUEUE
>>-QUEUE--+------------+--;------------------------------------><

+-expression-+

QUEUE appends the string resulting fromexpressionto the tail of the external data queue. That is, it is
added FIFO (First In, First Out). (SeeInput and Output Streamsfor a discussion of Rexx input and
output.)

If you do not specifyexpression, a null string is queued.

Example:

a="Toft"

queue a 2 /* Enqueues "Toft 2" */

queue /* Enqueues a null line behind the last */

The QUEUED built-in function (described inQUEUED) returns the number of lines currently in the
external data queue.

2.21. RAISE
>>-RAISE--+-condition------------+--+-------------+--;---------><

+-ERROR--errorcode-----+ +-| options |-+

+-FAILURE--failurecode-+

+-SYNTAX--number-------+

+-USER--usercondition--+

+-PROPAGATE------------+

options:

|--+------------------------+--+--------------------+----------->

+-ADDITIONAL--expra------+ +-DESCRIPTION--exprd-+

| +-,-----+ |

| V | |

+-ARRAY--(----expri-+--)-+

+-| EXIT |----------+

>--+-------------------+--|

+-RETURN--+-------+-+

+-exprr-+

64

Chapter 2. Keyword Instructions

EXIT:

|--EXIT--+-------+--|

+-expre-+

Note: You can specify the options ADDITIONAL, ARRAY, DESCRIPTION, RETURN, and EXIT in
any order. However, if you specify EXIT without expre or RETURN without exprr , it must appear last.

RAISE returns or exits from the currently running routine or method and raises a condition in the caller
(for a routine) or sender (for a method). SeeConditions and Condition Trapsfor details of the actions
taken when conditions are raised. The RAISE instruction can raise all conditions that can be trapped.

If you specifycondition, it is a single symbol that is taken as a constant.

If the ERROR or FAILURE condition is raised, you must supply the associated return code aserrorcode
or failurecode, respectively. These can be literal strings, constant symbols, or expressions enclosed in
parentheses. If you specify an expression enclosed in parentheses, a subexpression, the language
processor evaluates the expression to obtain its character string value.

If the SYNTAX condition is raised, you must supply the associated Rexx error number asnumber. This
errornumbercan be either a Rexx major error code or a Rexx detailed error code in the formnn.nnn. The
numbercan be a literal string, a constant symbol, or an expression enclosed in parentheses. If you
specify an expression enclosed in parentheses, the language processor evaluates the expression to obtain
its character string value.

If a USER condition is raised, you must supply the associated user condition name asusercondition. This
can be a literal string or a symbol that is taken as a constant.

If you specify the ADDITIONAL option, the language processor evaluatesexprato produce an object
that supplies additional object information associated with the condition. Theexpracan be a literal
string, constant symbol, or expression enclosed in parentheses. The ADDITIONAL entry of the
condition object and the"A" option of the CONDITION built-in function return this additional object
information. For SYNTAX conditions, the ADDITIONAL value must evaluate to a Rexx array object.

If you specify the ARRAY option, eachexpri is an expression (use commas to separate the expressions).
The language processor evaluates the expression list to produce an array object that supplies additional
object information associated with the condition. The ADDITIONAL entry of the condition object and
the"A" option of the CONDITION built-in function return this additional object information as an array
of values. It is an error to use both the ARRAY option and the ADDITIONAL option on the same RAISE
instruction.

The content ofexpraor expri is used as the contents of the secondary error message produced for a
condition.

If you specify neither ADDITIONAL nor ARRAY, there is no additional object information associated
with the condition.

If you specify the DESCRIPTION option, theexprdcan be a literal string, a constant symbol, or an
expression enclosed in parentheses. If you specify an expression enclosed in parentheses, the language
processor evaluates the expression to obtain its character string value. This is the description associated
with the condition. The"D" option of the CONDITION built-in function and the DESCRIPTION entry
of the condition object return this string.

65

Chapter 2. Keyword Instructions

If you do not specify DESCRIPTION, the language processor uses a null string as the descriptive string.

If you specify the RETURN or EXIT option, the language processor evaluates the expressionexprr or
expre, respectively, to produce a result object that is passed back to the caller or sender as if it were a
RETURN or EXIT result. Theexpreor exprr is a literal string, constant symbol, or expression enclosed
in parentheses. If you specify an expression enclosed in parentheses, the language processor evaluates
the expression to obtain its character string value. If you do not specifyexprr or expre, no result is passed
back to the caller or sender. In either case, the effect is the same as that of the RETURN or EXIT
instruction (seeRETURN). Following the return or exit, the appropriate action is taken in the caller or
sender (seeAction Taken when a Condition Is Not Trapped). If specified, the result value can be obtained
from the RESULT entry of the condition object.

Examples:

raise syntax 40 /* Raises syntax error 40 */

raise syntax 40.12 array (1, number) /* Raises syntax error 40, subcode 12 */

/* Passing two substitution values */

raise syntax (errnum) /* Uses the value of the variable ERRNUM */

/* as the syntax error number */

raise user badvalue /* Raises user condition BADVALUE */

If you specify PROPAGATE, and there is a currently trapped condition, this condition is raised again in
the caller (for a routine) or sender (for a method). Any ADDITIONAL, DESCRIPTION, ARRAY,
RETURN, or EXIT information specified on the RAISE instruction replaces the corresponding values
for the currently trapped condition. A SYNTAX error occurs if no condition is currently trapped.

Example:

signal on syntax

a = "xyz"

c = a+2 /* Raises the SYNTAX condition */

.

.

.

exit

syntax:

raise propagate /* Propagates SYNTAX information to caller */

2.22. REPLY
>>-REPLY--+------------+--;------------------------------------><

+-expression-+

REPLY sends an early reply from a method to its caller. The method issuing REPLY returns control, and
possibly a result, to its caller to the point from which the message was sent; meanwhile, the method
issuing REPLY continues running.

If you specifyexpression, it is evaluated and the object resulting from the evaluation is passed back. If
you omitexpression, no object is passed back.

66

Chapter 2. Keyword Instructions

Unlike RETURN or EXIT, the method issuing REPLY continues to run after the REPLY until it issues an
EXIT or RETURN instruction. The EXIT or RETURN must not specify a result expression.

Example:

reply 42 /* Returns control and a result */

call tidyup /* Can run in parallel with sender */

return

Notes:

1. You can use REPLY only in a method.

2. A method can execute only one REPLY instruction.

3. When the method issuing the REPLY instruction is the only method on the current activity with
exclusive access to the object’s variable pool, the method retains exclusive access on the new
activity. When the other methods on the activity also have access, the method issuing REPLY
releases its access and reacquires the access on the new activity. This might force the method to wait
until the original activity has released its access.

SeeConcurrencyfor a complete description of concurrency.

2.23. RETURN
>>-RETURN--+------------+--;-----------------------------------><

+-expression-+

RETURN returns control, and possibly a result, from a Rexx program, method, or internal routine to the
point of its invocation.

If no internal routine (subroutine or function) is active, RETURN and EXIT are identical in their effect
on the program that is run. (SeeEXIT.)

If a subroutine is run,expression(if any) is evaluated, control is passed back to the caller, and the Rexx
special variable RESULT is set to the value ofexpression. If you omit expression, the special variable
RESULT is dropped (becomes uninitialized). The various settings saved at the time of the CALL (for
example, tracing and addresses) are also restored. (SeeCALL.)

If a function is processed, the action taken is identical, except thatexpressionmust be specified on the
RETURN instruction. The result ofexpressionis then used in the original expression at the point where
the function was called. See the description of functions inFunctionsfor more details.

If a method is processed, the language processor evaluatesexpression(if any) and returns control to the
point from which the method’s activating message was sent. If called as a term of an expression,
expressionis required. If called as a message instruction,expressionis optional and is assigned to the
Rexx special variable RESULT if you specify it. If the method has previously issued a REPLY
instruction, the RETURN instruction must not include a resultexpression.

If a PROCEDURE instruction was processed within the routine (subroutine or internal function), all
variables of the current generation are dropped (and those of the previous generation are exposed) after
expressionis evaluated and before the result is used or assigned to RESULT.

67

Chapter 2. Keyword Instructions

2.24. SAY
>>-SAY--+------------+--;--------------------------------------><

+-expression-+

SAY writes a line to the default output stream, which displays it to the user. However, the output
destination can depend on the implementation. SeeInput and Output Streamsfor a discussion of Rexx
input and output. The string value of theexpressionresult is written to the default character output
stream. The resulting string can be of any length. If you omitexpression, the null string is written.

The SAY instruction is a shorter form of the following instruction:

>>-CALL LINEOUT,--+------------+--;----------------------------><

+-expression-+

except that:

• SAY does not affect the special variable RESULT.

• If you use SAY and omitexpression, a null string is used.

• CALL LINEOUT can raise NOTREADY; SAY cannot.

SeeLINEOUT (Line Output)for details of the LINEOUT function.

Example:

data=100

Say data "divided by 4 =>" data/4

/* Displays: "100 divided by 4 => 25" */

Notes:

1. Data from the SAY instruction is sent to the default output stream (STDOUT). However, the
standard rules for redirecting output apply to the SAY output.

2. The SAY instruction does not format data; the operating system and the hardware handle line
wrapping. However, formatting is accomplished, the output data remains a single logical line.

2.25. SELECT
>>-SELECT;-->

+--+

V |

>----WHEN--expression--+---+--THEN--+---+--instruction--;-+----->

+-;-+ +-;-+

>--+--+--END--;--------><

+-OTHERWISE--+---+--+--------------------+-+

+-;-+ | +----------------+ |

| V | |

+---instruction--;-+-+

68

Chapter 2. Keyword Instructions

SELECT conditionally calls one of several alternative instructions.

Eachexpressionafter a WHEN is evaluated in turn and must result in0 or 1. If the result is1, the
instruction following the associated THEN (which can be a complex instruction such as IF, DO, or
SELECT) is processed and control is then passed to the END. If the result is0, control is passed to the
next WHEN clause.

If none of the WHEN expressions evaluates to1, control is passed to the instructions, if any, after
OTHERWISE. In this situation, the absence of an OTHERWISE produces an error, however, you can
omit the instruction list that follows OTHERWISE.

Example:

balance=100

check=50

balance = balance - check

Select

when balance > 0 then

say "Congratulations! You still have" balance "dollars left."

when balance = 0 then do

say "Warning, Balance is now zero! STOP all spending."

say "You cut it close this month! Hope you do not have any"

say "checks left outstanding."

end

Otherwise

say "You have just overdrawn your account."

say "Your balance now shows" balance "dollars."

say "Oops! Hope the bank does not close your account."

end /* Select *

/

Notes:

1. The instructioncan be any assignment, command, message instruction, or keyword instruction,
including any of the more complex constructs, such as DO, IF, or the SELECT instruction itself.

2. A null clause is not an instruction, so putting an extra semicolon (or label) after a THEN clause is
not equivalent to putting a dummy instruction. The NOP instruction is provided for this purpose.

3. The symbol THEN cannot be used withinexpression, because the keyword THEN is treated
differently in that it need not start a clause. This allows the expression on the WHEN clause to be
ended by the THEN without a semicolon (;).

2.26. SIGNAL
>>-SIGNAL--->

>--+-labelname---------------------------------------+--;------><

+-+-------+--expression---------------------------+

| +-VALUE-+ |

+-OFF--+-ANY-----------------+--------------------+

| +-ERROR---------------+ |

69

Chapter 2. Keyword Instructions

| +-FAILURE-------------+ |

| +-HALT----------------+ |

| +-LOSTDIGITS----------+ |

| +-NOMETHOD------------+ |

| +-NOSTRING------------+ |

| +-NOTREADY------------+ |

| +-NOVALUE-------------+ |

| +-SYNTAX--------------+ |

| +-USER--usercondition-+ |

+-ON--+-ANY-----------------+--+----------------+-+

+-ERROR---------------+ +-NAME--trapname-+

+-FAILURE-------------+

+-HALT----------------+

+-LOSTDIGITS----------+

+-NOMETHOD------------+

+-NOSTRING------------+

+-NOTREADY------------+

+-NOVALUE-------------+

+-SYNTAX--------------+

+-USER--usercondition-+

SIGNAL causes an unusual change in the flow of control (if you specifylabelnameor VALUE
expression), or controls the trapping of certain conditions (if you specify ON or OFF).

To control trapping, you specify OFF or ON and the condition you want to trap. OFF turns off the
specified condition trap. ON turns on the specified condition trap. All information on condition traps is
contained inConditions and Condition Traps.

To change the flow of control, a label name is derived fromlabelnameor taken from the character string
result of evaluating theexpressionafter VALUE. Thelabelnameyou specify must be a literal string or
symbol that is taken as a constant. If you specify a symbol forlabelname, the search looks for a label
with uppercase characters. If you specify a literal string, the search uses the literal string directly. You
can locate label names with lowercase letters only if you specify the label as a literal string with the same
case. Similarly, for SIGNAL VALUE, the lettercase oflabelnamemust match exactly. You can omit the
subkeyword VALUE ifexpressiondoes not begin with a symbol or literal string, that is, if it starts with a
special character, such as an operator character or parenthesis. All active pending DO, IF, SELECT, and
INTERPRET instructions in the current routine are then ended and cannot be resumed. Control is then
passed to the first label in the program that matches the given name, as though the search had started at
the beginning of the program.

The labelnameanduserconditionare single symbols, which are taken as constants. Thetrapnameis a
string or symbol taken as a constant.

Example:

Signal fred; /* Transfer control to label FRED below */

....

....

Fred: say "Hi!"

If there are duplicates, control is always passed to the first occurrence of the label in the program.

70

Chapter 2. Keyword Instructions

When control reaches the specified label, the line number of the SIGNAL instruction is assigned to the
special variable SIGL. This can aid debugging because you can use SIGL to determine the source of a
transfer of control to a label.

2.27. TRACE
>>-TRACE--+-+--------+-----------------------+--;--------------><

| +-number-+ |

| +-Normal--------+ |

+-+-----------+--+---------------+-+

| +-------+ | +-All-----------+

| V | | +-Commands------+

+-----?---+-+ +-Error---------+

+-Failure-------+

+-Intermediates-+

+-Labels--------+

+-Off-----------+

+-Results-------+

Or, alternatively:

>>-TRACE--+-----------------------+--;-------------------------><

+-string----------------+

+-symbol----------------+

+-+-------+--expression-+

+-VALUE-+

TRACE controls the tracing action (that is, how much is displayed to the user) during the processing of a
Rexx program. Tracing describes some or all of the clauses in a program, producing descriptions of
clauses as they are processed. TRACE is mainly used for debugging. Its syntax is more concise than that
of other Rexx instructions because TRACE is usually entered manually during interactive debugging.
(This is a form of tracing in which the user can interact with the language processor while the program is
running.)

Note: TRACE cannot be used in the Rexx macrospace. See Trace in Macrospace.

If specified, thenumbermust be a whole number.

Thestringor expressionevaluates to:

• A numeric option

• One of the valid prefix or alphabetic character (word) options described inAlphabetic Character
(Word) Options

• Null

Thesymbolis taken as a constant and is therefore:

71

Chapter 2. Keyword Instructions

• A numeric option

• One of the valid prefix or alphabetic character (word) options described inAlphabetic Character
(Word) Options

The option that follows TRACE or the character string that is the result of evaluatingexpression
determines the tracing action. You can omit the subkeyword VALUE ifexpressiondoes not begin with a
symbol or a literal string, that is, if it starts with a special character, such as an operator or parenthesis.

2.27.1. Alphabetic Character (Word) Options
Although you can enter the word in full, only the first capitalized letter is needed; all following
characters are ignored. That is why these are referred to as alphabetic character options.

TRACE actions correspond to the alphabetic character options as follows:

All

Traces (that is, displays) all clauses before execution.

Commands

Traces all commands before execution. If the command results in an error or failure (see
Commands), tracing also displays the return code from the command.

Error

Traces any command resulting in an error or failure after execution (seeCommands), together with
the return code from the command.

Failure

Traces any command resulting in a failure after execution (seeCommands), together with the return
code from the command. This is the same as theNormal option.

Intermediates

Traces all clauses before execution. Also traces intermediate results during the evaluation of
expressions and substituted names.

Labels

Traces only labels passed during execution. This is especially useful with debug mode, when the
language processor pauses after each label. It also helps the user to note all internal subroutine calls
and transfers of control because of the SIGNAL instruction.

Normal

Traces any failing command after execution, together with the return code from the command. This
is the default setting.

For the default Windows command processor, an attempt to enter an unknown command raises a
FAILURE condition. The CMD return code for an unknown command is 1. An attempt to enter a
command in an unknown command environment also raises a FAILURE condition; in such a case,
the variable RC is set to 30.

72

Chapter 2. Keyword Instructions

Off

Traces nothing and resets the special prefix option (described later) to OFF.

Results

Traces all clauses before execution. Displays the final results (in contrast withIntermediates

option) of the expression evaluation. Also displays values assigned during PULL, ARG, PARSE,
and USE instructions. This setting is recommended for general debugging.

2.27.2. Prefix Option
The prefix? is valid alone or with one of the alphabetic character options. You can specify the prefix
more than once, if desired. Each occurrence of a prefix on an instruction reverses the action of the
previous prefix. The prefix must immediately precede the option (no intervening blanks).

The prefix? controls interactive debugging. During normal execution, a TRACE option with a prefix of?

causes interactive debugging to be switched on. (SeeDebugging Aidsfor full details of this facility.)
When interactive debugging is on, interpretation pauses after most clauses that are traced. For example,
the instructionTRACE ?E makes the language processor pause for input after executing any command that
returns an error, that is, a nonzero return code or explicit setting of the error condition by the command
handler.

Any TRACE instructions in the program being traced are ignored to ensure that you are not taken out of
interactive debugging unexpectedly.

You can switch off interactive debugging in several ways:

• EnteringTRACE O turns off all tracing.

• EnteringTRACE with no options restores the defaults--it turns off interactive debugging but continues
tracing with TRACE Normal (which traces any failing command after execution).

• EnteringTRACE ? turns off interactive debugging and continues tracing with the current option.

• Entering a TRACE instruction with a? prefix before the option turns off interactive debugging and
continues tracing with the new option.

Using the? prefix, therefore, switches you in or out of interactive debugging. Because the language
processor ignores any further TRACE statements in your program after you are in interactive debug
mode, useCALL TRACE "?" to turn off interactive debugging.

2.27.3. Numeric Options
If interactive debugging is active and the option specified is a positive whole number (or an expression
that evaluates to a positive whole number), that number indicates the number of debug pauses to be
skipped. (SeeDebugging Aidsfor further information.) However, if the option is a negative whole
number (or an expression that evaluates to a negative whole number), all tracing, including debug pauses,
is temporarily inhibited for the specified number of clauses. For example,TRACE -100 means that the
next 100 clauses that would usually be traced are not displayed. After that, tracing resumes as before.

73

Chapter 2. Keyword Instructions

2.27.3.1. Tracing Tips

• When a loop is traced, the DO clause itself is traced on every iteration of the loop.

• You can retrieve the trace actions currently in effect by using the TRACE built-in function (see
TRACE).

• The trace output of commands traced before execution always contains the final value of the
command, that is, the string passed to the environment, and the clause generating it.

• Trace actions are automatically saved across subroutine, function, and method calls. SeeCALL for
more details.

2.27.3.2. Example

One of the most common traces you will use is:

TRACE ?R

/* Interactive debugging is switched on if it was off, */

/* and tracing results of expressions begins. */

2.27.3.3. The Format of Trace Output

Every clause traced appears with automatic formatting (indentation) according to its logical depth of
nesting, for example. Results, if requested, are indented by two extra spaces and are enclosed in double
quotation marks so that leading and trailing blanks are apparent. Any control codes in the data encoding
(ASCII values less than "20"x) are replaced by a question mark (?) to avoid screen interference. Results
other than strings appear in the string representation obtained by sending them aSTRING message. The
resulting string is enclosed in parentheses. The line number in the program precedes the first clause
traced on any line. All lines displayed during tracing have a three-character prefix to identify the type of
data being traced. These can be:

-

Identifies the source of a single clause, that is, the data actually in the program.

+++

Identifies a trace message. This can be the nonzero return code from a command, the prompt
message when interactive debugging is entered, an indication of a syntax error when in interactive
debugging.

>>>

Identifies the result of an expression (forTRACE R) or the value assigned to a variable during
parsing, the value returned from a subroutine call, or a value evaluated by execution of a DO loop.

>.>

Identifies the value assigned to a placeholder during parsing (seeThe Period as a Placeholder).

The following prefixes are used only ifTRACE Intermediates is in effect:

74

Chapter 2. Keyword Instructions

>C>

The data traced is the name of a compound variable, after the name has been replaced by the value
of the variable but before the variable is used. If no value was assigned to the variable, the trace
shows the variable in uppercase characters.

>F>

The data traced is the result of a function call.

>L>

The data traced is a literal (string, uninitialized variable, or constant symbol).

>M>

The data traced is the result of a message.

>O>

The data traced is the result of an operation on two terms.

>P>

The data traced is the result of a prefix operation.

>V>

The data traced is the contents of a variable.

If no option is specified on a TRACE instruction, or if the result of evaluating the expression is null, the
default tracing actions are restored. The defaults are TRACE N and interactive debugging (?) off.

Following a syntax error that SIGNAL ON SYNTAX does not trap, the clause in error is always traced.

2.28. USE
+-,--------+

V |

>>-USE--ARG----+------+-+--------------------------------------><

+-name-+

USE ARG retrieves the argument objects provided in a program, routine, function, or method and
assigns them to variables.

Eachnamemust be a valid variable name. Thenames are assigned from left to right. For eachnameyou
specify, the language processor assigns it a corresponding argument from the program, routine, function,
or method call. If there is no corresponding argument,nameis dropped.

A USE ARG instruction can be processed repeatedly and it always accesses the same current argument
data.

Example:

75

Chapter 2. Keyword Instructions

/* USE Example */

/* FRED("Ogof X",1,5) calls function */

Fred: use arg string, num1, num2

/* Now: STRING contains "Ogof X" */

/* NUM1 contains "1" */

/* NUM2 contains "5" */

/* Another example, shows how to pass non-string arguments with USE ARG */

/* Pass a stem and an array to a routine to modify one element of each */

stem.1 = "Value"

array = .array~of("Item")

say "Before subroutine:" stem.1 array[1] /* Shows "Value Item" */

Call Change_First stem. , array

say "After subroutine:" stem.1 array[1] /* Shows "NewValue NewItem" */

Exit

Change_First: Procedure

Use Arg substem., subarray

substem.1 = "NewValue"

subarray[1] = "NewItem"

Return

You can retrieve or check the arguments by using the ARG built-in function (seeARG (Argument)). The
ARG and PARSE ARG instructions are alternative ways of retrieving arguments. ARG and PARSE ARG
access the string values of arguments. USE ARG performs a direct, one-to-one assignment of arguments
to Rexx variables. This is preferable when you need an exact copy of the argument, without translation or
parsing. USE ARG also allows access to both string and non-string argument objects; ARG and PARSE
ARG parse the string values of the arguments.

76

Chapter 3. Directives
A Rexx program contains one or more executable code units.Directive instructionsseparate these
executable units. A directive begins with a double colon (::) and is a nonexecutable instruction. For
example, it cannot appear in a string for the INTERPRET instruction to be interpreted. The first directive
instruction in a program marks the end of the main executable section of the program.

For a program containing directives, all directives are processed first to set up the program’s classes,
methods, and routines. Then any program code in the main code unit (preceding the first directive) is
processed. This code can use any classes, methods, and routines that the directives established.

3.1. ::CLASS
>>-::CLASS--classname--+----------------------+------------------->

+-METACLASS--metaclass-+

.-SUBCLASS--Object---.

>--+--------------------+--+--------+--+-------------------+--;--><

+-MIXINCLASS--mclass-+ +-PUBLIC-+ +-INHERIT--iclasses-+

+-SUBCLASS--sclass---+

Notes:

1. You can specify the options EXTERNAL, METACLASS, MIXINCLASS, SUBCLASS, and
PUBLIC in any order.

2. If you specify INHERIT, it must be the last option.

The ::CLASS directive creates a Rexx class namedclassname. Theclassnameis a literal string or symbol
that is taken as a constant. The created class is available to programs through the Rexx environment
symbol .classname. Theclassnameacquires all methods defined by subsequent ::METHOD directives
until the end of the program or another ::CLASS directive is found. Only null clauses (comments or
blank lines) can appear between a ::CLASS directive and any following directive instruction or the end
of the program. Only one ::CLASS directive can appear forclassnamein a program.

If you specify the EXTERNAL option, the class is created using information derived from an external
source namedextname. Theextnameis a literal string.

If you specify the METACLASS option, the instance methods of themetaclassclass become class
methods of theclassnameclass. (SeeObjects and Classes.) Themetaclassandclassnameare literal
strings or symbols that are taken as constants. In the search order for methods, the metaclass methods
precede inherited class methods and follow any class methods defined by ::METHOD directives with the
CLASS option.

If you specify the PUBLIC option, the class is visible beyond its containing Rexx program to any other
program that references this program with a ::REQUIRES directive. (See::REQUIRES.) If you do not
specify the PUBLIC option, the class is visible only within its containing Rexx program. All public
classes defined within a program are used before PUBLIC classes created with the same name.

If you specify the SUBCLASS option, the class becomes a subclass of the classsclassfor inheritance of
instance and class methods. Thesclassis a literal string or symbol that is taken as a constant.

77

Chapter 3. Directives

If you specify the MIXINCLASS option, the class becomes a subclass of the classmclassfor inheritance
of instance and class methods. You can add the new class instance and class methods to existing classes
by using the INHERIT option on a ::CLASS directive or by sending an INHERIT message to an existing
class. If you specify neither the SUBCLASS nor the MIXINCLASS option, the class becomes a
non-mixin subclass of the Object class.

If you specify the INHERIT option, the class inherits instance methods and class methods from the
classesiclassesin their order of appearance (leftmost first). This is equivalent to sending a series of
INHERIT messages to the class object, with each INHERIT message (except the first) specifying the
preceding class iniclassesas theclassposargument. (SeeINHERIT .) As with the INHERIT message,
each of the classes iniclassesmust be a mixin class. Theiclassesis a blank-separated list of literal
strings or symbols that are taken as constants. If you omit the INHERIT option, the class inherits only
from sclass.

Example:

::class rectangle

::method area /* defined for the RECTANGLE class */

expose width height

return width*height

::class triangle

::method area /* defined for the TRIANGLE class */

expose width height

return width*height/2

The ::CLASS directives in a program are processed in the order in which they appear. If a ::CLASS
directive has a dependency on ::CLASS directives that appear later in the program, processing of the
directive is deferred until all of the class’s dependencies have been processed.

Example:

::class savings subclass account /* requires the ACCOUNT class */

::method type

return "a Savings Account"

::class account

::method type

return "an Account"

The Savings class in the preceding example is not created until the Account class that appears later in the
program has been created.

Note: If you specify the same ::CLASS classname more than once in different programs, the last one
is used. Using more than one ::CLASS classname in the same program produces an error.

3.2. ::METHOD
>>-::METHOD--methodname--+-------+--+-----------+--------------->

78

Chapter 3. Directives

+-CLASS-+ +-ATTRIBUTE-+

>--+---------+--+-----------+--+-----------+--;----------------><

+-PRIVATE-+ +-GUARDED---+ +-PROTECTED-+

+-UNGUARDED-+

Note: You can specify all options in any order.

The ::METHOD directive creates a method object and defines the method attributes.

A ::METHOD directive starts a method, which is ended by another directive or the end of the program.
The ::METHOD is not included in the method source.

Themethodnameis a literal string or a symbol that is taken as a constant. The method is defined as
methodnamein the class specified in the most recent ::CLASS directive. Only one ::METHOD directive
can appear for anymethodnamein a class.

A ::CLASS directive is not required before a ::METHOD directive. If no ::CLASS directive precedes
::METHOD, the method is not associated with a class but is accessible to the main (executable) part of a
program through the .METHODS built-in object. Only one ::METHOD directive can appear for any
method name not associated with a class. See.METHODSfor more details.

If you specify the CLASS option, the method is a class method. SeeObjects and Classes. The method is
associated with the class specified on the most recent ::CLASS directive. The ::CLASS directive is
required in this case.

If you specify the PRIVATE option, the method is a private method. (Only a message the same object
sends can activate the method.) If you omit the PRIVATE option, the method is a public method that any
sender can activate.

If you specify the UNGUARDED option, the method can be called while other methods are active on
the same object. If you do not specify UNGUARDED, the method requires exclusive use of the object
variable pool; it can run only if no other method that requires exclusive use of the object variable pool is
active on the same object.

If you specify the ATTRIBUTE option, in addition to having a method created asmethodnamein the
class specified in the most recent ::CLASS directive, another method is also automatically created in that
same class asmethodname=.

For example, the directive

::method name attribute

creates two methods, NAME and NAME=. The NAME and NAME= methods are equivalent to the
following code sequences:

::method "NAME="

expose name

use arg name

::method name

expose name

return name

79

Chapter 3. Directives

If you specify the PROTECTED option, the method is a protected method. (SeeThe Security Manager
for more information.) If you omit the PROTECTED option, the method is not protected.

If you specify ATTRIBUTE, another directive (or the end of the program) must follow the ::METHOD
directive.

Example:

r = .rectangle~new(20,10)

say "Area is" r~area /* Produces "Area is 200" */

::class rectangle

::method area

expose width height

return width*height

::method init

expose width height

use arg width, height

::method perimeter

expose width height

return (width+height)*2

Note: It is an error to specify ::METHOD more than once within the same class and use the same
methodname.

3.3. ::REQUIRES
>>-::REQUIRES--"programname"--;--------------------------------><

The ::REQUIRES directive specifies that the program requires access to the classes and objects of the
Rexx programprogramname. All public classes and routines defined in the named program are made
available to the executing program. Theprogramnameis a literal string or a symbol that is taken as a
constant. The string or symbolprogramnamecan be any string or symbol that is valid as the target of a
CALL instruction. The programprogramnameis called as an external routine with no arguments. The
main program code, which precedes the first directive instruction, is run.

Any ::REQUIRES directive must precede all ::CLASS, ::METHOD, and ::ROUTINE directives. The
order of ::REQUIRES directives determines the search order for classes and routines defined in the
named programs.

The following example illustrates that two programs, ProgramA and ProgramB, can both access classes
and routines that another program, ProgramC, contains. (The code at the beginning of ProgramC runs.)

80

Chapter 3. Directives

The language processor uses local routine definitions within a program in preference to routines of the
same name accessed through ::REQUIRES directives. Local class definitions within a program override
classes of the same name in other programs accessed through ::REQUIRES directives.

Another directive, or the end of the program, must follow a ::REQUIRES directive. Only null clauses can
appear between them.

3.4. ::ROUTINE
>>-::ROUTINE--routinename--+--------+--;-----------------------><

+-PUBLIC-+

The ::ROUTINE directive creates named routines within a program. Theroutinenameis a literal string or
a symbol that is taken as a constant. Only one ::ROUTINE directive can appear for anyroutinenamein a
program.

A ::ROUTINE directive starts a routine, which is ended by another directive or the end of the program.

If you specify the PUBLIC option, the routine is visible beyond its containing Rexx program to any other
program that references this program with a ::REQUIRES directive. If you do not specify the PUBLIC
option, the routine is visible only within its containing Rexx program.

Routines you define with the ::ROUTINE directive behave like external routines. In the search order for
routines, they follow internal routines and built-in functions but precede all other external routines.

Example:

::class c

::method a

call r "A" /* displays "In method A" */

::method b

call r "B" /* displays "In method B" */

81

Chapter 3. Directives

::routine r

use arg name

say "In method" name

Notes:

1. It is an error to specify ::ROUTINE with the same routine name more than once in the same
program. It is not an error to have a local ::ROUTINE with the same name as another ::ROUTINE in
another program that the ::REQUIRES directive accesses. The language processor uses the local
::ROUTINE definition in this case.

2. Calling an external Rexx program as a function is similar to calling an internal routine. For an
external routine, however, the caller’s variables are hidden and the internal values (NUMERIC
settings, for example) start with their defaults.

Note: If you specify the same ::ROUTINE routinename more than once in different programs, the last
one is used. Using more than one ::ROUTINE routinename in the same program produces an error.

82

Chapter 4. Objects and Classes
This chapter provides an overview of the Rexx class structure.

A Rexx object consists of object methods and object variables. Sending a message to an object causes
the object to perform some action; a method whose name matches the message name defines the action
that is performed. Only an object’s methods can access the object variables belonging to an object.
EXPOSE instructions within an object’s methods specify object variables. Any variables not exposed are
dropped on return from a method.

You can create an object by sending a message to a class object. An object created from a class is an
instanceof that class. Classes define the methods and method names for their instances. The methods a
class defines for its instances are called theinstance methodsof that class. These are the object methods
for the instances. Classes can also defineclass methods, which are a class’s own object methods.

Note: When referring to object methods (for objects other than classes) or instance methods (for
classes), this book uses the term methods when the meaning is clear from the context. When
referring to object methods and class methods of classes, this book uses the qualified terms to avoid
possible confusion.

4.1. Types of Classes
There are three kinds of classes:

• Object classes

• Mixin classes

• Abstract classes

The following sections explain these.

4.1.1. Object Classes
An object classis like a factory for producing objects. An object class creates objects (instances) and
provides methods that these objects can use. An object acquires the instance methods of the class to
which it belongs at the time of its creation. If a class gains additional methods, objects created before the
definition of these methods do not acquire these methods.

Because the object methods also define the object variables, object classes are factories for creating Rexx
objects. The Array class (seeThe Array Class) is an example of an object class.

4.1.2. Mixin Classes
Classes can inherit from more than the single superclass from which they were created. This is called
multiple inheritance. Classes designed to add a set of instance and class methods to other classes are
calledmixin classes, or simply mixins.

83

Chapter 4. Objects and Classes

You can add mixin methods to an existing class by sending an INHERIT message or using the INHERIT
option on the ::CLASS directive. (SeeDirectives.) In either case, the class to be inherited must be a
mixin. During both class creation and multiple inheritance, subclasses inherit both class and instance
methods from their superclasses.

Mixins are always associated with abase class, which is the mixin’s first non-mixin superclass. Any
subclass of the mixin’s base class can (directly or indirectly) inherit a mixin; other classes cannot.

To create a new mixin class, you send a MIXINCLASS message to an existing class or use the ::CLASS
directive with the MIXINCLASS option. A mixin class is also an object class and can create instances of
the class.

4.1.3. Abstract Classes
Abstract classesprovide definitions for instance methods and class methods but are not intended to
create instances. Abstract classes often define the message interfaces that subclasses should implement.

You create an abstract class like object or mixin classes. No extra messages or keywords on the ::CLASS
directive are necessary. Rexx does not prevent users from creating instances of abstract classes.

4.1.3.1. Metaclasses

A metaclassis a class you can use to create another class. The only metaclass that Rexx provides is
.class, the Class class. The Class class is the metaclass of all the classes Rexx provides. This means that
instances of .class are themselves classes. The Class class is like a factory for producing the factories that
produce objects.

To change the behavior of an object that is an instance, you generally use subclassing. For example, you
can create Statarray, a subclass of the Array class (seeThe Array Class). The Statarray class can include
a method for computing a total of all the numeric elements of an array.

/* Creating an array subclass for statistics */

::class statarray subclass array public

::method init /* Initialize running total and forward to superclass */

expose total

total = 0

/* INIT describes the INIT method. */

forward class (super)

::method put /* Modify to increment running total */

expose total

use arg value

total = total + value /* Should verify that value is numeric!!! */

forward class (super)

::method "[]=" /* Modify to increment running total */

forward message "PUT"

::method remove /* Modify to decrement running total */

84

Chapter 4. Objects and Classes

expose total

use arg index

forward message "AT" continue

total = total - result

forward class (super)

::method average /* Return the average of the array elements */

expose total

return total / self~items

::method total /* Return the running total of the array elements */

expose total

return total

You can use this method on the individual arrayinstances, so it is aninstance method.

However, if you want to change the behavior of the factory producing the arrays, you need a new class
method. One way to do this is to use the ::METHOD directive with the CLASS option. Another way to
add aclassmethod is to create a new metaclass that changes the behavior of the Statarray class. A new
metaclass is a subclass of .class.

You can use a metaclass by specifying it in a SUBCLASS or MIXINCLASS message or on a ::CLASS
directive with the METACLASS option.

If you are adding a highly specialized class method useful only for a particular class, use the ::METHOD
directive with the CLASS option. However, if you are adding a class method that would be useful for
many classes, such as an instance counter that counts how many instances a class creates, you use a
metaclass.

The following examples add a class method that keeps a running total of instances created. The first
version uses the ::METHOD directive with the CLASS option. The second version uses a metaclass.

Version 1

/* Adding a class method using ::METHOD */

a = .point~new(1,1) /* Create some point instances */

say "Created point instance" a

b = .point~new(2,2)

say "Created point instance" b

c = .point~new(3,3)

say "Created point instance" c

/* Ask the point class how many */

/* instances it has created */

say "The point class has created" .point~instances "instances."

::class point public /* Create Point class */

::method init class

expose instanceCount

instanceCount = 0 /* Initialize instanceCount */

forward class (super) /* Forward INIT to superclass */

85

Chapter 4. Objects and Classes

::method new class

expose instanceCount /* Creating a new instance */

instanceCount = instanceCount + 1 /* Bump the count */

forward class (super) /* Forward NEW to superclass */

::method instances class

expose instanceCount /* Return the instance count */

return instanceCount

::method init

expose xVal yVal /* Set object variables */

use arg xVal, yVal /* as passed on NEW */

::method string

expose xVal yVal /* Use object variables */

return "("xVal","yVal")" /* to return string value */

Version 2

/* Adding a class method using a metaclass */

a = .point~new(1,1) /* Create some point instances */

say "Created point instance" a

b = .point~new(2,2)

say "Created point instance" b

c = .point~new(3,3)

say "Created point instance" c

/* Ask the point class how many */

/* instances it has created */

say "The point class has created" .point~instances "instances."

::class InstanceCounter subclass class /* Create a new metaclass that */

/* will count its instances */

::method init

expose instanceCount

instanceCount = 0 /* Initialize instanceCount */

forward class (super) /* Forward INIT to superclass */

::method new

expose instanceCount /* Creating a new instance */

instanceCount = instanceCount + 1 /* Bump the count */

forward class (super) /* Forward NEW to superclass */

::method instances

expose instanceCount /* Return the instance count */

return instanceCount

::class point public metaclass InstanceCounter /* Create Point class */

/* using InstanceCounter metaclass */

::method init

86

Chapter 4. Objects and Classes

expose xVal yVal /* Set object variables */

use arg xVal, yVal /* as passed on NEW */

::method string

expose xVal yVal /* Use object variables */

return "("xVal","yVal")" /* to return string value */

4.1.3.2. Creating Classes and Methods

You can define a class using either directives or messages.

To define a class using directives, you place a ::CLASS directive at the end of your source program:

::class "Account"

This creates an Account class that is a subclass of the Object class. (SeeThe Object Classfor a
description of the Object class.) The string "Account" is a string identifier for the new class.

Now you can use ::METHOD directives to add methods to your new class. The ::METHOD directives
must immediately follow the ::CLASS directive that creates the class.

::method type

return "an account"

::method "name="

expose name

use arg name

::method name

expose name

return name

This adds the methods TYPE, NAME, and NAME= to the Account class.

You can create a subclass of the Account class and define a method for it:

::class "Savings" subclass account

::method type

return "a savings account"

Now you can create an instance of the Savings class with the NEW method (seeNEW) and send TYPE,
NAME, and NAME= messages to that instance:

asav = .savings~new

say asav~type

asav~name = "John Smith"

The Account class methods NAME and NAME= create a pair of access methods to the account object
variable NAME. The following directive sequence creates the NAME and NAME= methods:

::method "name="

expose name

use arg name

87

Chapter 4. Objects and Classes

::method name

expose name

return name

You can replace this with a single ::METHOD directive with the ATTRIBUTE option. For example, the
directive

::method name attribute

adds two methods, NAME and NAME= to a class. These methods perform the same function as the
NAME and NAME= methods in the original example. The NAME method returns the current value of
the object variable NAME; the NAME= method assigns a new value to the object variable NAME.

4.1.3.3. Using Classes

When you create a new class, it is always a subclass of an existing class. You can create new classes with
the ::CLASS directive or by sending the SUBCLASS or MIXINCLASS message to an existing class. If
you specify neither the SUBCLASS nor the MIXINCLASS option on the ::CLASS directive, the
superclass for the new class is the Object class, and it is not a mixin class.

Example of creating a new class using a message:

persistence = .object~mixinclass("Persistence")

myarray=.array~subclass("myarray")~~inherit(persistence)

Example of creating a new class using the directive:

::class persistence mixinclass object

::class myarray subclass array inherit persistence

4.1.3.4. Scope

A scopeis the methods and object variables defined in a single class. Only methods defined in a
particular scope can access object variables within that scope. This means that object variables in a
subclass can have the same names as object variables in a superclass, because the object variables are at
different scopes.

4.1.3.5. Defining Instance Methods with SETMETHOD or ENHANCED

In Rexx, methods are usually associated with instances using classes, but it is also possible to add
methods directly to an instance using the SETMETHOD (seeSETMETHOD) or ENHANCED (see
ENHANCED) method.

All subclasses of the Object class inherit SETMETHOD. You can use SETMETHOD to create one-off
objects, objects that must be absolutely unique so that a class that is capable of creating other instances is
not necessary. The Class class also provides an ENHANCED method that lets you create new instances
of a class with additional methods. The methods and the object variables defined on an object with
SETMETHOD or ENHANCED form a separate scope, like the scopes the class hierarchy defines.

88

Chapter 4. Objects and Classes

4.1.3.6. Method Names

A method name can be any string. When an object receives a message, the language processor searches
for a method whose name matches the message name in uppercase.

Note: The language processor also translates the specified name of all methods added to objects
into uppercase characters.

You must surround a method name with quotation marks when it contains characters that are not allowed
in a symbol (for example, the operator characters). The following example creates a new class (the Cost
class), defines a new method (%), creates an instance of the Cost class (mycost), and sends a% message
to mycost:

cost=.object~subclass("A cost")

cost~define("%", 'expose p; say "Enter a price."; pull p; say p*1.07;')

mycost=cost~new

mycost~"%" /* Produces: Enter a price. */

/* If the user specifies a price of 100, */

/* produces: 107.00 */

4.1.3.7. Default Search Order for Method Selection

The search order for a method name matching the message is for:

1. A method the object itself defines with SETMETHOD or ENHANCED. (SeeSETMETHOD.)

2. A method the object’s class defines. (Note that an object acquires the instance methods of the class
to which it belongs at the time of its creation. If a class gains additional methods, objects created
before the definition of these methods do not acquire these methods.)

3. A method that a superclass of the object’s class defines. This is also limited to methods that were
available when the object was created. The order of the INHERIT (seeINHERIT) messages sent to
an object’s class determines the search order of the superclass method definitions.

This search order places methods of a class before methods of its superclasses so that a class can
supplement or override inherited methods.

If the language processor does not find a match for the message name, the language processor checks the
object for a method name UNKNOWN. If it exists, the language processor calls the UNKNOWN method
and returns as the message result any result the UNKNOWN method returns. The UNKNOWN method
arguments are the original message name and a Rexx array containing the original message arguments.

If the object does not have an UNKNOWN method, the language processor raises a NOMETHOD
condition.

89

Chapter 4. Objects and Classes

4.1.3.8. Defining an UNKNOWN Method

When an object that receives a message does not have a matching message name, the language processor
checks if the object has a method named UNKNOWN. If the object has an UNKNOWN method, the
language processor calls UNKNOWN, passing two arguments. The first argument is the name of the
method that was not located. The second argument is an array containing the arguments passed with the
original message.

If you define an UNKNOWN method, you can use the following syntax:

>>-UNKNOWN(messagename,messageargs)----------------------------><

4.1.3.9. Changing the Search Order for Methods

You can change the usual search order for methods by:

1. Ensuring that the receiver object is the sender object. (You usually do this by specifying the special
variable SELF--seeSELF.)

2. Specifying a colon and a class symbol after the message name. The class symbol can be a variable
name or an environment symbol. It identifies the class object to be used as the starting point for the
method search.

The class object must be a superclass of the class defining the active method, or, if you used
SETMETHOD to define the active method, the object’s own class. The class symbol is usually the
special variable SUPER (seeSUPER) but it can be any environment symbol or variable name whose
value is a valid class.

Suppose you create an Account class that is a subclass of the Object class, define a TYPE method for the
Account class, and create the Savings class that is a subclass of Account. You could define a TYPE
method for the Savings class as follows:

savings~define("TYPE", 'return "a savings account"')

You could change the search order by using the following line:

savings~define("TYPE", 'return self~type:super "(savings)"')

This changes the search order so that the language processor searches for the TYPE method first in the
Account superclass (rather than in the Savings subclass). When you create an instance of the Savings
class (asav) and send a TYPE message toasav:

say asav~type

an account (savings) is displayed. The TYPE method of the Savings class calls the TYPE method of
the Account class, and adds the string(savings) to the results.

90

Chapter 4. Objects and Classes

4.1.3.10. Public and Private Methods

A method can be public or private. Any object can send a message that runs apublicmethod. Aprivate
method runs only when an object sends a message to itself (that is, using the variable SELF as the
message receiver). Private methods include methods at different scopes within the same object.
(Superclasses can make private methods available to their subclasses while hiding those methods from
other objects.) A private method is like an internal subroutine. It provides common functions to the
object methods but is hidden from other programs.

4.1.3.11. The Class Hierarchy

Rexx provides the following classes belonging to the object class:

• Alarm class

• Class class

• Array class

• List class

• Queue class

• Table class

• Set class

• Directory class

• Relation class

• Bag class

• Message class

• Method class

• Monitor class

• Stem class

• Stream class

• String class

• Supplier class

(The classes are in a class hierarchy with subclasses indented below their superclasses.)

Note that there might also be other classes in the system.

4.1.3.12. Initialization

Any object requiring initialization at creation time must define an INIT method. If this method is defined,
the class object runs the INIT method after the object is created. If an object has more than one INIT
method (for example, it is defined in several classes), each INIT method must forward the INIT message
up the hierarchy to complete the object’s initialization.

91

Chapter 4. Objects and Classes

Example:

asav = .savings~new(1000.00, 6.25)

say asav~type

asav~name = "John Smith"

::class Account

::method INIT

expose balance

use arg balance

::method TYPE

return "an account"

::method name attribute

::class Savings subclass Account

::method INIT

expose interest_rate

use arg balance, interest_rate

self~init:super(balance)

::method type

return "a savings account"

The NEW method of the Savings class object creates a new Savings object and calls the INIT method of
the new object. The INIT method arguments are the arguments specified on the NEW method. In the
Savings INIT method, the line:

self~init:super(balance)

calls the INIT method of the Account class, using just the balance argument specified on the NEW
message.

4.1.3.13. Object Destruction and Uninitialization

Object destruction is implicit. When an object is no longer in use, Rexx automatically reclaims its
storage. If the object has allocated other system resources, you must release them at this time. (Rexx
cannot release these resources, because it is unaware that the object has allocated them.)

Similarly, other uninitialization processing may be needed, for example, by a message object holding an
unreported error. An object requiring uninitialization should define an UNINIT method. If this method is
defined, Rexx runs it before reclaiming the object’s storage. If an object has more than one UNINIT
method (defined in several classes), each UNINIT method is responsible for sending the UNINIT
method up the object hierarchy.

92

Chapter 4. Objects and Classes

4.1.3.14. Required String Values

Rexx requires a string value in a number of contexts within instructions and built-in function calls.

• DO statements containingexprr or exprf

• Substituted values in compound variable names

• Commands to external environments

• Commands and environment names on ADDRESS instructions

• Strings for ARG, PARSE, and PULL instructions to be parsed

• Parenthesized targets on CALL instructions

• Subsidiary variable lists on DROP, EXPOSE, and PROCEDURE instructions

• Instruction strings on INTERPRET instructions

• DIGITS, FORM, and FUZZ values on NUMERIC instructions

• Options strings on OPTIONS instructions

• Data queue strings on PUSH and QUEUE instructions

• Label names on SIGNAL VALUE instructions

• Trace settings on TRACE VALUE instructions

• Arguments to built-in functions

• Variable references in parsing templates

• Data for PUSH and QUEUE instructions to be processed

• Data for the SAY instruction to be displayed

• Rexx dyadic operators when the receiving object (the object to the left of the operator) is a string

If you supply an object other than a string in these contexts, by default the language processor converts it
to some string representation and uses this. However, the programmer can cause the language processor
to raise the NOSTRING condition when the supplied object does not have an equivalent string value.

To obtain a string value, the language processor sends a REQUEST("STRING") message to the object.
Strings and other objects that have string values return the appropriate string value for Rexx to use. (This
happens automatically for strings and for subclasses of the String class because they inherit a suitable
MAKESTRING method from the String class.) For this mechanism to work correctly, you must provide
a MAKESTRING method for any other objects with string values.

For other objects without string values (that is, without a MAKESTRING method), the action taken
depends on the setting of the NOSTRING condition trap. If the NOSTRING condition is being trapped
(seeConditions and Condition Traps), the language processor raises the NOSTRING condition. If the
NOSTRING condition is not being trapped, the language processor sends a STRING message to the
object to obtain its readable string representation (see the STRING method of the Object classSTRING)
and uses this string.

When comparing a string object with the .nil object, if the NOSTRING condition is being trapped, then

if string = .nil

will raise the NOSTRING condition, whereas

93

Chapter 4. Objects and Classes

if .nil = string

will not as the .nil objects "=" method does not expect a string as an argument.

Example:

d = .directory~new

say substr(d,5,7) /* Produces "rectory" from "a Directory" */

signal on nostring

say substr(d,5,7) /* Raises the NOSTRING condition */

say substr(d~string,3,6) /* Displays "Direct" */

For arguments to Rexx object methods, different rules apply. When a method expects a string as an
argument, the argument object is sent the REQUEST("STRING") message. If REQUEST returns the
NIL object, then the method raises an error.

4.1.3.15. Concurrency

Rexx supports concurrency, multiple methods running simultaneously on a single object. See
Concurrencyfor a full description of concurrency.

4.1.3.16. Classes and Methods Provided by Rexx

The following figure shows all the classes and their methods.

Figure 4-1. Classes and Inheritance of Methods (part 1 of 4)

+---+

| Object |

+-----------+----------+----------------+----------+----------+---------------+

NEW* | | | | |

= +-------+ +--------+ +-------+ +------+ +-------+

== | Alarm | | Class* | | Array | | List | | Queue |

\= +-------+ +--------+ +-------+ +------+ +-------+

<> CANCEL BASECLASS NEW OF* | []

>< INIT DEFAULTNAME OF* [] | []=

\== DEFINE [] []= | AT

CLASS DELETE []= AT | HASINDEX

COPY ENHANCED AT FIRST | ITEMS

DEFAULTNAME ID DIMENSION FIRSTITEM | MAKEARRAY

HASMETHOD INHERIT FIRST HASINDEX | PEEK

INIT INIT HASINDEX INSERT | PULL

OBJECTNAME METACLASS ITEMS ITEMS | PUSH

OBJECTNAME= METHOD LAST LAST | PUT

REQUEST METHODS MAKEARRAY LASTITEM | QUEUE

RUN MIXINCLASS NEXT MAKEARRAY | REMOVE

SETMETHOD NEW PREVIOUS NEXT | SUPPLIER

START QUERYMIXINCLASS PUT PREVIOUS |

STRING SUBCLASS REMOVE PUT +---------------+

UNSETMETHOD SUBCLASSES SECTION REMOVE | CircularQueue |

SUPERCLASSES SIZE SECTION +---------------+

94

Chapter 4. Objects and Classes

UNINHERIT SUPPLIER SUPPLIER OF*

INIT

RESIZE

SIZE

STRING

METHODS

* All of the methods under the Class class are both class and instance

methods.NEW and OF are class methods.

Figure 4-2. Classes and Inheritance of Methods (Part 2 of 4)

+---+

| Object (continued) |

+---------------+--------------+---------------+------------+-----------------+

| | | | |

+-------+ +-----------+ +----------+ +---------+ +--------+

| Table | | Directory | | Relation | | Message | | Method |

+-------+ +-----------+ +----------+ +---------+ +--------+

| [] [] | [] COMPLETED NEW*

| []= []= | []= INIT NEWFILE

| AT DIFFERENCE | ALLAT NOTIFY SETGUARDED

| DIFFERENCE HASINDEX | ALLINDEX RESULT SETPRIVATE

| HASINDEX INTERSECTION | AT SEND SETPROTECTED

| INTERSECTION ITEMS | DIFFERENCE START SETSECURITYMANAGER

| ITEMS MAKEARRAY | HASINDEX SETUNGUARDED

| MAKEARRAY PUT | HASITEM SOURCE

| PUT REMOVE | INDEX

| REMOVE SETENTRY | INTERSECTION

| SUBSET SETMETHOD | ITEMS

| SUPPLIER SUBSET | MAKEARRAY

| UNION SUPPLIER | PUT

| XOR UNION | REMOVE

| UNKNOWN | REMOVEITM

+-----+ XOR | SUBSET

| Set | | SUPPLIER

+-----+ | UNION

OF* | XOR

[] |

[]= +-----+

AT | Bag |

HASINDEX +-----+

ITEMS OF*

MAKEARRAY []

PUT []=

REMOVE HASINDEX

SUPPLIER MAKEARRAY

PUT

SUPPLIER

95

Chapter 4. Objects and Classes

* All of the methods under the Class class are both class and instance

methods.NEW and OF are class methods.

Figure 4-3. Classes and Inheritance of Methods (Part 3 of 4)

+---+

| Object (continued) |

+------------+------------------+----------+----------------------------------+

| | | |

+---------+ +---------------+ +------+ +--------+

| Monitor | | MutableBuffer | | Stem | | Stream |

+---------+ +---------------+ +------+ +--------+

CURRENT APPEND NEW* ARRAYIN

DESTINATION DELETE [] ARRAYOUT

INIT GETBUFFERSIZE []= CHARIN

UNKNOWN INIT MAKEARRAY CHAROUT

INSERT REQUEST CHARS

LENGTH UNKNOWN CLOSE

OVERLAY COMMAND

SETBUFFERSIZE DESCRIPTION

STRING FLUSH

SUBSTR INIT

LINEIN

LINEOUT

LINES

MAKEARRAY

OPEN

POSITION

QUALIFY

QUERY

SAY

SEEK

STATE

SUPPLIER

* All of the methods under the Class class are both class and instance

methods.NEW and OF are class methods.

Figure 4-4. Classes and Inheritance of Methods (Part 4 of 4)

+---+

| Object (continued) |

+-----------------------------+---+

| |

+-------------------------+ +----------+

| String | | Supplier |

+-------------------------+ +----------+

NEW FORMAT NEW*

96

Chapter 4. Objects and Classes

"" (abuttal) INSERT AVAILABLE

(arithmetic:) LASTPOS INDEX

+ - * / % // ** LEFT ITEM

' ' (blank) LENGTH NEXT

ABBREV (logical:)

ABS & && |

BITAND \

BITOR MAKESTRING

BITXOR MAX

B2X MIN

CENTER OVERLAY

CHANGESTR POS

COMPARE REVERSE

(comparison:) RIGHT

= \= <> >< SIGN

> >= \> SPACE

< <= \< STRING

== \== STRIP

>> \>> >>= SUBSTR

<< \<< <<= SUBWORD

(concatenation:) TRANSLATE

|| TRUNC

COPIES VERIFY

COUNSTR WORD

C2D WORDINDEX

C2X WORDLENGTH

DATATYPE WORDPOS

DELSTR WORDS

DELWORD X2B

D2C X2C

D2X X2D

DECODEBASE64

ENCODEBASE64

* All of the methods under the Class class are both class and instance

methods.NEW and OF are class methods.

4.1.3.17. Summary of Methods by Class

The following table lists all the methods and the classes that define them. All methods are instance
methods except where noted.

Table 4-1. Summary of Methods and the Classes Defining Them

Method Name Class(es)

[] Array, Bag, CircularQueue, Directory, List,
Queue, Relation, Set, Stem, Table

97

Chapter 4. Objects and Classes

Method Name Class(es)

[]= Array, Bag, CircularQueue, Directory, List,
Queue, Relation, Set, Stem, Table

ABBREV String

ABS String

ALLAT Relation

ALLINDEX Relation

APPEND MutableBuffer

ARRAYIN Stream

ARRAYOUT Stream

AT(R) Array, CircularQueue, Directory, List, Queue,
Relation, Set, Table

AVAILABLE Supplier

BASECLASS Class

BITAND String

BITOR String

BITXOR String

B2X String

CANCEL Alarm

CENTER String

CHANGESTR String

CHARIN Stream

CHAROUT Stream

CHARS Stream

CLASS Object

CLOSE Stream

COMMAND Stream

COMPARE String

COMPLETED Message

COPIES String

COPY Object

COUNTSTR String

CURRENT Monitor

C2D String

C2X String

DATATYPE String

DECODEBASE64 String

DEFAULTNAME Class, Object

DEFINE Class (class and instance method)

DELETE Class (class and instance method), MutableBuffer

98

Chapter 4. Objects and Classes

Method Name Class(es)

DELSTR String

DELWORD String

DESCRIPTION Stream

DESTINATION Monitor

DIFFERENCE Directory, Relation, Table

DIMENSION Array

D2C String

D2X String

ENCODEBASE64 String

ENHANCED Class (class and instance method)

ENTRY Directory

FIRST Array, List

FIRSTITEM List

FLUSH Stream

FORMAT String

GETBUFFERSIZE MutableBuffer

HASENTRY Directory

HASINDEX Array, Bag, CircularQueue, Directory, List,
Queue, Relation, Set, Table

HASITEM Relation

HASMETHOD Object

ID Class (class and instance method)

INDEX Relation, Supplier

INHERIT Class (class and instance method)

INIT Alarm, CircularQueue, Class, Message, Monitor,
Object, Stream

INSERT List, String, MutableBuffer

INTERSECTION Directory, Relation, Table

ITEM Supplier

ITEMS Array, CircularQueue, Directory, List, Queue,
Relation, Set, Table

LAST Array, List

LASTITEM List

LASTPOS String

LEFT String

LENGTH String, MutableBuffer

LINEIN Stream

LINEOUT Stream

LINES Stream

99

Chapter 4. Objects and Classes

Method Name Class(es)

MAKEARRAY Array, Bag, CircularQueue, Directory, List,
Queue, Relation, Set, Stem, Stream, Table

MAKESTRING String

MAX String

METACLASS Class

METHOD Class (class and instance method)

METHODS Class (class and instance method)

MIN String

MIXINCLASS Class

NEW Array (Class Method), Class (class and instance
method), Method, Object, Stem (Class Method),
String (Class Method), Supplier (Class Method)

NEWFILE Method

NEXT Array, List, Supplier

NOTIFY Message

OBJECTNAME Object

OBJECTNAME= Object

OF Array (Class Method), Bag (Class Method),
CircularQueue, List (Class Method), Set (Class
Method)

OPEN Stream

Operator Methods (Arithmetic): +, -, *, /, %, //, **,
prefix +, prefix -

String

Operator Methods (Comparison): =, \=, ><, <>,
==, and \==

Object, String

Operator Methods (Comparison): >,<, >=, \<,
<=, \>, >>,<<, >>=, \<<, <<=, and \>>

String

Operator Methods (Concatenation): "" (abuttal), ||,
and " " (blank)

String

Operator Methods (Logical): &, |, &&, and prefix \String

Operator Methods (Other): == (unary) Object

OVERLAY String, MutableBuffer

PEEK Queue, CircularQueue

POS String

POSITION Stream

PREVIOUS Array, List

PULL Queue, CircularQueue

PUSH Queue, CircularQueue

100

Chapter 4. Objects and Classes

Method Name Class(es)

PUT Array, Bag, CircularQueue, Directory, List,
Queue, Relation, Set, Table

QUALIFY Stream

QUERY Stream

QUERYMIXINCLASS Class

QUEUE Queue, CircularQueue

REMOVE Array, CircularQueue, Directory, List, Queue,
Relation, Set, Table

REMOVEITEM Relation

REQUEST Object, Stem

RESIZE CircularQueue

RESULT Message

REVERSE String

RIGHT String

RUN Object

SAY Stream

SECTION Array, List

SEEK Stream

SEND Message

SETBUFFERSIZE MutableBuffer

SETENTRY Directory

SETGUARDED Method

SETMETHOD Directory, Object

SETPRIVATE Method

SETPROTECTED Method

SETSECURITYMANAGER Method

SETUNGUARDED Method

SIGN String

SIZE Array, CircularQueue

SOURCE Method

SPACE String

START Message, Object

STATE Stream

STRING Object, CircularQueue, MutableBuffer, String

STRIP String

SUBCLASS Class (class and instance method)

SUBCLASSES Class (class and instance method)

SUBSET Directory, Relation, Table

SUBSTR String, MutableBuffer

101

Chapter 4. Objects and Classes

Method Name Class(es)

SUBWORD String

SUPERCLASSES Class (class and instance method)

SUPPLIER Array, Bag, CircularQueue, Directory, List,
Queue, Relation, Set, Stream, Table

TRANSLATE String

TRUNC String

UNINHERIT Class (class and instance method)

UNION Directory, Relation, Table

UNKNOWN Directory, Monitor, Stem

UNSETMETHOD Object

VERIFY String

WORD String

WORDINDEX String

WORDLENGTH String

WORDPOS String

WORDS String

XOR Directory, Relation, Table

X2B String

X2C String

X2D String

The chapters that follow describe the classes and other objects that Rexx provides and their available
methods. Rexx provides the objects listed in these sections and they are generally available to all
methods through environment symbols (seeEnvironment Symbols).

Notes:

1. In the method descriptions in the chapters that follow, methods that return a result begin with the
word "returns".

2. For [] and []= methods, the syntax diagrams include the index or indexes within the brackets. These
diagrams are intended to show how you can use these methods. For example, to retrieve the first
element of a one-dimensional array named Array1, you would typically use the syntax:

Array1[1]

rather than:

Array1~"[]"(1)

even though the latter is valid and equivalent. For more information, seeMessage Termsand
Message Instructions.

3. When the argument of a method must be a specific kind of object (such as array, class, method, or
string) the variable you specify must be of the same class as the required object or be able to produce
an object of the required kind in response to a conversion message. In particular, subclasses are

102

Chapter 4. Objects and Classes

acceptable in place of superclasses (unless overridden in a way that changes superclass behavior),
because they inherit a suitable conversion method from their Rexx superclass.

The REQUEST method of the Object class (seeREQUEST) can perform this validation.

103

Chapter 4. Objects and Classes

104

Chapter 5. The Collection Classes
A collection is an object that contains a number ofitems, which can be any objects. Every item stored in
a Rexx collection has an associated index that you can use to retrieve the item from the collection with
the AT or [] methods.

Each collection defines its own acceptable index types. Rexx provides the following collection classes:

Collections that do not have set operations:

Array

A sequenced collection of objects ordered by whole-number indexes. SeeThe Array Classfor
details.

List

A sequenced collection that lets you add new items at any position in the sequence. A list generates
and returns an index value for each item placed in the list. The returned index remains valid until the
item is removed from the list. SeeThe List Classfor details.

Queue

A sequenced collection with the items ordered as a queue. You can remove items from the head of
the queue and add items at either its tail or its head. Queues index the items with whole-number
indexes, in the order in which the items would be removed. The current head of the queue has index
1, the item after the head item has index 2, up to the number of items in the queue. SeeThe Queue
Classfor details.

CircularQueue

The CircularQueue class allows for storing objects in a circular queue of a predefined size. Once the
end of the queue has been reached, new item objects are inserted from the beginning, replacing
earlier entries. The collected objects can be processed in FIFO (first in, first out) or in a stack-like
LIFO (last in, first out) order. SeeThe CircularQueue Classfor details

Collections that have set operations:

Table

A collection with indexes that can be any object. For example, string objects, array objects, alarm
objects, or any user-created object can be a table index. The table class determines the index match
by using the == comparison method. A table contains no duplicate indexes. SeeThe Table Classfor
details.

Directory

A collection with character string indexes. Index comparisons are performed using the string ==
comparison method. SeeThe Directory Classfor details.

Relation

A collection with indexes that can be any object (as with the table class). A relation can contain
duplicate indexes. SeeThe Relation Classfor details.

105

Chapter 5. The Collection Classes

Set

A collection where the index and the item are the same object. Set indexes can be any object (as
with the table class) and each index is unique. SeeThe Set Classfor details.

Bag

A collection where the index and the item are the same object. Bag indexes can be any object (as
with the table class) and each index can appear more than once. SeeThe Bag Classfor details.

The following sections describe the individual collection classes in alphabetical order and the methods
that they define and inherit. It also describes the concept of set operations.

5.1. The Array Class
An array is a possibly sparse collection with indexes that are positive whole numbers. You can reference
array items by using one or more indexes. The number of indexes is the same as the number of
dimensions of the array. This number is called the dimensionality of the array.

Array objects are variable-sized. The dimensionality of an array is fixed, but the size of each dimension
is variable. When you create an array, you can specify a hint about how many elements you expect to put
into the array or the array’s dimensionality. However, you do not need to specify a size or dimensionality
of an array when you are creating it. You can use any whole-number indexes to reference items in an
array.

Methods the Array class defines:

NEW (Class method. Overrides Object class method.)
OF (Class method)
[]
[]=
AT
DIMENSION
FIRST
HASINDEX
ITEMS
LAST
MAKEARRAY
MAKESTRING
NEXT
PREVIOUS
PUT
REMOVE
SECTION
SIZE
SUPPLIER

Methods inherited from the Object class:

Operator methods: =, ==, \=,><, <>, \==
CLASS
COPY
DEFAULTNAME
HASMETHOD
OBJECTNAME
OBJECTNAME=
REQUEST

106

Chapter 5. The Collection Classes

RUN
SETMETHOD
START
STRING
UNSETMETHOD

Note: The Array class also has available class methods that its metaclass, the Class class, defines.

5.1.1. NEW (Class Method)

>>-NEW-+----------------+--------------------------------------><

| +-,----+ |

| V | |

+-(----size-+--)-+

Returns a new empty array. If you specify anysize, the size is taken as a hint about how big each
dimension should be. The language processor uses this only to allocate the array object initially. For
multiple dimension arrays, you can also specify how much space is to be allocated initially for each
dimension of the array.

Eachsizeargument must be0 or a positive whole number. If it is0, the corresponding dimension is
initially empty.

5.1.2. OF (Class Method)

>>-OF-+----------------+---------------------------------------><

| +-,----+ |

| V | |

+-(----item-+--)-+

Returns a newly created single-index array containing the specifieditemobjects. The firstitemhas index
1, the second has index 2, and so on.

If you use the OF method and omit any argument items, the returned array does not include the indexes
corresponding to those you omitted.

5.1.3. []

+-,-----+

V |

>>-[---index-+-]---><

Returns the same value as the AT method, which follows. SeeAT.

107

Chapter 5. The Collection Classes

5.1.4. []=

+-,-----+

V |

>>-[---index-+-]=value---><

This method is the same as the PUT method, which follows. SeePUT.

5.1.5. AT

+-,-----+

V |

>>-AT(---index-+-)---><

Returns the item associated with the specifiedindexor indexes. If the array has no item associated with
the specifiedindexor indexes, this method returns the NIL object.

5.1.6. DIMENSION

>>-DIMENSION-+-----+---><

+-(n)-+

Returns the current size (upper bound) of dimensionn (a positive whole number). If you omitn, this
method returns the dimensionality (number of dimensions) of the array. If the number of dimensions has
not been determined, DIMENSION returns0.

5.1.7. FIRST

>>-FIRST---><

Returns the index of the first item in the array or the NIL object if the array is empty. The FIRST method
is valid only for single-index arrays.

5.1.8. HASINDEX

+-,-----+

V |

>>-HASINDEX(---index-+-)---------------------------------------><

Returns1 (true) if the array contains an item associated with the specified index or indexes. Returns0

(false) otherwise.

108

Chapter 5. The Collection Classes

5.1.9. ITEMS

>>-ITEMS---><

Returns the number of items in the collection.

5.1.10. LAST

>>-LAST--><

Returns the index of the last item in the array or the NIL object if the array is empty. The LAST method
is valid only for single-index arrays.

5.1.11. MAKEARRAY

>>-MAKEARRAY---><

Returns a single-index array with the same number of items as the receiver object. Any index with no
associated item is omitted from the new array. Items in the new array will have the same order as the
source array.

5.1.12. MAKESTRING

+-(LINE)--+

>>-MAKESTRING----+---------+------><

+-(CHAR)--+

Returns a stream that contains the data of an array (one to n dimensional). The elements of the array are
treated either in line or character format, starting at the first element in the array. The line format is the
default.

5.1.13. NEXT

>>-NEXT(index)---><

Returns the index of the item that follows the array item having indexindexor returns the NIL object if
the item having that index is last in the array. The NEXT method is valid only for single-index arrays.

5.1.14. PREVIOUS

>>-PREVIOUS(index)---><

Returns the index of the item that precedes the array item having indexindexor the NIL object if the
item having that index is first in the array. The PREVIOUS method is valid only for single-index arrays.

109

Chapter 5. The Collection Classes

5.1.15. PUT

+--------+

V |

>>-PUT(item---,index-+-)---------------------------------------><

Makes the objectitema member item of the array and associates it with the specifiedindexor indexes.
This replaces any existing item associated with the specifiedindexor indexes with the new item. If the
indexfor a particular dimension is greater than the current size of that dimension, the array is expanded
to the new dimension size.

5.1.16. REMOVE

+-,-----+

V |

>>-REMOVE(---index-+-)---><

Returns and removes the member item with the specifiedindexor indexes from the array. If there is no
item with the specifiedindexor indexes, the NIL object is returned and no item is removed.

5.1.17. SECTION

>>-SECTION(start-+--------+-)----------------------------------><

+-,items-+

Returns a new array (of the same class as the receiver) containing selected items from the receiver array.
The first item in the new array is the item corresponding to indexstart in the receiver array. Subsequent
items in the new array correspond to those in the receiver array (in the same sequence). If you specify the
whole numberitems, the new array contains only this number of items (or the number of subsequent
items in the receiver array, if this is less thanitems). If you do not specifyitems, the new array contains
all subsequent items of the receiver array. The receiver array remains unchanged. The SECTION method
is valid only for single-index arrays.

5.1.18. SIZE

>>-SIZE--><

Returns the number of items that can be placed in the array before it needs to be extended. This value is
the same as the product of the sizes of the dimensions in the array.

5.1.19. SUPPLIER

-SUPPLIER--><

110

Chapter 5. The Collection Classes

Returns a supplier object for the collection. After you have obtained a supplier, you can send it messages
(seeThe Supplier Class) to enumerate all the items that were in the array at the time of the supplier’s
creation. The supplier enumerates the array items in their sequenced order.

5.1.20. Examples

array1=.array~of(1,2,3,4) /* Loads the array */

/* Alternative way to create and load an array */

array2=.array~new(4) /* Creates array2, containing 4 items */

do i=1 to 4 /* Loads the array */

array2[i]=i

end

You can produce the elements loaded into an array, for example:

do i=1 to 4

say array1[i]

end

If you omit any argument values before arguments you supply, the corresponding indexes are skipped in
the returned array:

directions=.array~of("North","South", ,"West")

do i=1 to 4 /* Produces: North */

say directions[i] /* South */

/* The NIL object */

end /* West */

Here is an example using the ~~:

z=.array~of(1,2,3)~~put(4,4)

do i = 1 to z~size

say z[i] /* Produces: 1 2 3 4 */

end

5.2. The Bag Class
A bag is a collection that restricts the elements to having an item that is the same as the index. Any
object can be placed in a bag, and the same object can be placed in a bag several times.

The Bag class is a subclass of the Relation class. In addition to its own methods, it inherits the methods
of the Object class and the Relation class.

Methods the Bag class defines:

OF (Class method)
[]
[]= (Overrides Relation class method)

111

Chapter 5. The Collection Classes

HASINDEX
MAKEARRAY
PUT (Overrides Relation class method)
SUPPLIER

Methods inherited from the Relation class:

ALLAT
ALLINDEX
AT
HASITEM
INDEX
ITEMS
REMOVE
REMOVEITEM

Set-operator methods inherited from the Relation class:

DIFFERENCE
INTERSECTION
SUBSET
UNION
XOR

Methods inherited from the Object class:

NEW (Class method)
Operator methods: =, ==, \=, ><, <>, \==
CLASS
COPY
DEFAULTNAME
HASMETHOD
INIT
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
START
STRING
UNSETMETHOD

Note: The Bag class also has available class methods that its metaclass, the Class class, defines.

5.2.1. OF (Class Method)

+-,----+

V |

>>-OF(---item-+-)--><

Returns a newly created bag containing the specifieditemobjects.

112

Chapter 5. The Collection Classes

5.2.2. []

>>-[index]---><

Returns the same value as the AT method in the Relation class. SeeAT.

5.2.3. []=

>>-[index]=item--><

This method is the same as the PUT method. SeePUT.

5.2.4. HASINDEX

>>-HASINDEX(index)---><

Returns1 (true) if the collection contains any item associated with indexindex, or 0 (false).

5.2.5. MAKEARRAY

>>-MAKEARRAY---><

Returns a single-index array containing the index objects. The array indexes range from1 to the number
of items. The collection items appear in the array in an unspecified order. (The program should not rely
on any order.)

5.2.6. PUT

>>-PUT(item-+--------+-)---------------------------------------><

+-,index-+

Makes the objectitema member item of the collection and associates it with indexindex. If you specify
index, it must be the same asitem.

5.2.7. SUPPLIER

>>-SUPPLIER--><

Returns a supplier object for the collection. After you have obtained a supplier, you can send it messages
(seeThe Supplier Class) to enumerate all the items that were in the collection at the time of the supplier’s
creation. The supplier enumerates the items in an unspecified order. (The program should not rely on any
order.)

113

Chapter 5. The Collection Classes

5.2.8. Examples

/* Create a bag of fruit */

fruit = .bag~of("Apple", "Orange", "Apple", "Pear")

say fruit~items /* How many pieces? (4) */

say fruit~items("Apple") /* How many apples? (2) */

fruit~remove("Apple") /* Remove one of the apples. */

fruit~~put("Banana")~put("Orange") /* Add a couple. */

say fruit~items /* How many pieces? (5) */

5.3. The CircularQueue Class
The CircularQueue class allows for storing objects in a circular queue of a predefined size. Once the end
of the queue has been reached, new item objects are inserted from the beginning, replacing earlier entries.

The collected objects can be processed in FIFO (first in, first out) or in a stack-like LIFO (last in, first
out) order.

The CircularQueue class is a subclass of the Queue class. In addition to its own methods it inherits the
methods of the Queue class (seeThe Queue class) and the Object class (seeThe Object Class)

Methods the CircularQueue class defines:

OF (Class method)
INIT
MAKEARRAY
PUSH
QUEUE
RESIZE
SIZE
STRING
SUPPLIER

Methods inherited from the Queue class:

[]
[]=
AT
HASINDEX
ITEMS
MAKEARRAY
PEEK
PULL
PUSH
PUT
QUEUE
REMOVE
SUPPLIER

Methods inherited from the Object class:

NEW (Class method)
Operator methods: =, ==, \=,><, <>, \==
CLASS
COPY

114

Chapter 5. The Collection Classes

DEFAULTNAME
HASMETHOD
INIT
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
START
STRING
UNSETMETHOD

Note: The CircularQueue class also has available class methods that its metaclass, the Class class,
defines.

5.3.1. OF (Class Method)

>>-OF-+----------------+---------------------------------------><

| +-,----+ |

| V | |

+-(----item-+--)-+

Returns a newly created circular queue containing the specifieditemobjects. The firstitemhas index 1,
the second has index 2, and so on. The number ofitemobjects determines thesizeof the circular queue.

5.3.2. INIT

>>-INIT(size)--><

Constructor method invoked by the NEW method, which determines thesizeof the circular queue.

5.3.3. MAKEARRAY

+-Fifo----+

>>-MAKEARRAY(-+---------+-)------------------------------------><

+--order--+

Returns a single-index array containing the items of the circular queue in the specifiedorder.

The followingorder can be used. (Only the capitalized letter is needed; all characters following it are
ignored.)

Fifo

First-in, first-out, default

Lifo

Last-in, first-out (stacklike)

115

Chapter 5. The Collection Classes

5.3.4. PUSH

>>-PUSH(item)--><

Makes the objectitema member item of the circular queue, inserting the item object in front of the first
item in the queue. The pushed item object will be the new first item in the circular queue.

If the circular queue is full, than the last item stored in the circular queue will be deleted, before the
insertion takes place. In this case thedeleted itemwill be returned, otherwise.nil.

5.3.5. QUEUE

>>-QUEUE(item)---><

Makes the objectitema member item of the circular queue, inserting the item at the end of the circular
queue.

If the circular queue is full, than the first item will be deleted, before the insertion takes place. In this
case thedeleted itemwill be returned, otherwise.nil.

5.3.6. RESIZE

+--,Fifo---+

>>-RESIZE(-newSize-+----------+-)------------------------------><

+--,order--+

Resizes the circular queue object to be able to containnewSizeitems. If the previous size was larger than
newSize, then the now superfluous items are removed in the specifiedorder.

The followingorder can be used. (Only the capitalized letter is needed; all characters following it are
ignored.)

Fifo

First-in, first-out, default: keeps the newest entries

Lifo

Last-in, first-out (stacklike): keeps the oldest entries

Note:: Resizing with a value of 0 effectively removes all items from the circular queue.

5.3.7. SIZE

>>-SIZE--><

Returns the maximum number of objects that can be stored in the circular queue.

116

Chapter 5. The Collection Classes

5.3.8. STRING

+--","------+ +-,-Fifo--+

>>-STRING(-+-----------+--+---------+-)------------------------><

+-delimiter-+ +-,-order-+

Returns a string object that concatenates the string values of the collected item objects, using the
delimiterstring to delimit them, in the specifiedorder. The defaultdelimiter is a single comma.

If the delimiter string argument is omitted the comma character (",") is used as the default delimiter
string.

The followingorder can be used. (Only the capitalized letter is needed; all characters following it are
ignored.)

Fifo

First-in, first-out, default

Lifo

Last-in, first-out (stacklike)

5.3.9. SUPPLIER

+--Fifo----+

>>-SUPPLIER(-+----------+-)------------------------------------><

+--order---+

Returns a supplier object for the collection. After you have obtained a supplier, you can send it messages
(seeThe Supplier Class) to enumerate all the items that were in the queue at the time of the supplier’s
creation.

The supplier will enumerate the items in the specifiedorder. (Only the capitalized letter is needed; all
characters following it are ignored.)

Fifo

First-in, first-out, default

Lifo

Last-in, first-out (stacklike)

5.3.10. Example

-- create a circular buffer with five items

u=.circularQueue~of("a", "b", "c", "d", "e")

say "content: ["u"]," "content (LIFO): ["u~string("->","L")"]"

say

u~resize(4, "FIFO") -- resize fifo-style (keep newest)

117

Chapter 5. The Collection Classes

say "after resizing to 4 items in FIFO style (keeping the newest):"

say "content: ["u"]," "content (LIFO): ["u~string("->","L")"]"

say

u~resize(2, "LILO") -- resize lifo-style (keep oldest)

say "after resizing to 2 items in LIFO style (keeping the oldest):"

say "content: ["u"]," "content (LIFO): ["u~string("->","L")"]"

say

u~resize(0) -- resize lifo-style (keep oldest)

say "after resizing to 0 items, thereby deleting all items:"

say "content: ["u"]," "content (LIFO): ["u~string("->","L")"]"

say

u~resize(2) -- resize lifo-style (keep oldest)

say "after resizing to 2, size="u~size "and items="u~items

u~~queue('x')~~queue('y')~~queue('z')

say "after queuing the three items 'x', 'y', 'z':"

say "content: ["u"]," "content (LIFO): ["u~string("->","L")"]"

say

u~~push('1')~~push('2')~~push('3')

say "after pushing the three items '1', '2', '3':"

say "content: ["u"]," "content (LIFO): ["u~string("->","L")"]"

say

Output:

content: [a,b,c,d,e], content (LIFO): [e->d->c->b->a]

after resizing to 4 items in FIFO style (keeping the newest):

content: [b,c,d,e], content (LIFO): [e->d->c->b]

after resizing to 2 items in LIFO style (keeping the oldest):

content: [b,c], content (LIFO): [c->b]

after resizing to 0 items, thereby deleting all items:

content: [], content (LIFO): []

after resizing to 2, size=2 and items=0

after queuing the three items 'x', 'y', 'z':

content: [y,z], content (LIFO): [z->y]

after pushing the three items '1', '2', '3':

content: [3,2], content (LIFO): [2->3]

118

Chapter 5. The Collection Classes

5.4. The Directory Class
A directory is a collection with unique indexes that are character strings representing names.

Directories let you refer to objects by name, for example:

.environment~array

For directories, items are often referred to as entries.

Methods the Directory class defines:

[]
[]=
AT
ENTRY
HASENTRY
HASINDEX
ITEMS
MAKEARRAY
PUT
REMOVE
SETENTRY
SETMETHOD (Overrides Object class method)
SUPPLIER
UNKNOWN

Set-operator methods the Directory class defines:

DIFFERENCE
INTERSECTION
SUBSET
UNION
XOR

Methods Inherited from the Object Class:

NEW (Class method)
Operator methods: =, ==, \=,><, <>, \==
CLASS
COPY
DEFAULTNAME
HASMETHOD
INIT
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
START
STRING
UNSETMETHOD

Note: The Directory class also has available class methods that its metaclass, the Class class,
defines.

119

Chapter 5. The Collection Classes

5.4.1. []

>>-[name]--><

Returns the same item as the AT method, which follows. SeeAT.

5.4.2. []=

>>-[name]=item---><

This method is the same as the PUT method. SeePUT.

5.4.3. AT

>>-AT(name)--><

Returns the item associated with indexname. If a method that SETMETHOD supplies is associated with
indexname, the result of running this method is returned. If the collection has no item or method
associated with indexname, this method returns the NIL object.

Example:

say .environment~AT("OBJECT") /* Produces: "The Object class" */

5.4.4. ENTRY

>>-ENTRY(name)---><

Returns the directory entry with namename(translated to uppercase). If there is no such entry,name
returns the item for any method that SETMETHOD supplied. If there is neither an entry nor a method for
nameor for UNKNOWN, the language processor raises an error.

5.4.5. HASENTRY

>>-HASENTRY(name)--><

Returns1 (true) if the directory has an entry or a method for namename(translated to uppercase), or0

(false).

5.4.6. HASINDEX

>>-HASINDEX(name)--><

Returns1 (true) if the collection contains any item associated with indexname, or 0 (false).

120

Chapter 5. The Collection Classes

5.4.7. ITEMS

>>-ITEMS---><

Returns the number of items in the collection.

5.4.8. MAKEARRAY

>>-MAKEARRAY---><

Returns a single-index array containing the index objects. The array indexes range from1 to the number
of items. The collection items appear in the array in an unspecified order. (The program should not rely
on any order.)

5.4.9. PUT

>>-PUT(item,name)--><

Makes the objectitema member item of the collection and associates it with indexname. The new item
replaces any existing item or method associated with indexname.

5.4.10. REMOVE

>>-REMOVE(name)--><

Returns and removes the member item with indexnamefrom a collection. If a method is associated with
SETMETHOD for indexname, REMOVE removes the method and returns the result of running it. If
there is no item or method with indexname, the UNKNOWN method returns the NIL object and
removes nothing.

5.4.11. SETENTRY

>>-SETENTRY(name-+--------+-)----------------------------------><

+-,entry-+

Sets the directory entry with namename(translated to uppercase) to the objectentry, replacing any
existing entry or method forname. If you omit entry, this method removes any entry or method with this
name.

5.4.12. SETMETHOD

>>-SETMETHOD(name-+---------+-)--------------------------------><

+-,method-+

121

Chapter 5. The Collection Classes

Associates entry namename(translated to uppercase) with methodmethod. Thus, the language processor
returns the result of runningmethodwhen you access this entry. This occurs when you specifynameon
the AT, ENTRY, or REMOVE method. This method replaces any existing item or method forname.

You can specify the name UNKNOWN asname. Doing so supplies a method to run whenever an AT or
ENTRY message specifies a name for which no item or method exists in the collection. This method’s
first argument is the specified directory index. This method has no effect on the action of any
HASENTRY, HASINDEX, ITEMS, REMOVE, or SUPPLIER message sent to the collection.

Themethodcan be a string containing a method source line instead of a method object. Alternatively, an
array of strings containing individual method lines can be passed. In either case, SETMETHOD creates
an equivalent method object.

If you omit method, SETMETHOD removes the entry with the specifiedname.

5.4.13. SUPPLIER

>>-SUPPLIER--><

Returns a supplier object for the collection. After you have obtained a supplier, you can send it messages
(seeThe Supplier Class) to enumerate all the items that were in the collection at the time of the supplier’s
creation. The supplier enumerates the items in an unspecified order. (The program should not rely on any
order.)

5.4.14. UNKNOWN

>>-UNKNOWN(messagename,messageargs)----------------------------><

Runs either the ENTRY or SETENTRY method, depending on whethermessagenameends with an equal
sign. If messagenamedoes not end with an equal sign, this method runs the ENTRY method, passing
messagenameas its argument. The language processor ignores any arguments specified in the array
messageargs. In this case, UNKNOWN returns the result of the ENTRY method.

If messagenamedoes end with an equal sign, this method runs the SETENTRY method, passing the first
part ofmessagename(up to, but not including, the final equal sign) as its first argument, and the first item
in the arraymessageargsas its second argument. In this case, UNKNOWN returns no result.

5.4.15. DIFFERENCE

>>-DIFFERENCE(argument)--><

Returns a new collection (of the same class as the receiver) containing only those items from the receiver
whose indexes theargumentcollection does not contain. Theargumentcan be any object described in
The Argument Collection Classes. Theargumentmust also allow all of the index values in the receiver
collection.

122

Chapter 5. The Collection Classes

5.4.16. INTERSECTION

>>-INTERSECTION(argument)--------------------------------------><

Returns a new collection (of the same class as the receiver) containing only those items from the receiver
whose indexes are in both the receiver collection and theargumentcollection. Theargumentcan be any
object described inThe Argument Collection Classes. Theargumentmust also allow all of the index
values in the receiver collection.

5.4.17. SUBSET

>>-SUBSET(argument)--><

Returns1 (true) if all indexes in the receiver collection are also contained in theargumentcollection;
returns0 (false) otherwise. Theargumentcan be any object described inThe Argument Collection
Classes. Theargumentmust also allow all of the index values in the receiver collection.

5.4.18. UNION

>>-UNION(argument)---><

Returns a new collection of the same class as the receiver that contains all the items from the receiver
collection and selected items from theargumentcollection. This method includes an item fromargument
in the new collection only if there is no item with the same associated index in the receiver collection and
the method has not already included an item with the same index. The order in which this method selects
items inargumentis unspecified. (The program should not rely on any order.) See also the UNION
method of the Table (UNION) and Relation (UNION) classes. Theargumentcan be any object described
in The Argument Collection Classes. Theargumentmust also allow all of the index values in the receiver
collection.

5.4.19. XOR

>>-XOR(argument)---><

Returns a new collection of the same class as the receiver that contains all items from the receiver
collection and theargumentcollection; all indexes that appear in both collections are removed. The
argumentcan be any object described inThe Argument Collection Classes. Theargumentmust also
allow all of the index values in the receiver collection.

5.4.20. Examples

/**/

/* A Phone Book Directory program */

/* This program demonstrates use of the directory class. */

/**/

123

Chapter 5. The Collection Classes

/* Define an UNKNOWN method that adds an abbreviation lookup feature. */

/* Directories do not have to have an UNKNOWN method. */

book = .directory~new~~setmethod("UNKNOWN", .methods["UNKNOWN"])

book["ANN"] = "Ann B. 555-6220"

book["ann"] = "Little annie . 555-1234"

book["JEFF"] = "Jeff G. 555-5115"

book["MARK"] = "Mark C. 555-5017"

book["MIKE"] = "Mike H. 555-6123"

book~Rick = "Rick M. 555-5110" /* Same as book["RICK"] = ... */

Do i over book /* Iterate over the collection */

Say book[i]

end i

Say "" /* Index lookup is case sensitive... */

Say book~entry("Mike") /* ENTRY method uppercases before lookup */

Say book["ANN"] /* Exact match */

Say book~ann /* Message sends uppercase before lookup */

Say book["ann"] /* Exact match with lowercase index */

Say ""

Say book["M"] /* Uses UNKNOWN method for lookup */

Say book["Z"]

Exit

/* Define an unknown method to handle indexes not found. */

/* Check for abbreviations or indicate listing not found */

::Method UNKNOWN

Parse arg at_index

value = ""

Do i over self

If abbrev(i, at_index) then do

If value <> "" then value = value", "

value = value || self~at(i)

end

end i

If value = "" then value = "No listing found for" at_index

Return value

5.5. The List Class
A list is a non-sparse sequenced collection similar to theThe Array Classto which you can add new
items at any position in the sequence. The collection supplies the list indexes at the time items are added
with the INSERT method. The FIRST, LAST, and NEXT methods can also retrieve list indexes. Only
indexes the list object generates are valid i.e. the list is never a sparse list and the list object may modify
idexes for items in the list.

Methods the List class defines:

124

Chapter 5. The Collection Classes

OF (Class method)
[]
[]=
AT
FIRST
FIRSTITEM
HASINDEX
INSERT
ITEMS
LAST
LASTITEM
MAKEARRAY
NEXT
PREVIOUS
PUT
REMOVE
SECTION
SUPPLIER

Methods inherited from the Object class:

NEW (Class method)
Operator methods: =, ==, \=,><, <>, \==
CLASS
COPY
DEFAULTNAME
HASMETHOD
INIT
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
START
STRING
UNSETMETHOD

Note: The List class also has available class methods that its metaclass, the Class class, defines.

5.5.1. OF (Class Method)

+-,----+

V |

>>-OF(---item-+-)--><

Returns a newly created list containing the specifieditemobjects in the order specified.

5.5.2. []

>>-[index]---><

Returns the same item as the AT method. SeeAT.

125

Chapter 5. The Collection Classes

5.5.3. []=

>>-[index]=item--><

This method is the same as the PUT method. SeePUT.

5.5.4. AT

>>-AT(index)---><

Returns the item associated with indexindex. If the collection has no item associated withindex, this
method returns the NIL object.

5.5.5. FIRST

>>-FIRST---><

Returns the index of the first item in the list or the NIL object if the list is empty. The example for
INSERT (seeINSERT) includes FIRST.

5.5.6. FIRSTITEM

>>-FIRSTITEM---><

Returns the first item in the list or the NIL object if the list is empty.

Example:

musketeers=.list~of(Porthos,Athos,Aramis) /* Creates list MUSKETEERS */

item=musketeers~firstitem /* Gives first item in list */

/* (Assigns "Porthos" to item) */

5.5.7. HASINDEX

>>-HASINDEX(index)---><

Returns1 (true) if the collection contains any item associated with indexindex, or 0 (false).

5.5.8. INSERT

>>-INSERT(item-+--------+-)------------------------------------><

+-,index-+

126

Chapter 5. The Collection Classes

Returns a list-supplied index for a new itemitem, which is added to the list. The new item follows the
existing item with indexindexin the list ordering. Ifindexis the NIL object, the new item becomes the
first item in the list. If you omitindex, the new item becomes the last item in the list.

Inserting an item in the list at positionindexwill cause the items in the list after positionindexto have
their indexes modified by the list object.

musketeers=.list~of(Porthos,Athos,Aramis) /* Creates list MUSKETEERS */

/* consisting of: Porthos */

/* Athos */

/* Aramis */

index=musketeers~first /* Gives index of first item */

musketeers~insert("D'Artagnan",index) /* Adds D'Artagnan after Porthos */

/* List is now: Porthos */

/* D'Artagnan */

/* Athos */

/* Aramis */

/* Alternately, you could use */

musketeers~insert("D'Artagnan",.nil) /* Adds D'Artagnan before Porthos */

/* List is now: D'Artagnan */

/* Porthos */

/* Athos */

/* Aramis */

/* Alternately, you could use */

musketeers~insert("D'Artagnan") /* Adds D'Artagnan after Aramis */

/* List is now: Porthos */

/* Athos */

/* Aramis */

/* D'Artagnan */

5.5.9. ITEMS

>>-ITEMS---><

Returns the number of items in the collection.

5.5.10. LAST

>>-LAST--><

Returns the index of the last item in the list or the NIL object if the list is empty.

5.5.11. LASTITEM

>>-LASTITEM--><

Returns the last item in the list or the NIL object if the list is empty.

127

Chapter 5. The Collection Classes

5.5.12. MAKEARRAY

>>-MAKEARRAY---><

Returns a single-index array containing the receiver collection items. The array indexes range from1 to
the number of items. The order in which the collection items appear in the array is the same as their
sequence in the list collection.

5.5.13. NEXT

>>-NEXT(index)---><

Returns the index of the item that follows the list item having indexindexor returns the NIL object if the
item having that index is last in the list.

5.5.14. PREVIOUS

>>-PREVIOUS(index)---><

Returns the index of the item that precedes the list item having indexindexor the NIL object if the item
having that index is first in the list.

5.5.15. PUT

>>-PUT(item,index)---><

Replaces any existing item associated with the specifiedindexwith the new itemitem. If the indexdoes
not exist in the list, an error is raised.

5.5.16. REMOVE

>>-REMOVE(index)---><

Returns and removes from a collection the member item with indexindex. If no item has indexindex,
this method returns the NIL object and removes no item.

Removinf an item from the list at positionindexwill cause the items in the list after positionindexto
have their indexes modified by the list object.

5.5.17. SECTION

>>-SECTION(start-+--------+-)----------------------------------><

+-,items-+

128

Chapter 5. The Collection Classes

Returns a new list (of the same class as the receiver) containing selected items from the receiver list. The
first item in the new list is the item corresponding to indexstart in the receiver list. Subsequent items in
the new list correspond to those in the receiver list (in the same sequence). If you specify the whole
numberitems, the new list contains only this number of items (or the number of subsequent items in the
receiver list, if this is less thanitems). If you do not specifyitems, the new list contains all subsequent
items from the receiver list. The receiver list remains unchanged.

5.5.18. SUPPLIER

>>-SUPPLIER--><

Returns a supplier object for the list. If you send appropriate messages to the supplier (seeThe Supplier
Class), the supplier enumerates all the items in the list at the time of the supplier’s creation. The supplier
enumerates the items in their sequenced order.

5.6. The Queue Class
A queue is a non-sparse sequenced collection with whole-number indexes. The indexes specify the
position of an item relative to the head (first item) of the queue. Adding or removing an item changes the
association of an index to its queue item. You can add items at either the tail or the head of the queue.

Methods the Queue class defines:

[]
[]=
AT
HASINDEX
ITEMS
MAKEARRAY
PEEK
PULL
PUSH
PUT
QUEUE
REMOVE
SUPPLIER

Methods inherited from the Object class:

NEW (Class method)
Operator methods: =, ==, \=,><, <>, \==
CLASS
COPY
DEFAULTNAME
HASMETHOD
INIT
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
START

129

Chapter 5. The Collection Classes

STRING
UNSETMETHOD

Note: The Queue class also has available class methods that its metaclass, the Class class, defines.

5.6.1. []

>>-[index]---><

Returns the same value as the AT method. SeeAT.

The order in which the queue items appear in the array is the same as their queuing order, with the head
of the queue as index 1.

5.6.2. []=

>>-[index]=item--><

This method is the same as the PUT method. SeePUT.

5.6.3. AT

>>-AT(index)---><

Returns the item associated with indexindex. If the collection has no item associated withindex, this
method returns the NIL object.

5.6.4. HASINDEX

>>-HASINDEX(index)---><

Returns1 (true) if the collection contains any item associated with indexindex, or 0 (false).

5.6.5. ITEMS

>>-ITEMS---><

Returns the number of items in the collection.

5.6.6. MAKEARRAY

>>-MAKEARRAY---><

130

Chapter 5. The Collection Classes

Returns a single-index array containing the receiver queue items. The array indexes range from1 to the
number of items. The order in which the queue items appear in the array is the same as their queuing
order, with the head of the queue as index 1.

5.6.7. PEEK

>>-PEEK--><

Returns the item at the head of the queue. If the queue is empty then the method returns the .NIL object.
The collection remains unchanged.

5.6.8. PULL

>>-PULL--><

Returns and removes the item at the head of the queue. If the queue is empty then the method returns the
.NIL object

5.6.9. PUSH

>>-PUSH(item)--><

Adds the objectitemto the head of the queue.

5.6.10. PUT

>>-PUT(item,index)---><

Replaces any existing item associated with the specifiedindexwith the new item. If theindexdoes not
exist in the queue, an error is raised.

5.6.11. QUEUE

>>-QUEUE(item)---><

Adds the objectitemto the tail of the queue.

5.6.12. REMOVE

>>-REMOVE(index)---><

Returns and removes from a collection the member item with indexindex. If no item has indexindex,
this method returns the NIL object and removes no item.

131

Chapter 5. The Collection Classes

5.6.13. SUPPLIER

>>-SUPPLIER--><

Returns a supplier object for the collection. After you have obtained a supplier, you can send it messages
(seeThe Supplier Class) to enumerate all the items that were in the queue at the time of the supplier’s
creation. The supplier enumerates the items in their queuing order, with the head of the queue first.

5.7. The Relation Class
A relation is a collection with indexes that can be any objects the user supplies. In a relation, each item is
associated with a single index, but there can be more than one item with the same index (unlike a table,
which can contain only one item for any index).

Methods the Relation class defines:

[]
[]=
ALLAT
ALLINDEX
AT
HASINDEX
HASITEM
INDEX
ITEMS
MAKEARRAY
PUT
REMOVE
REMOVEITEM
SUPPLIER

Set-operator methods the Relation class defines:

DIFFERENCE
INTERSECTION
SUBSET
UNION
XOR

Methods inherited from the Object class:

NEW (Class method)
Operator methods: =, ==, \=,><, <>, \==
CLASS
COPY
DEFAULTNAME
HASMETHOD
INIT
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
START
STRING
UNSETMETHOD

132

Chapter 5. The Collection Classes

Note: The Relation class also has available class methods that its metaclass, the Class class,
defines.

5.7.1. []

>>-[index]---><

Returns the same item as the AT method. SeeAT.

5.7.2. []=

>>-[index]=item--><

This method is the same as the PUT method. SeePUT.

5.7.3. ALLAT

>>-ALLAT(index)--><

Returns a single-index array containing all the items associated with indexindex. The indexes of the
returned array range from1 to the number of items. Items in the array appear in an unspecified order.

5.7.4. ALLINDEX

>>-ALLINDEX(item)--><

Returns a single-index array containing all indexes for itemitem, in an unspecified order. (The program
should not rely on any order.)

5.7.5. AT

>>-AT(index)---><

Returns the item associated with indexindex. If the relation contains more than one item associated with
index index, the item returned is unspecified. (The program should not rely on any particular item being
returned.) If the relation has no item associated with indexindex, this method returns the NIL object.

5.7.6. HASINDEX

>>-HASINDEX(index)---><

Returns1 (true) if the collection contains any item associated with indexindex, or 0 (false).

133

Chapter 5. The Collection Classes

5.7.7. HASITEM

>>-HASITEM(item,index)---><

Returns1 (true) if the relation contains the member itemitem(associated with indexindex, or 0 (false).

5.7.8. INDEX

>>-INDEX(item)---><

Returns the index for itemitem. If there is more than one index associated with itemitem, the one this
method returns is not defined.

5.7.9. ITEMS

>>-ITEMS-+---------+---><

+-(index)-+

Returns the number of relation items with indexindex. If you specify noindex, this method returns the
total number of items associated with all indexes in the relation.

5.7.10. MAKEARRAY

>>-MAKEARRAY---><

Returns a single-index array containing the index objects. The array indexes range from1 to the number
of items. The collection items appear in the array in an unspecified order. (The program should not rely
on any order.)

5.7.11. PUT

>>-PUT(item,index)---><

Makes the objectitema member item of the relation and associates it with indexindex. If the relation
already contains any items with indexindex, this method adds a new member itemitemwith the same
index, without removing any existing member items.

5.7.12. REMOVE

>>-REMOVE(index)---><

Returns and removes from a relation the member item with indexindex. If the relation contains more
than one item associated with indexindex, the item returned and removed is unspecified. If no item has
index index, this method returns the NIL object and removes nothing.

134

Chapter 5. The Collection Classes

5.7.13. REMOVEITEM

>>-REMOVEITEM(item,index)--------------------------------------><

Returns and removes from a relation the member itemitem(associated with indexindex). If valueis not
a member item associated with indexindex, this method returns the NIL object and removes no item.

5.7.14. SUPPLIER

>>-SUPPLIER--+---------+---------------------------------------><

+-(index)-+

Returns a supplier object for the collection. After you have obtained a supplier, you can send it messages
(seeThe Supplier Class) to enumerate all the items that were in the collection at the time of the supplier’s
creation. The supplier enumerates the items in an unspecified order. (The program should not rely on any
order.) If you specifyindex, the supplier enumerates all of the items in the relation with the specified
index.

5.7.15. DIFFERENCE

>>-DIFFERENCE(argument)--><

Returns a new collection (of the same class as the receiver) containing only those items that theargument
collection does not contain (with the same associated index). Theargumentcan be any object described
in The Argument Collection Classes.

5.7.16. INTERSECTION

>>-INTERSECTION(argument)--------------------------------------><

Returns a new collection (of the same class as the receiver) containing only those items that are in both
the receiver collection and theargumentcollection with the same associated index. Theargumentcan be
any object described inThe Argument Collection Classes.

5.7.17. SUBSET

>>-SUBSET(argument)--><

Returns1 (true) if all items in the receiver collection are also contained in theargumentcollection with
the same associated index; returns0 (false) otherwise. Theargumentcan be any object described inThe
Argument Collection Classes.

135

Chapter 5. The Collection Classes

5.7.18. UNION

>>-UNION(argument)---><

Returns a new collection containing all items from the receiver collection and theargumentcollection.
Theargumentcan be any object described inThe Argument Collection Classes.

5.7.19. XOR

>>-XOR(argument)---><

Returns a new collection of the same class as the receiver that contains all items from the receiver
collection and theargumentcollection. All index-item pairs that appear in both collections are removed.
Theargumentcan be any object described inThe Argument Collection Classes.

5.7.20. Examples

/* Use a relation to express parent-child relationships */

family = .relation~new

family["Henry"] = "Peter" /* Peter is Henry's child */

family["Peter"] = "Bridget" /* Bridget is Peter's child */

family["Henry"] = "Jane" /* Jane is Henry's child */

/* Show all children of Henry recorded in the family relation */

henrys_kids = family~allat("Henry")

Say "Here are all the listed children of Henry:"

Do kid Over henrys_kids

Say " "kid

End

/* Show all parents of Bridget recorded in the family relation */

bridgets_parents = family~allindex("Bridget")

Say "Here are all the listed parents of Bridget:"

Do parent Over bridgets_parents

Say " "parent

End

/* Display all the grandparent relationships we know about. */

checked_for_grandkids = .set~new /* Records those we have checked */

Do grandparent Over family /* Iterate for each index in family */

If checked_for_grandkids~hasindex(grandparent)

Then Iterate /* Already checked this one */

kids = family~allat(grandparent) /* Current grandparent's children */

Do kid Over kids /* Iterate for each item in kids */

grandkids = family~allat(kid) /* Current kid's children */

Do grandkid Over grandkids /* Iterate for each item in grandkids */

Say grandparent "has a grandchild named" grandkid"."

End

End

136

Chapter 5. The Collection Classes

checked_for_grandkids~put(grandparent) /* Add to already-checked set */

End

5.8. The Set Class
A set is a collection containing the member items where the index is the same as the item. Any object
can be placed in a set. There can be only one occurrence of any object in a set.

The Set class is a subclass of the Table class. In addition to its own methods, it inherits the methods of
the Object class (seeThe Object Class) and the Table class.

Methods the Set class defines:

OF (Class method)
[]
[]=
AT
HASINDEX
ITEMS
MAKEARRAY
PUT
REMOVE
SUPPLIER

Set-operator methods inherited from the Table class:

DIFFERENCE
INTERSECTION
SUBSET
UNION
XOR

Methods inherited from the Object class:

NEW (Class method)
Operator methods: =, ==, \=,><, <>, \==
CLASS
COPY
DEFAULTNAME
HASMETHOD
INIT
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
START
STRING
UNSETMETHOD

Note: The Set class also has available class methods that its metaclass, the Class class, defines.

137

Chapter 5. The Collection Classes

5.8.1. OF (Class Method)

+-,----+

V |

>>-OF(---item-+-)--><

Returns a newly created set containing the specifieditemobjects.

5.8.2. []

>>-[index]---><

Returns the same item as the AT method. SeeAT.

5.8.3. []=

>>-[index]=item--><

This method is the same as the PUT method. SeePUT.

5.8.4. AT

>>-AT(index)---><

Returns the item associated with indexindex. If the collection has no item associated withindex, this
method returns the NIL object.

5.8.5. HASINDEX

>>-HASINDEX(index)---><

Returns1 (true) if the collection contains any item associated with indexindex, or 0 (false).

5.8.6. ITEMS

>>-ITEMS---><

Returns the number of items in the collection.

5.8.7. MAKEARRAY

>>-MAKEARRAY---><

138

Chapter 5. The Collection Classes

Returns a single-index array containing the index objects. The array indexes range from1 to the number
of items. The collection items appear in the array in an unspecified order. (The program should not rely
on any order.)

5.8.8. PUT

>>-PUT(item-+--------+-)---------------------------------------><

+-,index-+

Makes the objectitema member item of the collection and associates it with indexindex. If you specify
index, it must be the same asitem.

5.8.9. REMOVE

>>-REMOVE(index)---><

Returns and removes from a collection the member item with indexindex. If no item has indexindex,
this method returns the NIL object and removes no item.

5.8.10. SUPPLIER

>>-SUPPLIER--><

Returns a supplier object for the collection. After you have obtained a supplier, you can send it messages
(seeThe Supplier Class) to enumerate all the items that were in the collection at the time of the supplier’s
creation. The supplier enumerates the items in an unspecified order. (The program should not rely on any
order.)

5.9. The Table Class
A table is a collection with indexes that can be any object the user supplies. In a table, each item is
associated with a single index, and there can be only one item for each index (unlike a relation, which
can contain more than one item with the same index).

Methods the Table class defines:

[]
[]=
AT
HASINDEX
ITEMS
MAKEARRAY
PUT
REMOVE
SUPPLIER

139

Chapter 5. The Collection Classes

Set-operator methods the Table class defines:

DIFFERENCE
INTERSECTION
SUBSET
UNION
XOR

Methods inherited from the Object class:

NEW (Class method)
Operator methods: =, ==, \=,><, <>, \==
CLASS
COPY
DEFAULTNAME
HASMETHOD
INIT
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
START
STRING
UNSETMETHOD

Note: The Table class also has available class methods that its metaclass, the Class class, defines.

5.9.1. []

>>-[index]---><

Returns the same item as the AT method. SeeAT.

5.9.2. []=

>>-[index]=item--><

This method is the same as the PUT method. SeePUT.

5.9.3. AT

>>-AT(index)---><

Returns the item associated with indexindex. If the collection has no item associated withindex, this
method returns the NIL object.

140

Chapter 5. The Collection Classes

5.9.4. HASINDEX

>>-HASINDEX(index)---><

Returns1 (true) if the collection contains any item associated with indexindex, or 0 (false).

5.9.5. ITEMS

>>-ITEMS---><

Returns the number of items in the collection.

5.9.6. MAKEARRAY

>>-MAKEARRAY---><

Returns a single-index array containing the index objects. The array indexes range from1 to the number
of items. The collection items appear in the array in an unspecified order. (The program should not rely
on any order.)

5.9.7. PUT

>>-PUT(item,index)---><

Makes the objectitema member item of the collection and associates it with indexindex. The new item
replaces any existing items associated with indexindex.

5.9.8. REMOVE

>>-REMOVE(index)---><

Returns and removes from a collection the member item with indexindex. If no item has indexindex,
this method returns the NIL object and removes no item.

5.9.9. SUPPLIER

>>-SUPPLIER--><

Returns a supplier object for the collection. After you have obtained a supplier, you can send it messages
(seeThe Supplier Class) to enumerate all the items that were in the collection at the time of the supplier’s
creation. The supplier enumerates the items in an unspecified order. (The program should not rely on any
order.)

141

Chapter 5. The Collection Classes

5.9.10. DIFFERENCE

>>-DIFFERENCE(argument)--><

Returns a new collection (of the same class as the receiver) containing only those index-item pairs of the
receiver whose indexes theargumentcollection does not contain. Theargumentcan be any object
described inThe Argument Collection Classes. Theargumentmust also allow all of the index values in
the receiver collection.

5.9.11. INTERSECTION

>>-INTERSECTION(argument)--------------------------------------><

Returns a new collection (of the same class as the receiver) containing only those index-item pairs of the
receiver whose indexes are in both the receiver collection and theargumentcollection. Theargumentcan
be any object described inThe Argument Collection Classes. Theargumentmust also allow all of the
index values in the receiver collection.

5.9.12. SUBSET

>>-SUBSET(argument)--><

Returns1 (true) if all indexes in the receiver collection are also contained in theargumentcollection;
returns0 (false) otherwise. Theargumentcan be any object described inThe Argument Collection
Classes. Theargumentmust also allow all of the index values in the receiver collection.

5.9.13. UNION

>>-UNION(argument)---><

Returns a new collection of the same class as the receiver that contains all the items from the receiver
collection and selected items from theargumentcollection. This method includes an item fromargument
in the new collection only if there is no item with the same associated index in the receiver collection and
the method has not already included an item with the same index. The order in which this method selects
items inargumentis unspecified. (The program should not rely on any order.) See also the UNION
method of the Directory (seeUNION) and Relation (seeUNION) classes. Theothercan be any object
described inThe Argument Collection Classes. Theargumentmust also allow all of the index values in
the receiver collection.

5.9.14. XOR

>>-XOR(argument)---><

Returns a new collection of the same class as the receiver that contains all items from the receiver
collection and theargumentcollection; all indexes that appear in both collections are removed. The

142

Chapter 5. The Collection Classes

argumentcan be any object described inThe Argument Collection Classes. Theargumentmust also
allow all of the index values in the receiver collection.

5.10. The Concept of Set Operations
The following sections describe the concept of set operations to help you work with set operators, in
particular if the receiver collection class differs from the argument collection class.

Rexx provides the following set-operator methods:

• DIFFERENCE

• INTERSECTION

• SUBSET

• UNION

• XOR

These methods are only available to instances of the following collection classes:

• Directory

• Table and its subclass Set

• Relation and its subclass Bag

The collection classes Array, List, and Queue do not have set-operator methods but their instances can be
used as the argument collections.

Set operations have the following form:

result = receiver~setoperator(argument)

where:

receiver

is the collection receiving the set-operator message. It can be an instance of the Directory, Relation,
Table, Set, or Bag collection class.

setoperator

is the set-operator method used.

argument

is the argument collection supplied to the method. It can be an instance of one of the receiver
collection classes or of a collection class that does not have set-operator methods, namely Array,
List, or Queue.

The resulting collection is of the same class as the receiver collection.

143

Chapter 5. The Collection Classes

5.10.1. The Principles of Operation
A set operation is performed by iterating over the elements of the receiver collection to compare each
element of the receiver collection with each element of the argument collection. The element is defined
as the tuple< index,item> (seeDetermining the Identity of an Item). Depending on the set-operator
method and the result of the comparison, an element of the receiver collection is, or is not, included in
the resulting collection. A receiver collection that allows for duplicate elements can, depending on the
set-operator method, also accept elements of the argument collection after they have been coerced to the
type of the receiver collection.

The following examples are to help you understand the semantics of set operations. The collections are
represented as a list of elements enclosed in curly brackets. The list elements are separated by a comma.

5.10.1.1. Set Operations on Collections without Duplicates

Assume that the example sets areA={a,b} andB={b,c,d}. The result of a set operation is another set.
The only exception is a subset resulting in a Boolean .true or .false. Using the collectionA andB, the
different set operators produce the following:

UNION operation

All elements ofA andB are united:

A UNION B = {a,b,c,d}

DIFFERENCE operation

The resulting collection contains all elements of the first set except for those that also appear in the
second set. The system iterates over the elements of the second set and removes them from the first
set one by one.

A DIFFERENCE B = {a}

B DIFFERENCE A = {c,d}

XOR operation

The resulting collection contains all elements of the first set that are not in the second set and all
elements of the second set that are not in the first set:

A XOR B = {a,c,d}

INTERSECTION operation

The resulting collection contains all elements that appear in both sets:

A INTERSECTION B = {b}

SUBSET operation

Returns.true if the first set contains only elements that also appear in the second set, otherwise it
returns.false:

A SUBSET B = .false

B SUBSET A = .false

144

Chapter 5. The Collection Classes

5.10.1.2. Set-Like Operations on Collections with Duplicates

Assume that the example bags areA={a,b,b} andB={b,b,c,c,d}. The result of any set-like operation is
a collection, in this case a bag. The only exception is SUBSET resulting in a Boolean .true or .false.
Using the collectionsA andB, the different set-like operators produce the following:

UNION operation

All elements ofA andB are united:

A UNION B = {a,b,b,b,b,c,c,d}

DIFFERENCE operation

The resulting collection contains all elements of the first bag except for those that also appear in the
second bag. The system iterates over the elements of the second bag and removes them from the
first bag one by one.

A DIFFERENCE B = {a}

B DIFFERENCE A = {c,c,d}

XOR operation

The resulting collection contains all elements of the first bag that are not in the second bag and all
elements of the second bag that are not in the second bag:

A XOR B = {a,c,c,d}

INTERSECTION operation

The resulting collection contains all elements that appear in both bags:

A INTERSECTION B = {b,b}

SUBSET operation

Returns.true if the first set contains only elements that also appear in the second set, otherwise it
returns.false:

A SUBSET B = .false

B SUBSET A = .false

5.10.2. Determining the Identity of an Item
Set operations require the definition of the identity of an element to determine whether a certain element
exists in the receiver collection. The element of a collection is conceived as the tuple<index,item>. The
indexis used as the identification tag associated with the item. Depending on the collection class, the
index is an instance of a particular class, for example, the string class for a directory element, an integer
for an array, or any arbitrary class for a relation. The Array class is an exception because it can be
multidimensional having more than one index. However, as a collection, it is conceptionally linearized
by the set operator.

145

Chapter 5. The Collection Classes

For collections of collection classes that require unique indexes, namely the Set, Table, and Directory
classes, an item is identified by itsindex. For collections of collection classes that allow several items to
have the same index, namely the Relation class, an item is identified by both itsindexand itsitem. For
the Bag and the Set subclasses, where several items can have the same index butindexanditemmust be
identical, the item is identified by itsindex. According to this concept, an item of a collection is identified
as follows:

• HASINDEX(index) for Bag, Directory, Set, and Table collections

• HASITEM(item,index)for the Relation collections

Items of the Array, List, and Queue collections are identified by theitem, not theindex. The index is only
used as a means to access the item but carries no semantics. In a Queue collection class, for example, the
index of a particular item changes when another item is added to the queue and therefore is not a
permanent identification of an item.

5.10.3. The Argument Collection Classes
A argument collection can be an instance of any collection class, including the Array, List, and Queue
classes, which do not have set-operator methods.

If the collection does not contain a UNION method, the following must apply:

• The collection must support the MAKEARRAY method so that the set or set-like operator can iterate
over the supplied elements.

• The collection must conceptionally be coerced into a bag-like collection before the set operation.
Conceptionally, sparse arrays are condensed and multidimensional arrays are linearized.

Collections having the UNION method must support the SUPPLIER method.

5.10.4. The Receiver Collection Classes
In addition to the set and set-like methods, a collection must support the following methods to qualify as
a receiver collection:

• Methods for collections not allowing elements with duplicate indexes:

• HASINDEX

• PUT or []=

• REMOVE

• ITEMS

• Methods for collections allowing elements with duplicate indexes:

• HASITEM; for bags, HASINDEX is sufficient

• AT or []

146

Chapter 5. The Collection Classes

• PUT or []=

• REMOVEITEM; for bags, REMOVE is sufficient

• ITEMS

5.10.5. Classifying Collections
To determine whether the items in a collection class can be used in a set operation, check the following
criteria:

• Is an object a collection?

To answer this question, send the HASMETHOD method with parameter "hasindex" toobject:

::ROUTINE isCollection

use arg object

return object~hasmethod("hasindex")

This function returns TRUE if the object is an instance of the Array, List, Queue, Set, Bag, Relation,
or Table collection class.

• Does the collection class have set-operator methods?

To answer this question, send the HASMETHOD method with parameter "union" toobject:

::ROUTINE hasSetOperators

use arg object

return object~hasmethod("union")

This function returns TRUE if the object is an instance of the Set, Bag, Relation, or Table collection
class.

147

Chapter 5. The Collection Classes

148

Chapter 6. Other Classes
This chapter describes the following classes:

• Alarm class

• Class class

• Message class

• Method class

• Monitor class

• MutableBuffer class

• Object class

• Regular Expression class

• Stem class

• Stream class

• String class

• Supplier class

• WindowsProgramManager class

• WindowsRegistry class

• WindowsEventLog class

• WindowsManager class

• WindowsObject class

• WindowsMenuObject class

• WindowsClipboard class

• Windows OLEObject class

6.1. The Alarm Class
An alarm object provides timing and notification capability by supplying a facility to send any message
to any object at a given time. You can cancel an alarm before it sends its message.

The Alarm class is a subclass of the Object class.

Methods the Alarm class defines:

CANCEL
INIT (Overrides Object class method)

Methods inherited from the Object class:

NEW (Class Method)

149

Chapter 6. Other Classes

Operator methods: =, ==, \=, ><, <>, \==
CLASS
COPY
DEFAULTNAME
HASMETHOD
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
START
STRING
UNSETMETHOD

Note: The Alarm class also has available class methods that its metaclass, the Class class, defines.

6.1.1. CANCEL

>>-CANCEL--><

Cancels the pending alarm request represented by the receiver. This method takes no action if the
specified time has already been reached.

6.1.2. INIT

>>-INIT(atime,message)---><

Sets up an alarm for a future timeatime. At this time, the alarm object sends the message thatmessage, a
message object, specifies. (SeeThe Message Class.) Theatimeis a string. You can specify this in the
default format ('hh:mm:ss') or as a number of seconds starting at the present time. If you use the default
format, you can specify a date in the default format ('dd Mmm yyyy') after the time with a single blank
separating the time and date. Leading and trailing blanks are not allowed in theatime. If you do not
specify a date, the language processor uses the first future occurrence of the specified time. You can use
the CANCEL method to cancel a pending alarm. SeeInitialization for more information.

6.1.3. Examples
The following code sets up an alarm at 5:10 p.m. on October 8, 1996. (Assume today’s date is October 5,
1996.)

/* Alarm Examples */

PersonalMessage=.MyMessageClass~new("Call the Bank")

msg=.message~new(PersonalMessage,"RemindMe")

a=.alarm~new("17:10:00 8 Oct 1996", msg)

exit

/* ::CLASS describes the ::CLASS directive */

150

Chapter 6. Other Classes

/* ::METHOD describes the ::METHOD directive */

::CLASS MyMessageClass public

::Method init

expose inmsg

use arg inmsg

::Method RemindMe

expose inmsg

say "It is now" "TIME"("C")".Please "inmsg

/* On the specified data and time, displays the following message: */

/* "It is now 5:10pm. Please Call the Bank" */

For the following example, the user uses the same code as in the preceding example to definemsg, a
message object to run at the specified time. The following code sets up an alarm to run themsg message
object in 30 seconds from the current time:

a=.alarm~new(30,msg)

6.2. The Class Class
The Class class is like a factory producing the factories that produce objects. It is a subclass of the Object
class. The instance methods of the Class class are also the class methods of all classes.

Methods the Class class defines:(They are all both class and instance methods.)

BASECLASS
DEFAULTNAME (Overrides Object class method)
DEFINE
DELETE
ENHANCED
ID
INHERIT
INIT (Overrides Object class method)
METACLASS
METHOD
METHODS
MIXINCLASS
NEW (Overrides Object class method)
QUERYMIXINCLASS
SUBCLASS
SUBCLASSES
SUPERCLASSES
UNINHERIT

Methods inherited from the Object class:

Operator methods: =, ==, \=, ><, <>, \==
CLASS
COPY
HASMETHOD
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD

151

Chapter 6. Other Classes

START
STRING
UNSETMETHOD

6.2.1. BASECLASS

>>-BASECLASS---><

Returns the base class associated with the class. If the class is a mixin class, the base class is the first
superclass that is not also a mixin class. If the class is not a mixin class, the base class is the class
receiving the BASECLASS message.

6.2.2. DEFAULTNAME

>>-DEFAULTNAME---><

Returns a short human-readable string representation of the class. The string returned is of the form

The id class

whereid is the identifier assigned to the class when it was created.

Examples:

say .array~defaultname /* Displays "The Array class" */

say .account~defaultname /* Displays "The ACCOUNT class" */

say .savings~defaultname /* Displays "The Savings class" */

::class account /* Name is all upper case */

::class "Savings" /* String name is mixed case */

6.2.3. DEFINE

>>-DEFINE(methodname-+---------+-)-----------------------------><

+-,method-+

Incorporates the method objectmethodin the receiver class’s collection of instance methods. The
language processor translates the method namemethodnameto uppercase. Using the DEFINE method
replaces any existing definition formethodnamein the receiver class.

If you omit method, the method namemethodnameis made unavailable for the receiver class. Sending a
message of that name to an instance of the class causes the UNKNOWN method (if any) to be run.

Themethodargument can be a string containing a method source line instead of a method object.
Alternatively, you can pass an array of strings containing individual method lines. Either way, DEFINE
creates an equivalent method object.

Notes:

1. The classes Rexx provides do not permit changes or additions to their method definitions.

152

Chapter 6. Other Classes

2. The DEFINE method is a protected method.

Example:

bank_account=.object~subclass("Account")

bank_account~define("TYPE",'return "a bank account"')

6.2.4. DELETE

>>-DELETE(methodname)--><

Removes the receiver class’s definition for the method namemethodname. If the receiver class defined
methodnameas unavailable with the DEFINE method, this definition is nullified. If the receiver class had
no definition formethodname, no action is taken.

Notes:

1. The classes Rexx provides do not permit changes or additions to their method definitions.

2. DELETE deletes only methods the target class defines. You cannot delete inherited methods the
target’s superclasses define.

3. The DELETE method is a protected method.

Example:

myclass=.object~subclass("Myclass") /* After creating a class */

myclass~define("TYPE",'return "my class"') /* and defining a method */

myclass~delete("TYPE") /* this deletes the method */

6.2.5. ENHANCED

>>-ENHANCED(methods-+---------------+-)------------------------><

| +-----------+ |

| V | |

+---,argument-+-+

Returns an enhanced new instance of the receiver class, with object methods that are the instance
methods of the class, enhanced by the methods in the collectionmethods. The collection indexes are the
names of the enhancing methods, and the items are the method objects (or strings or arrays of strings
containing method code). (See the description ofDEFINE.) You can use any collection that supports a
SUPPLIER method.

ENHANCED sends an INIT message to the created object, passing thearguments specified on the
ENHANCED method.

Example:

/* Set up rclass with class method or methods you want in your */

/* remote class */

rclassmeths = .directory~new

153

Chapter 6. Other Classes

rclassmeths["DISPATCH"]=d_source /* d_source must have code for a */

/* DISPATCH method. */

/* The following sends INIT("Remote Class") to a new instance */

rclass=.class~enhanced(rclassmeths,"Remote Class")

6.2.6. ID

>>-ID--><

Returns the class identity (instance) string. (This is the string that is an argument on the SUBCLASS and
MIXINCLASS methods.) The string representations of the class and its instances contain the class
identity.

Example:

myobject=.object~subclass("my object") /* Creates a subclass */

say myobject~id /* Produces: "my object" */

6.2.7. INHERIT

>>-INHERIT(classobj-+-----------+-)----------------------------><

+-,classpos-+

Causes the receiver class to inherit the instance and class methods of the class objectclassobj. The
classposis a class object that specifies the position of the new superclass in the list of superclasses. (You
can use the SUPERCLASSES method to return the immediate superclasses.)

The new superclass is inserted in the search order after the specified class. If theclassposclass is not
found in the set of superclasses, an error is raised. If you do not specifyclasspos, the new superclass is
added to the end of the superclasses list.

Inherited methods can take precedence only over methods defined at or above the base class of the
classobjin the class hierarchy. Any subsequent change to the instance methods ofclassobjtakes
immediate effect for all the classes that inherit from it.

The new superclassclassobjmust be created with the MIXINCLASS option of the ::CLASS directive or
the MIXINCLASS method and the base class of theclassobjmust be a direct superclass of the receiver
object. The receiver must not already descend fromclassobjin the class hierarchy and vice versa.

The method search order of the receiver class after INHERIT is the same as before INHERIT, with the
addition ofclassobjand its superclasses (if not already present).

Notes:

1. You cannot change the classes that Rexx provides by sending INHERIT messages.

2. The INHERIT method is a protected method.

Example:

154

Chapter 6. Other Classes

room~inherit(.location)

6.2.8. INIT

>>-INIT(classid)---><

Sets the receiver class identity to the stringclassid. You can use the ID method (described previously) to
return this string, which is the class identity. SeeInitialization for more information.

6.2.9. METACLASS

>>-METACLASS---><

Returns the receiver class’s default metaclass. This is the class used to create subclasses of this class
when you send SUBCLASS or MIXINCLASS messages (with no metaclass arguments). If the receiver
class is an object class (seeObject Classes), this is also the class used to create the receiver class. The
instance methods of the default metaclass are the class methods of the receiver class. For more
information about class methods, seeObject Classes. See also the description of the SUBCLASS method
in SUBCLASS.

6.2.10. METHOD

>>-METHOD(methodname)--><

Returns the method object for the receiver class’s definition for the method namemethodname. If the
receiver class definedmethodnameas unavailable, this method returns the NIL object. If the receiver
class did not definemethodname, the language processor raises an error.

Example:

/* Create and retrieve the method definition of a class */

myclass=.object~subclass("My class") /* Create a class */

mymethod=.method~new(" ","Say arg(1)") /* Create a method object */

myclass~define("ECHO",mymethod) /* Define it in the class */

method_source = myclass~method("ECHO")~source /* Extract it */

say method_source /* Says "an Array" */

say method_source[1] /* Shows the method source code */

6.2.11. METHODS

>>-METHODS-+----------------+----------------------------------><

+-(class_object)-+

Returns a supplier object for all the instance methods of the receiver class and its superclasses, if you
specify no argument. Ifclass_objectis the NIL object, METHODS returns a supplier object for only the

155

Chapter 6. Other Classes

instance methods of the receiver class. If you specify aclass_object, this method returns a supplier object
containing only the instance methods thatclass_objectdefines. If you send appropriate messages to a
supplier object, the supplier enumerates all the instance methods existing at the time of the supplier’s
creation. (SeeThe Supplier Classfor details.)

Note: Methods that have been hidden with a SETMETHOD or DEFINE method are included with the
other methods that METHODS returns. The hidden methods have the NIL object for the associated
method.

Example:

objsupp=.object~methods

do while objsupp~available

say objsupp~index /* Says all instance methods */

objsupp~next /* of the Object class */

end

6.2.12. MIXINCLASS

>>-MIXINCLASS(classid-+-------------------------+-)------------><

+-,metaclass-+----------+-+

+-,methods-+

Returns a new mixin subclass of the receiver class. You can use this method to create a new mixin class
that is a subclass of the superclass to which you send the message. Theclassidis a string that identifies
the new mixin subclass. You can use the ID method to retrieve this string.

Themetaclassis a class object. If you specifymetaclass, the new subclass is an instance ofmetaclass. (A
metaclass is a class that you can use to create a class, that is, a class whose instances are classes. The
Class class and its subclasses are metaclasses.)

If you do not specify ametaclass, the new mixin subclass is an instance of the default metaclass of the
receiver class. For subclasses of the Object class, the default metaclass is the Class class.

Themethodsis a collection whose indexes are the names of methods and whose items are method
objects (or strings or arrays of strings containing method code). If you specifymethods, the new class is
enhanced with class methods from this collection. (The metaclass of the new class is not affected.)

The METACLASS method returns the metaclass of a class.

The method search order of the new subclass is the same as that of the receiver class, with the addition of
the new subclass at the start of the order.

Example:

buyable=.object~mixinclass("Buyable") /* New subclass is buyable */

/* Superclass is Object class */

156

Chapter 6. Other Classes

6.2.13. NEW

>>-NEW-+---------------+---------------------------------------><

| +-,---+ |

| V | |

+-(----arg-+--)-+

Returns a new instance of the receiver class, whose object methods are the instance methods of the class.
This method initializes a new instance by running its INIT methods. (SeeInitialization.) NEW also sends
an INIT message. If you specify args, NEW passes these arguments on the INIT message.

Example:

/* NEW method example */

a = .account~new /* -> Object variable balance=0 */

y = .account~new(340.78) /* -> Object variable balance=340.78 */

/* plus free toaster oven */

::class account subclass object

::method INIT /* Report time each account created */

/* plus free toaster when more than $100 */

Expose balance

Arg opening_balance

Say "Creating" self~objectname "at time" time()

If datatype(opening_balance, "N") then balance = opening_balance

else balance = 0

If balance > 100 then Say " You win a free toaster oven"

6.2.14. QUERYMIXINCLASS

>>-QUERYMIXINCLASS---><

Returns1 (true) if the class is a mixin class, or0 (false).

6.2.15. SUBCLASS

>>-SUBCLASS(classid-+-------------------------+-)--------------><

+-,metaclass-+----------+-+

+-,methods-+

Returns a new subclass of the receiver class. You can use this method to create a new class that is a
subclass of the superclass to which you send the message. Theclassidis a string that identifies the
subclass. (You can use the ID method to retrieve this string.)

Themetaclassis a class object. If you specifymetaclass, the new subclass is an instance ofmetaclass. (A
metaclass is a class that you can use to create a class, that is, a class whose instances are classes. The
Class class and its subclasses are metaclasses.)

If you do not specify ametaclass, the new subclass is an instance of the default metaclass of the receiver
class. For subclasses of the Object class, the default metaclass is the Class class.

157

Chapter 6. Other Classes

Themethodsis a collection whose indexes are the names of methods and whose items are method
objects (or strings or arrays of strings containing method code). If you specifymethods, the new class is
enhanced with class methods from this collection. (The metaclass of the new class is not affected.)

The METACLASS method returns the metaclass of a class.

The method search order of the new subclass is the same as that of the receiver class, with the addition of
the new subclass at the start of the order.

Example:

room=.object~subclass("Room") /* Superclass is .object */

/* Subclass is room */

/* Subclass identity is Room */

6.2.16. SUBCLASSES

>>-SUBCLASSES--><

Returns the immediate subclasses of the receiver class in the form of a single-index array of the required
size, in an unspecified order. (The program should not rely on any order.) The array indexes range from 1
to the number of subclasses.

6.2.17. SUPERCLASSES

>>-SUPERCLASSES--><

Returns the immediate superclasses of the receiver class in the form of a single-index array of the
required size. The immediate superclasses are the original class used on a SUBCLASS or a
MIXINCLASS method, plus any additional superclasses defined with the INHERIT method. The array is
in the order in which the class has inherited the classes. The original class used on a SUBCLASS or
MIXINCLASS method is the first item of the array. The array indexes range from1 to the number of
superclasses.

Example:

z=.class~superclasses

/* To obtain the information this returns, you could use: */

do i over z

say i

end

6.2.18. UNINHERIT

>>-UNINHERIT(classobj)---><

Nullifies the effect of any previous INHERIT message sent to the receiver for the classclassobj.

158

Chapter 6. Other Classes

Note: You cannot change the classes that Rexx provides by sending UNINHERIT messages.

Example:

location=.object~mixinclass("Location")

room=.object~subclass("Room")~~inherit(location) /* Creates subclass */

/* and specifies inheritance */

room~UNINHERIT(location)

6.3. The WindowsMenuObject Class
The MenuObject class provides methods to query, manipulate, and interact with the menu or submenu of
a window.

Methods the MenuObject Class Defines

• FINDITEM

• FINDSUBMENU

• IDOF

• ISMENU

• ITEMS

• PROCESSITEM

• SUBMENU

• TEXTOF(id)

• TEXTOF(position)

6.3.1. ISMENU

>>-ISMENU--><

Returns 1 if the associated window is a menu, otherwise 0.

6.3.2. ITEMS

>>-ITEMS---><

Returns the number of menu items contained in the associated menu.

159

Chapter 6. Other Classes

6.3.3. IDOF

>>-IDOF--(--position--)--><

Returns the ID of the menu item at the specifiedposition, starting with 0.

6.3.4. TEXTOF(position)

>>-TEXTOF--(--position--)--------------------------------------><

Returns the text of the menu item at the specifiedposition, starting with 0. A mnemonic (underscored
letter) is represented by a leading ampersand (&). If the menu item contains an accelerator, it is separated
by a tab.

6.3.5. TEXTOF(id)

>>-TEXTOF--(--id--)--><

Returns the text of menu itemid. A mnemonic is represented by a leading ampersand (&). If the menu
item contains an accelerator, it is separated by a tab.

6.3.6. SUBMENU

>>-SUBMENU--(--position--)-------------------------------------><

Returns an instance of the MenuObject class that is associated with the submenu at the specified
position, starting with 0. If no submenu exists at this position, the .NIL object is returned.

Example:

sub = menu~Submenu(5)

if sub \= .Nil then do

say "Items:" sub~items

end

6.3.7. FINDSUBMENU

>>-FINDSUBMENU--(--label--)------------------------------------><

Returns an instance of the MenuObject class that is associated with the submenu with the specifiedlabel.
If the associated menu does not contain such a submenu, the .NIL object is returned.

160

Chapter 6. Other Classes

6.3.8. FINDITEM

>>-FINDITEM--(--label--)---------------------------------------><

Returns the ID of the menu itemlabel. If the specified label does not include an accelerator, the
comparison excludes the accelerators of the menu items. If no menu item is found that matches the
specified label, 0 is returned.

Example:

f = menu~FindItem("&Tools" || "9"x || "Ctrl+T")

if f \= 0 then menu~ProcessItem(f)

6.3.9. PROCESSITEM

>>-PROCESSITEM--(--id--)---------------------------------------><

Selects the menu itemid. This causes a WM_COMMAND to be sent to the window owning the menu.

6.4. The Message Class
A message object provides for the deferred or asynchronous sending of a message. You can create a
message object by using the NEW or ENHANCED method of the Message class or the START method
of the Object class (seeSTART). The Message class is a subclass of the Object class.

Methods the Message class defines:

COMPLETED
INIT (Overrides Object class method)
NOTIFY
RESULT
SEND
START (Overrides Object class method)

Methods inherited from the Object class:

NEW (Class method)
Operator methods: =, ==, \=, ><, <>, \==
CLASS
COPY
DEFAULTNAME
HASMETHOD
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
STRING
UNSETMETHOD

Note: The Message class also has available class methods that its metaclass, the Class class,

161

Chapter 6. Other Classes

defines.

6.4.1. COMPLETED

>>-COMPLETED---><

Returns1 if the message object has completed its message, or0. You can use this method instead of
sending RESULT and waiting for the message to complete.

6.4.2. INIT

>>-INIT(target,messagename-+-------------------------------+-)-><

| +---------------+ |

| V | |

+-,Individual---+-----------+-+-+

| +-,argument-+ |

+-,Array,argument---------------+

Initializes the message object for sending the message namemessagenameto objecttarget.

Themessagenamecan be a string or an array. Ifmessagenameis an array object, its first item is the name
of the message and its second item is a class object to use as the starting point for the method search. For
more information, seeClasses and Inheritance of Methods.

If you specify the Individual or Array option, any remaining arguments are arguments for the message.
(You need to specify only the first letter; the language processor ignores all characters following it.)

Individual

If you specify this option, specifyingargumentis optional. The language processor passes any
arguments as message arguments totarget in the order you specify them.

Array

If you specify this option, you must specify anargument, which is an array object. (SeeThe Array
Class.) The language processor then passes the member items of the array totarget. When the
language processor passes the arguments taken from the array, the first argument is at index 1, the
second argument at index 2, and so on. If you omitted any indexes when creating the array, the
language processor omits their corresponding message arguments when passing the arguments.

If you specify neither Individual nor Array, the message sent has no arguments.

Note: This method does not send the message messagename to object target . The SEND or
START method (described later) sends the message.

162

Chapter 6. Other Classes

6.4.3. NOTIFY

>>-NOTIFY(message)---><

Requests notification about the completion of processing of the message SEND or START. The message
objectmessageis sent as the notification. You can use NOTIFY to request any number of notifications.
After the notification message, you can use the RESULT method to obtain any result from the messages
SEND or START.

Example:

/* Event-driven greetings */

.prompter~new~prompt(.nil)

:class prompter

::method prompt

expose name

use arg msg

if msg \= .nil then do

name = msg~result

if name = "quit" then return

say "Hello," name

end

say 'Enter your name ("quit" to quit):'

/* Send the public default object .INPUT a LINEIN message asynchronously */

msg=.message~new(.input,"LINEIN")~~start

/* Sends self~prompt(msg) when data available */

msg~notify(.message~new(self,"PROMPT","I",msg))

/* Don't leave until user has entered "quit" */

guard on when name="quit"

6.4.4. RESULT

>>-RESULT--><

Returns the result of the message SEND or START. If message processing is not yet complete, this
method waits until it completes. If the message SEND or START raises an error condition, this method
also raises an error condition.

Example:

/* Example using RESULT method */

string="700" /* Create a new string object, string */

bond=string~start("REVERSE") /* Create a message object, bond, and */

163

Chapter 6. Other Classes

/* start it. This sends a REVERSE */

/* message to string, giving bond */

/* the result. */

/* Ask bond for the result of the message */

say "The result of message was" bond~result /* Result is 007 */

6.4.5. SEND

>>-SEND--+----------+--><

+-(target)-+

Returns the result (if any) of sending the message. If you specifytarget, this method sends the message
to target. Otherwise, this method sends the message to thetargetyou specified when the message object
was created. SEND does not return until message processing is complete.

You can use the NOTIFY method to request notification that message processing is complete. You can
use the RESULT method to obtain any result from the message.

6.4.6. START

>>-START--+----------+---><

+-(target)-+

Sends the message to start processing at a specific target whereas the sender continues processing. If you
specifytarget, this method sends the message totarget. Otherwise, this method sends the message to the
target that you specified when the message object was created. This method returns as soon as possible
and does not wait until message processing is complete. When message processing is complete, the
message object retains any result and holds it until the sender requests it by sending a RESULT message.
You can use the NOTIFY method to request notification that message processing is complete.

6.4.7. Example

/* Using Message class methods */

/* Note: In the following example, ::METHOD directives define class Testclass */

/* with method SHOWMSG */

ez=.testclass~new /* Creates a new instance of Testclass */

mymsg=ez~start("SHOWMSG","Hello, Ollie!",5) /* Creates and starts */

/* message mymsg to send */

/* SHOWMSG to ez */

/* Continue with main processing while SHOWMSG runs concurrently */

do 5

say "Hello, Stan!"

end

164

Chapter 6. Other Classes

/* Get final result of the SHOWMSG method from the mymsg message object */

say mymsg~result

say "Goodbye, Stan..."

exit

::class testclass public /* Directive defines Testclass */

::method showmsg /* Directive creates new method SHOWMSG */

use arg text,reps /* class Testclass */

do reps

say text

end

reply "Bye Bye, Ollie..."

return

The following output is possible:

Hello, Ollie!

Hello, Stan!

Hello, Ollie!

Hello, Stan!

Hello, Ollie!

Hello, Stan!

Hello, Ollie!

Hello, Stan!

Hello, Ollie!

Hello, Stan!

Bye Bye, Ollie...

Goodbye, Stan...

6.5. The Method Class
The Method class creates method objects from Rexx source code. It is a subclass of the Object class.

Methods the Method class defines:

NEW (Class method. Overrides Object class method.)
NEWFILE (Class method)
SETGUARDED
SETPRIVATE
SETPROTECTED
SETSECURITYMANAGER
SETUNGUARDED
SOURCE

Methods inherited from the Object class:

Operator methods: =, ==, \=, ><, <>, \==
CLASS
COPY
DEFAULTNAME
HASMETHOD

165

Chapter 6. Other Classes

INIT
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
START
STRING
UNSETMETHOD

Note: The Method class also has available class methods that its metaclass, the Class class,
defines.

6.5.1. NEW (Class Method)

>>-NEW(name,source--+------------------+---)-------------------><

+--, methodobject--+

Returns a new instance of method class, which is an executable representation of the code contained in
thesource. Thenameis a string. Thesourcecan be a single string or an array of strings containing
individual method lines.

The third parameter influences the scope of the method. If none is given, the program scope is used. If
another method object is given, its scope is used.

6.5.2. NEWFILE (Class Method)

>>-NEWFILE(filename)---><

Returns a new instance of method class, which is an executable representation of the code contained in
the file filename. The filename is a string.

For an example of the use of this method, see the code exampleServer implements Security Manager.

6.5.3. SETGUARDED

>>-SETGUARDED--><

Reverses any previous SETUNGUARDED messages, restoring the receiver to the default guarded status.
If the receiver is already guarded, a SETGUARDED message has no effect.

6.5.4. SETPRIVATE

>>-SETPRIVATE--><

166

Chapter 6. Other Classes

Specifies that a method is a private method. Only a message that an object sends to itself can run a private
method. If a method object does not receive a SETPRIVATE message, the method is a public method.
(Any object can send a message to run a public method. SeePublic and Private Methodsfor details.)

6.5.5. SETPROTECTED

>>-SETPROTECTED--><

Specifies thata method is a protected method. If a method object does not receive a SETPROTECTED
message, the method is not protected. (SeeThe Security Managerfor details.)

6.5.6. SETSECURITYMANAGER

>>-SETSECURITYMANAGER--+---------------------------+-----------><

+-(security_manager_object)-+

Replaces the existing security manager with the specifiedsecurity_manager_object. If
security_manager_objectis omitted, any existing security manager is removed.

6.5.7. SETUNGUARDED

>>-SETUNGUARDED--><

Lets an object run a method even when another method is active on the same object. If a method object
does not receive a SETUNGUARDED message, it requires exclusive use of its object variable pool. A
method can be active for an object only when no other method requiring exclusive access to the object’s
variable pool is active in the same object. This restriction does not apply if an object sends itself a
message to run a method and it already has exclusive use of the same object variable pool. In this case,
the method runs immediately and has exclusive use of its object variable pool, regardless of whether it
received a SETUNGUARDED message.

6.5.8. SOURCE

>>-SOURCE--><

Returns the method source code as a single-index array of source lines. If the source code is not
available, SOURCE returns an array of zero items.

6.6. The Monitor Class
The Monitor class forwards messages to a destination object. It is a subclass of the Object class.

Methods the Monitor class defines:

167

Chapter 6. Other Classes

CURRENT
DESTINATION
INIT (Overrides Object class method)
UNKNOWN

Methods inherited from the Object class:

NEW (Class method)
Operator methods: =, ==, \=, ><, <>, \==
CLASS
COPY
DEFAULTNAME
HASMETHOD
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
START
STRING
UNSETMETHOD

Note: The Monitor class also has available class methods that its metaclass, the Class class,
defines.

6.6.1. CURRENT

>>-CURRENT---><

Returns the current destination object.

6.6.2. DESTINATION

>>-DESTINATION--+---------------+------------------------------><

+-(destination)-+

Returns a new destination object. If you specifydestination, this becomes the new destination for any
forwarded messages. If you omitdestination, the previous destination object becomes the new
destination for any forwarded messages.

6.6.3. INIT

>>-INIT--+---------------+-------------------------------------><

+-(destination)-+

Initializes the newly created monitor object.

168

Chapter 6. Other Classes

6.6.4. UNKNOWN

>>-UNKNOWN(messagename,messageargs)----------------------------><

Reissues or forwards to the current monitor destination all unknown messages sent to a monitor object.
For additional information, seeDefining an UNKNOWN Method.

6.6.5. Examples

.local~setentry("output",.monitor~new(.stream~new("my.new")~~command("open nobuffer")))

/* The following sets the destination */

previous_destination=.output~destination(.stream~new("my.out")~~command("open write"))

/* The following resets the destination */

.output~destination

.output~destination(.STDOUT)

current_output_destination_stream_object=.output~current

6.7. The MutableBuffer Class
The MutableBuffer class is a buffer that contains a string on which certain string operations such as
concatenation can be performed very efficiently. (Frequent concatenation of long strings without using
this class might result in weak performance, large memory allocation, or both.)

Methods the MutableBuffer class defines:

Init
Append
Delete
GetBufferSize
Insert
Length
Overlay
SetBufferSize
String
Substr

Methods inherited from the Object class:

Operator methods: =, ==, \=, ><, <>, \==
CLASS
COPY
DEFAULTNAME
HASMETHOD
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
START

169

Chapter 6. Other Classes

STRING
UNSETMETHOD

6.7.1. INIT

+-----,-256------+

>>-INIT(-+--------+-+----------------+-)-------------------><

+-string-+ +-,-buffer size--+

Initialize the buffer, optionally assign a buffer content and a startingbuffer size. The default size is 256;
the buffer size increases to the length of thestring if the string does not fit into the buffer.

6.7.2. APPEND

>>-APPEND(string)--><

Appends string string to the buffer content. The buffer size is increased if necessary.

6.7.3. DELETE

>>-DELETE(n---+---------+--)-------------------------------><

+-,length-+

Deleteslengthcharacters from the buffer beginning at then’th character. If length is omitted, or if length
is greater than the number of characters fromn to the end of the buffer, the method deletes the remaining
buffer contents (including then’th character). The length must be a positive integer or zero. Then must
be a positive integer. Ifn is greater than the length of the buffer or zero, the method does not modify the
buffer content.

6.7.4. GETBUFFERSIZE

>>-GETBUFFERSIZE---><

Retrieves the current buffer size.

6.7.5. INSERT

>>-INSERT(new-+---+--)><

+-,--+---+--+--------------------------+--+

+-n-+ +-,--+--------+--+------+--+

+-length-+ +-,pad-+

Inserts the stringnew, padded or truncated to lengthlength, into the mutable buffer after then’th
character. The default value forn is 0, which means insertion at the beginning of the string. If specified,n
and length must be positive integers or zeros. Ifn is greater than the length of the buffer contents, the

170

Chapter 6. Other Classes

string new is padded at the beginning. The default value forlengthis the length ofnew. If length is less
than the length of stringnew, INSERT truncatesnewto lengthlength. The defaultpadcharacter is a
blank.

6.7.6. LENGTH

>>-LENGTH--><

Returns length of data in buffer.

6.7.7. OVERLAY

>>-OVERLAY(new-+---+--)--><

+-,--+---+--+--------------------------+--+

+-n-+ +-,--+--------+--+------+--+

+-length-+ +-,pad-+

Modifies the buffer content by overlaying it, starting at then’th character, with the stringnew, padded or
truncated to lengthlength. The overlay can extend beyond the end of the buffer. In this case the buffer
size will be increased. If you specifylength, it must be a positive integer or zero. The default value for
lengthis the length ofnew. If n is greater than the length of the buffer content, padding is added before
the new string. The defaultpadcharacter is a blank, and the default value forn is 1. If you specifyn, it
must be a positive integer.

6.7.8. SETBUFFERSIZE

>>-SETBUFFERSIZE(n)--><

Sets the buffer size. Ifn is less than the length of buffer content, the content is truncated. Ifn is 0, the
entire contents is erased and the new buffer size is the value given in the INIT method.

6.7.9. STRING

>>-STRING--><

Retrieves the content of the buffer (a string).

6.7.10. SUBSTR

>>-SUBSTR(n-+--------------------------+--)----------------><

+-,--+--------+--+------+--+

+-length-+ +-,pad-+

171

Chapter 6. Other Classes

Returns a substring from the buffer content that begins at then’th character and is of lengthlength,
padded withpad if necessary. Then must be a positive integer. Ifn is greater than
receiving_string~LENGTH, onlypadcharacters are returned. If you omitlength, the remaining buffer
content is returned. The defaultpadcharacter is a blank.

6.8. The Object Class
The Object class is the root of the class hierarchy. The instance methods of the Object class are,
therefore, available on all objects.

Methods the Object class defines:

NEW (Class method)
Operator methods: =, ==, \=, ><, <>, \==
CLASS
COPY
DEFAULTNAME
HASMETHOD
INIT
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
START
STRING
UNSETMETHOD

Note: The Object class also has available class methods that its metaclass, the Class class, defines.

6.8.1. NEW (Class Method)

>>-NEW---><

Returns a new instance of the receiver class.

6.8.2. Operator Methods

>>-comparison_operator(argument)-------------------------------><

Note: The argument is optional for the == operator.

Returns1 (true) or0 (false), the result of performing a specified comparison operation. If you specify the
== operator and omitargument, a string representation is returned representing a hash value for Set, Bag,
Table, Relation, and Directory.

172

Chapter 6. Other Classes

For the Object class, the arguments must match the receiver object. If they do not match the receiver
object, you can define subclasses of the Object class to match the arguments.

The comparison operators you can use in a message are:

=, ==

True if the terms are the same object.

\=, ><, <>, \==

True if the terms are not the same object (inverse of =).

6.8.3. CLASS

>>-CLASS---><

Returns the class object that received the message that created the object.

6.8.4. COPY

>>-COPY--><

Returns a copy of the receiver object. The copied object has the same methods as the receiver object and
an equivalent set of object variables, with the same values.

Example:

myarray=.array~of("N","S","E","W")

directions=myarray~copy /* Copies array myarray to array directions */

6.8.5. DEFAULTNAME

>>-DEFAULTNAME---><

Returns a short human-readable string representation of the object. The exact form of this representation
depends on the object and might not alone be sufficient to reconstruct the object. All objects must be able
to produce a short string representation of themselves in this way, even if the object does not have a
string value. SeeRequired String Valuesfor more information. The DEFAULTNAME method of the
Object class returns a string that identifies the class of the object, for example, an Array or a Directory.
See alsoOBJECTNAMEandSTRING. SeeOBJECTNAME=for an example using DEFAULTNAME.

6.8.6. HASMETHOD

>>-HASMETHOD(methodname)---------------------------------------><

173

Chapter 6. Other Classes

Returns1 (true) if the receiver object has a method namedmethodname(translated to uppercase) or if the
target method is a private method. Otherwise, it returns0 (false).

Note: If you call the methodname method although it is private, you receive error 97 Object method

not found although HASMETHOD returns 1 (true).

6.8.7. INIT

>>-INIT--><

Performs any required object initialization. Subclasses of the Object class can override this method.

6.8.8. OBJECTNAME

>>-OBJECTNAME--><

Returns the receiver object’s name that the OBJECTNAME= method sets. If the receiver object does not
have a name, this method returns the result of the DEFAULTNAME method. SeeRequired String Values
for more information. See the OBJECTNAME= method for an example using OBJECTNAME.

6.8.9. OBJECTNAME=

>>-OBJECTNAME=(newname)--><

Sets the receiver object’s name to the stringnewname.

Example:

points=.array~of("N","S","E","W")

say points~objectname /* (no change yet) Says: "an Array" */

points~objectname=("compass") /* Changes obj name POINTS to "compass"*/

say points~objectname /* Shows new obj name. Says: "compass" */

say points~defaultname /* Default is still available. */

/* Says "an Array" */

say points /* Says string representation of */

/* points "compass" */

say points[3] /* Says: "E"Points is still an array */

/* of 4 items */

6.8.10. REQUEST

>>-REQUEST(classid)--><

Returns an object of theclassidclass, or the NIL object if the request cannot be satisfied.

174

Chapter 6. Other Classes

This method first compares the identity of the object’s class (see the ID method of the Class class inID)
to classid. If they are the same, the receiver object is returned as the result. Otherwise, REQUEST tries to
obtain and return an object satisfyingclassidby sending the receiver object the conversion messageMAKE

with the stringclassidappended (converted to uppercase). For example, aREQUEST("string") message
causes a MAKESTRING message to be sent. If the object does not have the required conversion method,
REQUEST returns the NIL object.

The conversion methods cause objects to produce different representations of themselves. The presence
or absence of a conversion method defines an object’s capability to produce the corresponding
representations. For example, lists can represent themselves as arrays, because they have a
MAKEARRAY method, but they cannot represent themselves as directories, because they do not have a
MAKEDIRECTORY method. Any conversion method must return an object of the requested class. For
example, MAKEARRAY must return an array. The language processor uses the MAKESTRING method
to obtain string values in certain contexts; seeRequired String Values.

6.8.11. RUN

>>-RUN(method-+-------------------------------+-)--------------><

| +---------------+ |

| V | |

+-,Individual---+-----------+-+-+

| +-,argument-+ |

+-,Array,argument---------------+

Runs the method objectmethod(seeThe Method Class). Themethodhas access to the object variables
of the receiver object, as if the receiver object had defined the method by using SETMETHOD.

If you specify the Individual or Array option, any remainingarguments are arguments for the method.
(You need to specify only the first letter; the language processor ignores all characters following it.)

Individual

Passes any remaining arguments to the method as arguments in the order you specify them.

Array

Requiresargument, which is an array object. (SeeThe Array Class.) The language processor passes
the member items of the array to the method as arguments. The first argument is at index 1, the
second argument at index 2, and so on. If you omitted any indexes when creating the array, the
language processor omits their corresponding arguments when passing the arguments.

If you specify neither Individual nor Array, the method runs without arguments.

Themethodargument can be a string containing a method source line instead of a method object.
Alternatively, you can pass an array of strings containing individual method lines. In either case, RUN
creates an equivalent method object.

Notes:

1. The RUN method is a private method. See the SETPRIVATE method inSETPRIVATEfor details.

2. The RUN method is a protected method.

175

Chapter 6. Other Classes

6.8.12. SETMETHOD

>>-SETMETHOD(methodname-+----------------------+--)-----------------><

| +-,"FLOAT"-+ |

+-,method-+----------+-+

+--,scope--+

Adds a method to the receiver object’s collection of object methods. Themethodnameis the name of the
new method. (The language processor translates this name to uppercase.) If you previously defined a
method with the same name using SETMETHOD, the new method replaces the earlier one. If you omit
method, SETMETHOD makes the method namemethodnameunavailable for the receiver object. In this
case, sending a message of that name to the receiver object runs the UNKNOWN method (if any).

Themethodcan be a string containing a method source line instead of a method object. Or it can be an
array of strings containing individual method lines. In either case, SETMETHOD creates an equivalent
method object.

The third parameter describes if the method that is attached to an object should have object or float
scope. "Float" scope means that it shares the same scope with methods that were defined outside of a
class. "Object" scope means it shares the scope with other, potentially statically defined, methods of the
object it is attached to.

Notes:

1. The SETMETHOD method is a private method. See the SETPRIVATE method inSETPRIVATEfor
details.

2. The SETMETHOD method is a protected method.

6.8.13. START

+---------------+

V |

>>-START(messagename---+-----------+-+-)-----------------------><

+-,argument-+

Returns a message object (seeThe Message Class) and sends it a START message to start concurrent
processing. The object receiving the messagemessagenameprocesses this message concurrently with the
sender’s continued processing.

Themessagenamecan be a string or an array. Ifmessagenameis an array object, its first item is the name
of the message and its second item is a class object to use as the starting point for the method search. For
more information, seeClasses and Inheritance of Methods.

The language processor passes anyarguments to the receiver as arguments formessagenamein the order
you specify them.

When the receiver object has finished processing the message, the message object retains its result and
holds it until the sender requests it by sending a RESULT message. For further details, seeSTART.

Example:

world=.object~new

176

Chapter 6. Other Classes

msg=world~start("HELLO") /* same as next line */

msg=.message~new(world,"HELLO")~~start /* same as previous line */

6.8.14. STRING

>>-STRING--><

Returns a human-readable string representation of the object. The exact form of this representation
depends on the object and might not alone be sufficient to reconstruct the object. All objects must be able
to produce a string representation of themselves in this way.

The object’s string representation is obtained from the OBJECTNAME method (which can in turn use
the DEFAULTNAME method). See also the OBJECTNAME method (OBJECTNAME) and the
DEFAULTNAME method (DEFAULTNAME).

The distinction between this method, the MAKESTRING method (which obtains string values--see
MAKESTRING) and the REQUEST method (seeREQUEST) is important. All objects have a STRING
method, which returns a string representation (human-readable form) of the object. This form is useful in
tracing and debugging. Only those objects that have information with a meaningful string form have a
MAKESTRING method to return this value. For example, directory objects have a readable string
representation (a Directory), but no string value, and, therefore, no MAKESTRING method.

Of the classes that Rexx provides, only the String class has a MAKESTRING method. Any subclasses of
the String class inherit this method by default, so these subclasses also have string values. Any other
class can also provide a string value by defining a MAKESTRING method.

6.8.15. UNSETMETHOD

>>-UNSETMETHOD(methodname)-------------------------------------><

Cancels the effect of all previous SETMETHODs for methodmethodname. It also removes any method
methodnameintroduced with ENHANCED when the object was created. If the object has received no
SETMETHOD method, no action is taken.

Notes:

1. The UNSETMETHOD method is a private method. See the SETPRIVATE method inSETPRIVATE
for details.

2. The UNSETMETHOD method is a protected method.

6.9. The RegularExpression Class
This class provides support for regular expressions. A regular expression is a pattern you can use to
match strings.

Here is a description of the syntax:

177

Chapter 6. Other Classes

|

OR operator between the left and right expression

?

Matches any single character

*

Matches the previous expression zero or more times

+

Matches the previous expression one or more times

\

"Escape" symbol: use the next character literally

()

Expression in parenthesis (use where needed)

{n}

Matches previous expression n times (n>1)

[]

Set definition: matches any single character out of the defined set.

A '^' right after the opening bracket means that none of the following characters should be matched.

A '-' (if not used with '\') defines a range between the last specified character and the one following
'-'. If it is the first character in the set definition, it is used literally.

The following symbolic names (they must start and end with ':') can be used to abbreviate common sets:

:ALPHA:

Characters in the range A-Z and a-z

:LOWER:

Characters in the range a-z

:UPPER:

Characters in the range A-Z

:DIGIT:

Characters in the range 0-9

:ALNUM:

Characters in :DIGIT: and :ALPHA:

178

Chapter 6. Other Classes

:XDIGIT:

Characters in :DIGIT:, A-F and a-f

:BLANK:

Space and tab characters

:SPACE:

Characters "09"x to "0D"x and space

:CNTRL:

Characters "00"x to "1F"x and "7F"x

:PRINT:

Characters in the range "20"x to "7E"x

:GRAPH:

Characters in :PRINT: without space

:PUNCT:

All :PRINT: characters without space and not in :ALNUM:

Examples:

"(Hi|Hello) World" Matches "Hi World" and

"Hello World".

"file.???" Matches any file with three

characters after "."

"file.?{3}" Same as above.

"a *b" Matches all strings that begin with

"a" and end with "b" and have an

arbitrary number of spaces in between

both.

"a +b" Same as above, but at least one space

must be present.

"file.[bd]at" Matches "file.bat" and "file.dat".

"[A-Za-z]+" Matches any string containing only

letters.

"[:ALPHA:]+" Same as above, using symbolic names.

"[^0-9]*" Matches any string containing no

numbers, including the empty string.

"[:DIGIT::LOWER:]" A single character, either a digit or

a lower case character.

"This is (very)+nice." Matches all strings with one or more

occurrences of "very " between

"This is " and "nice.".

The RegularExpression class is not a built-in class. It is defined in the RXREGEXP.CLS file. This
means, you must use a ::requires statement to activate its functionality, as follows:

::requires "RXREGEXP.CLS"

179

Chapter 6. Other Classes

Methods available to the RegularExpression class:

• Init

• Match

• Parse

• Pos

• Position

6.9.1. INIT

+-,-"MAXIMAL"--+

>>-INIT(-+---------+-+--------------+-)--------------------><

+-Pattern-+ +-,-"MINIMAL"--+

Instantiates a RegularExpression object. Use the optional parameterPatternto define a pattern that is
used to match strings. See the introductory text below for a description of the syntax. If the strings
match, you can decide whether you want to apply "greedy" matching (a maximum-length match) or
"non-greedy" matching (a minimum-length match).

Examples:

myRE1 = .RegularExpression~new

myRE2 = .RegularExpression~new("Hello?*")

6.9.2. MATCH

>>-MATCH(-String-)-><

This method tries to match the given string to the regular expression that was defined on the "new"
invocation or on the "parse" invocation. It returns 0 on an unsuccessful match and 1 on a successful
match. For an example seeParse.

6.9.3. PARSE

+-,-"CURRENT"--+

>>-PARSE(-Pattern-+--------------+-------------------------><

+-,-"MAXIMAL"--+

+-,-"MINIMAL"--+

This method creates the automation used to match a string from the regular expression specified with
Pattern. The RegularExpression object uses this regular expression until a new invocation of Parse takes
place. The second (optional) parameter specifies whether to use minimal or maximal matching. The
default is to use the current matching behavior.

Return values:

180

Chapter 6. Other Classes

0

Regular expression was parsed successfully.

1

An unexpected symbol was met during parsing.

2

A missing ')' was found.

3

An illegal set was defined.

4

The regular expression ended unexpectedly.

5

An illegal number was specified.

Example 1:

a.0 = "does not match regular expression"

a.1 = "matches regular expression"

b = .array~of("This is a nice flower.",

"This is a yellow flower.", ,

"This is a blue flower.",

"Hi there!")

myRE = .RegularExpression~new

e = myRE~parse("This is a ???? flower.")

if e == 0 then do

do i over b

j = myRE~match(i)

say i~left(24) ">>" a.j

end

end

else

say "Error" e "occurred!"

exit

::requires "rxregexp.cls"

Output:

This is a nice flower. >> Does match regular expression

This is a yellow flower. >> Does not match regular expression

This is a blue flower. >> Does match regular expression

Hi there! >> Does not match regular expression

Example 2:

a.0 = "an invalid number!"

181

Chapter 6. Other Classes

a.1 = "a valid number."

b = .array~of("1","42","0","5436412","1a","f43g")

myRE = .RegularExpression~new("[1-9][0-9]*")

do i over b

j = myRE~match(i)

say i "is" a.j

end

say

/* Now allow "hex" numbers and a single 0 */

if myRE~parse("0|([1-9a-f][0-9a-f]*)") == 0 then do

do i over b

j = myRE~match(i)

say i "is" a.j

end

end

else

say "invalid regular expression!"

exit

::requires "rxregexp.cls"

Example 3:

str = "<p>Paragraph 1</p><p>Paragraph 2</p>"

myRE1 = .RegularExpression~new("<p>?*</p>","MINIMAL")

myRE1~match(str)

myRE2 = .RegularExpression~new("<p>?*</p>","MAXIMAL")

myRE2~match(str)

say "myRE1 (minimal) matched" str~substr(1,myRE1~position)

say "myRE2 (maximal) matched" str~substr(1,myRE2~position)

::requires "rxregexp.cls"

Output:

myRE1 (minimal) matched <p>Paragraph 1</p>

myRE2 (maximal) matched <p>Paragraph 1</p><p>Paragraph 2</p>

6.9.4. POS

>>-POS-(-Haystack-)-><

This method tries to locate a string defined by the regular expression on the "new" invocation or on the
"parse" invocation in the given haystack string. It returns 0 on an unsuccessful match or the starting
position on a successful match. The end position of the match can be retrieved with thePOSITION
method.

Example:

182

Chapter 6. Other Classes

str = "It is the year 2002!"

myRE = .RegularExpression~new("[1-9][0-9]*")

begin = myRE~pos(str)

if begin > 0 then do

year = str~substr(begin, myRE~position - begin + 1)

say "Found the number" year "in this sentence."

end

::requires "rxregexp.cls"

Output:

Found the number 2002 in this sentence.

6.9.5. POSITION

>>-POSITION--><

Returns the character position at which either Parse, Pos or Match ended, depending on what was
invoked last.

Example:

myRE = .RegularExpression~new

myRE~Parse("[abc") -- illegal set definition

say myRE~Position -- will be 4

myRE = .RegularExpression~new("[abc]12")

myRE~Match("c12")

say myRE~Position -- will be 3

myRE~Match("a13")

say myRE~Position -- will be 2 (failure to match)

::requires "rxregexp.cls"

6.10. The Stem Class
A stem object is a collection with unique indexes that are character strings.

Stems are automatically created whenever a Rexx stem variable or Rexx compound variable is used. For
example:

a.1 = 2

creates a new stem collection with the nameA. and assigns it to the Rexx variableA.; it also assigns the
value 2 to entry 1 in the collection.

183

Chapter 6. Other Classes

The value of an uninitialied stem index is the stem object NAME concatenated with the derived stem
index. For example

say a.[1,2] -- implcitly creates stem object with name "A."

-- displays "A.1.2"

a = .stem~new("B.")

say a[1,2] -- displays "B.1.2"

In addition to the items explicitly assigned to the collection indexes, a value may be assigned to all
possible stem indexes. The[]= method (with no index argument) will assign the target value to all
possible stem indexes. Following assignment, a reference to any index will return the new value until
another value is assigned or the index is dropped.

The[] method (with no index specified) will retrieve any globally assigned value. By default, this
returns the stem NAME value.

In addition to the methods defined in the following, the Stem class removes the methods =, ==, \=, \==,
<>, and >< using the DEFINE method.

Methods the Stem class defines:

NEW (Class method. Overrides Object class method.)
[]
[]=
MAKEARRAY
REQUEST (Overrides Object class method)
UNKNOWN

Methods inherited from the Object class:

Operator methods: =, ==, \=, ><, <>, \==
CLASS
COPY
DEFAULTNAME
HASMETHOD
INIT
OBJECTNAME
OBJECTNAME=
RUN
SETMETHOD
START
STRING
UNSETMETHOD

Note: The Stem class also has available class methods that its metaclass, the Class class, defines.

6.10.1. NEW (Class Method)

>>-NEW-+--------+--><

+-(name)-+

Returns a new stem object. If you specify a stringname, this value is used to create the derived name of
compound variables. The default stem name is a null string.

184

Chapter 6. Other Classes

6.10.2. []

+-,---------+

V |

>>-[---+-------+-+-]---><

+-index-+

Returns the item associated with the specifiedindexes. Eachindexis an expression; use commas to
separate the expressions. The language processor concatenates theindexexpression string values,
separating them with a period (.), to create a derived index. A null string ("") is used for any omitted
expressions. The resulting string references the stem item. If the stem has no item associated with the
specified finalindex, the stem default value is returned. If a default value has not been set, the stem name
concatenated with the final index string is returned.

If you do not specifyindex, the stem default value is returned. If no default value has been assigned, the
stem name is returned.

Note: You cannot use the [] method in a DROP or PROCEDURE instruction or in a parsing template.

6.10.3. []=

+-,---------+

V |

>>-[---+-------+-+-]=value-------------------------------------><

+-index-+

Makes the value a member item of the stem collection and associates it with the specified index. If you
specify noindexexpressions, a new default stem value is assigned. Assigning a new default value will
re-initialize the stem and remove all existing assigned indexes.

6.10.4. MAKEARRAY

>>-MAKEARRAY---><

Returns an array of all stem indexes that currently have an associated value. The items appear in the
array in an unspecified order. (The program should not rely on any order.)

6.10.5. REQUEST

>>-REQUEST(classid)--><

Returns the result of the Stem class MAKEARRAY method, if the requested class is ARRAY. For all
other classes, REQUEST forwards the message to the default value of the stem and returns this result.
This method requests conversion to a specific class. All conversion requests except ARRAY are
forwarded to the current stem default value.

185

Chapter 6. Other Classes

6.10.6. UNKNOWN

>>-UNKNOWN-(messagename,messageargs)---------------------------><

Reissues or forwards to the current stem default value all unknown messages sent to a stem collection.
For additional information, seeDefining an UNKNOWN Method.

6.11. The Stream Class
A stream object allows external communication from Rexx. (SeeInput and Output Streamsfor a
discussion of Rexx input and output.)

The Stream class is a subclass of the Object class.

Methods the Stream class defines:

ARRAYIN
ARRAYOUT
CHARIN
CHAROUT
CHARS
CLOSE
COMMAND
DESCRIPTION
FLUSH
INIT (Overrides Object class method)
LINEIN
LINEOUT
LINES
MAKEARRAY
OPEN
POSITION
QUALIFY
QUERY
SAY
SEEK
STATE
SUPPLIER

Methods inherited from the Object class:

NEW (Class method)
Operator methods: =, ==, \=, ><, <>, \==
CLASS
COPY
DEFAULTNAME>
HASMETHOD
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
START
STRING
UNSETMETHOD

Note: The Stream class also has available class methods that its metaclass, the Class class, defines.

186

Chapter 6. Other Classes

6.11.1. ARRAYIN

+-(LINES)-+

>>-ARRAYIN--+---------+--><

+-(CHARS)-+

Returns a fixed array that contains the data of the stream in line or character format, starting from the
current read position. The line format is the default.

If you have used the CHARIN method, the first line can be a partial line.

6.11.2. ARRAYOUT

+-,--LINES-+

>>-ARRAYOUT(array-+----------+-)-------------------------------><

+-,--CHARS-+

Returns a stream object that contains the data fromarray.

6.11.3. CHARIN

>>-CHARIN-+----------------------------+-----------------------><

+-(-+-------+--+---------+-)-+

+-start-+ +-,length-+

Returns a string of up tolengthcharacters from the character input stream receiving the message. The
language processor advances the read pointer. If you omitlength, it defaults to1. If you specifystart, this
positions the read pointer before reading. If the stream is not already open, the language processor tries
to open the stream for reading and writing. If that fails, the language processor opens the stream for read
only. (SeeCHARIN (Character Input)for information about the CHARIN built-in function.)

6.11.4. CHAROUT

>>-CHAROUT-+----------------------------+----------------------><

+-(-+--------+--+--------+-)-+

+-string-+ +-,start-+

Returns the count of characters remaining after trying to writestring to the character output stream
receiving the message. The language processor advances the write pointer.

Thestringcan be the null string. In this case, CHAROUT writes no characters to the stream and returns
0. If you omit string, CHAROUT writes no characters to the stream and returns0. The language
processor closes the stream.

187

Chapter 6. Other Classes

If you specifystart, this positions the write pointer before writing. If the stream is not already open, the
language processor tries to open the stream for reading and writing. If that fails, the language processor
opens the stream for write only. (SeeCHAROUT (Character Output)for information about the
CHAROUT built-in function.)

6.11.5. CHARS

>>-CHARS---><

Returns the total number of characters remaining in the character input stream receiving the message.
The default input stream is STDIN. The count includes any line separator characters, if these are defined
for the stream. In the case of persistent streams, it is the count of characters from the current read
position. (SeeInput and Output Streamsfor a discussion of Rexx input and output.) The total number of
characters remaining cannot be determined for some streams (for example, STDIN). For these streams.
the CHARS method returns1 to indicate that data is present, or0 if no data is present. For Windows
devices, CHARS always returns1. (SeeCHARS (Characters Remaining)for information about the
CHARS built-in function.)

6.11.6. CLOSE

>>-CLOSE---><

Closes the stream that receives the message. CLOSE returnsREADY: if closing the stream is successful,
or an appropriate error message. If you have tried to close an unopened file, then the CLOSE method
returns a null string ("").

6.11.7. COMMAND

>>-COMMAND(stream_command)-------------------------------------><

Returns a string after performing the specifiedstream_command. The returned string depends on the
stream_commandperformed and can be the null string. The followingstream_commands:

• Open a stream for reading, writing, or both

• Close a stream at the end of an operation

• Move the line read or write position within a persistent stream (for example, a file)

• Get information about a stream

If the method is unsuccessful, it returns an error message string in the same form that the
DESCRIPTION method uses.

For most error conditions, the additional information is in the form of a numeric return code. This return
code is the value ofERRNO that is set whenever one of the file system primitives returns with a-1.

188

Chapter 6. Other Classes

6.11.7.1. Command Strings

The argumentstream_commandcan be any expression that the language processor evaluates to a
command string that corresponds to the following diagram:

+-BOTH--| Write Options |-+

>>-+-OPEN--+-------------------------+--+-------------+-+------><

| +-READ--------------------+ +-| Options |-+ |

| +-WRITE--+---------+------+ |

| +-APPEND--+ |

| +-REPLACE-+ |

+-CLOSE--+

+-FLUSH--+

| +- = -+ +-CHAR-+ |

+-+-SEEK-----+--+-----+-offset--+-------+--+------+--+

| +-POSITION-+ +- < -+ +-READ--+ +-LINE-+ |

| +- + -+ +-WRITE-+ |

| +- - -+ |

+-QUERY--+-DATETIME--------------------------+-------+

+-EXISTS----------------------------+

+-HANDLE----------------------------+

| +-CHAR-+ |

+-+-SEEK-----+--+-READ--+------+--+-+

| +-POSITION-+ | +-LINE-+ | |

| | +-CHAR-+ | |

| +-WRITE--+------+-+ |

| | +-LINE-+ | |

| +-SYS-------------+ |

+-SIZE------------------------------+

+-STREAMTYPE------------------------+

+-TIMESTAMP-------------------------+

Write Options:

|--+---------+--|

+-APPEND--+

+-REPLACE-+

Options:

+-----------------------------------+

V |

|--+------------+----+-NOBUFFER----------------------+-+--------|

+-SHARED-----+ +-BINARY--+-------------------+-+

+-SHAREREAD--+ +-RECLENGTH--length-+

+-SHAREWRITE-+

OPEN

Opens the stream object receiving the message and returnsREADY:. (If unsuccessful, the previous
information about return codes applies.) The default for OPEN is to open the stream for both
reading and writing data, for example:'OPEN BOTH'. To specify that thestream_namereceiving the
message can be only read or written to, add READ or WRITE, to the command string.

189

Chapter 6. Other Classes

The following is a description of the options for OPEN:

READ

Opens the stream only for reading.

WRITE

Opens the stream only for writing.

BOTH

Opens the stream for both reading and writing. (This is the default.) The language processor
maintains separate read and write pointers.

APPEND

Positions the write pointer at the end of the stream. The write pointer cannot be moved
anywhere within the extent of the file as it existed when the file was opened.

REPLACE

Sets the write pointer to the beginning of the stream and truncates the file. In other words, this
option deletes all data that was in the stream when opened.

SHARED

Enables another process to work with the stream in a shared mode. This mode must be
compatible with the shared mode (SHARED, SHAREREAD, or SHAREWRITE) used by the
process that opened the stream.

SHAREREAD

Enables another process to read the stream in a shared mode.

SHAREWRITE

Enables another process to write the stream in a shared mode.

NOBUFFER

Turns off buffering of the stream. All data written to the stream is flushed immediately to the
operating system for writing. This option can have a severe impact on output performance. Use
it only when data integrity is a concern, or to force interleaved output to a stream to appear in
the exact order in which it was written.

BINARY

Opens the stream in binary mode. This means that line end characters are ignored; they are
treated like any other byte of data. This is intended to force file operations that are compatible
with other Rexx language processors that run on record-based systems, or to process binary
data using the line operations.

Note: Specifying the BINARY option for a stream that does not exist but is opened for
writing also requires the RECLENGTH option to be specified. Omitting the RECLENGTH
option in this case raises an error condition.

190

Chapter 6. Other Classes

RECLENGTHlength

Allows the specification of an exact length for each line in a stream. This allows line operations
on binary-mode streams to operate on individual fixed-length records. Without this option, line
operations on binary-mode files operate on the entire file (for example, as if you specified the
RECLENGTH option with a length equal to that of the file). Thelengthmust be1 or greater.

Examples:

stream_name~Command("open")

stream_name~Command("open write")

stream_name~Command("open read")

stream_name~Command("open read shared")

CLOSE

closes the stream object receiving the message. The COMMAND method with the CLOSE option
returnsREADY: if the receiving stream object is successfully closed or an appropriate error message
otherwise. If an attempt to close an unopened file occurs, then the COMMAND method with the
CLOSE option returns a null string ("").

FLUSH

forces any data currently buffered for writing to be written to this stream.

SEEKoffset

sets the read or write position to a given number (offset) within a persistent stream. If the stream is
open for both reading and writing and you do not specify READ or WRITE, both the read and write
positions are set.

Note: See Input and Output Streams for a discussion of read and write positions in a persistent
stream.

To use this command, you must first open the receiving stream object (with the OPEN stream
command described previously or implicitly with an input or output operation). One of the
following characters can precede theoffsetnumber.

=

explicitly specifies theoffsetfrom the beginning of the stream. This is the default if you supply
no prefix. For example, anoffsetof 1 with the LINE option means the beginning of the stream.

<

specifiesoffsetfrom the end of the stream.

191

Chapter 6. Other Classes

+

specifiesoffsetforward from the current read or write position.

-

specifiesoffsetbackward from the current read or write position.

The COMMAND method with the SEEK option returns the new position in the stream if the read or
write position is successfully located, or an appropriate error message.

The following is a description of the options for SEEK:

READ

specifies that this command sets the read position.

WRITE

specifies that this command sets the write position.

CHAR

specifies the positioning in terms of characters. This is the default.

LINE

specifies the positioning in terms of lines. For non-binary streams, this is potentially an
operation that can take a long time to complete because, in most cases, the file must be scanned
from the top to count the line-end characters. However, for binary streams with a specified
record length, the new resulting line number is simply multiplied by the record length before
character positioning. SeeLine versus Character Positioningfor a detailed discussion of this
issue.

Note: If you do line positioning in a file open only for writing, you receive an error message.

Examples:

stream_name~Command("seek =2 read")

stream_name~Command("seek +15 read")

stream_name~Command("seek -7 write line")

fromend = 125

stream_name~Command("seek <"fromend read)

POSITION

is a synonym for SEEK.

Used with thesestream_commands, the COMMAND method returns specific information about a
stream. Except for QUERY HANDLE and QUERY POSITION, the language processor returns the
query information even if the stream is not open. The language processor returns the null string for
nonexistent streams.

192

Chapter 6. Other Classes

QUERY DATETIME

Returns the date and time stamps of a stream in US format. For example:

stream_name~Command("query datetime")

A sample output might be:

11-12-95 03:29:12

QUERY EXISTS

Returns the full path specification of the stream object receiving the message, if it exists, or a null
string. For example:

stream_name~Command("query exists")

A sample output might be:

c:\data\file.txt

QUERY HANDLE

Returns the handle associated with the open stream that is the receiving stream object. For example:

stream_name~Command("query handle")

A sample output might be:3

QUERY POSITION

Returns the current read or write position for the receiving stream object, as qualified by the
following options:

READ

Returns the current read position.

WRITE

Returns the current write position.

Note: If the stream is open for both reading and writing, this returns the read position by default.
Otherwise, this returns the appropriate position by default.

CHAR

Returns the position in terms of characters. This is the default.

193

Chapter 6. Other Classes

LINE

Returns the position in terms of lines. For non-binary streams, this operation can take a long
time to complete. This is because the language processor starts tracking the current line
number if not already doing so, and, thus, might require a scan of the stream from the top to
count the line-end characters. SeeLine versus Character Positioningfor a detailed discussion
of this issue. For example:

stream_name~Command("query position write")

A sample output might be:

247

SYS

Returns the operating system stream position in terms of characters.

QUERY SEEK

Is a synonym for QUERY POSITION.

QUERY SIZE

Returns the size in bytes of a persistent stream that is the receiving stream object. For example:

stream_name~Command("query size")

A sample output might be:

1305

QUERY STREAMTYPE

Returns a string indicating whether the receiving stream object isPERSISTENT, TRANSIENT, or
UNKNOWN.

QUERY TIMESTAMP

Returns the date and time stamps of the receiving stream object in an international format. This is
the preferred method of getting date and time because it provides the full 4-digit year. For example:

stream_name~Command("query timestamp")

A sample output might be:

1995-11-12 03:29:12

6.11.8. DESCRIPTION

>>-DESCRIPTION---><

194

Chapter 6. Other Classes

Returns any descriptive string associated with the current state of the stream or the NIL object if no
descriptive string is available. The DESCRIPTION method is identical with the STATE method except
that the string that DESCRIPTION returns is followed by a colon and, if available, additional
information about ERROR or NOTREADY states. (TheSTATEmethod describes these states.)

6.11.9. FLUSH

>>-FLUSH---><

ReturnsREADY:. It forces any data currently buffered for writing to be written to the stream receiving the
message.

6.11.10. INIT

>>-INIT(name)--><

Initializes a stream object for a stream namedname, but does not open the stream. SeeInitialization for
more information.

6.11.11. LINEIN

>>-LINEIN-+-------------------------+--------------------------><

+-(-+------+-+--------+-)-+

+-line-+ +-,count-+

Returns the nextcountlines. The count must be0 or 1. The language processor advances the read
pointer. If you omitcount, it defaults to1. A line number may be given to set the read position to the start
of a specified line. This line number must be positive and within the bounds of the stream, and must not
be specified for a transient stream. A value of 1 forline refers to the first line in the stream. If the stream
is not already open, the language processor tries to open the stream for reading and writing. If that fails,
the language processor opens the stream for read-only. (SeeLINEIN (Line Input) for information about
the LINEIN built-in function.)

6.11.12. LINEOUT

>>-LINEOUT-+--------------------------+------------------------><

+-(-+--------+-+-------+-)-+

+-string-+ +-,line-+

Returns0 if successful in writingstring to the character output stream receiving the message or1 if an
error occurs while writing the line. The language processor advances the write pointer. If you omitstring,
the language processor closes the stream. If you specifyline, this positions the write pointer before
writing. If the stream is not already open, the language processor tries to open the stream for reading and
writing. If that fails, the language processor opens the stream for write-only. (SeeLINEOUT (Line
Output)for information about the LINEOUT built-in function.)

195

Chapter 6. Other Classes

6.11.13. LINES

+-Count--+

>>-LINES(--+--------+---)--------------------------------------><

+-Normal-+

Returns the number of completed lines that remain in the character input stream receiving the message. If
the stream has already been read with CHARIN, this can include an initial partial line. For persistent
streams the count starts at the current read position. In effect, LINES reports whether a read action of
CHARIN (seeCHARIN) or LINEIN (seeLINEIN) will succeed. (For an explanation of input and
output, seeInput and Output Streams.)

For QUEUE, LINES returns the actual number of lines. (SeeLINES (Lines Remaining)for information
about the LINES built-in function.)

Note: The CHARS method returns the number of characters in a persistent stream or the presence
of data in a transient stream. The LINES method determines the actual number of lines by scanning
the stream starting at the current position and counting the lines. For large streams, this can be a
time-consuming operation. Therefore, avoid the use of the LINES method in the condition of a loop
reading a stream. It is recommended that you use the CHARS method (see CHARS) or the LINES
built-in function for this purpose.

The ANSI Standard has extended this function to allow an option: "Count". If this option is used, LINES
returns the actual number of complete lines remaining in the stream, irrespective of how long this
operation takes.

The option "Normal" returns 1 if there is at least one complete line remaining in the file or 0 if no lines
remain.

The default is "Count".

The defaults of the LINES method and function are different because of compatibility reasons.

6.11.14. MAKEARRAY

+-(LINES)-+

>>-MAKEARRAY--+---------+--------------------------------------><

+-(CHARS)-+

Returns a fixed array that contains the data of the stream in line or character format, starting from the
current read position. The line format is the default.

If you have used the CHARIN method, the first line can be a partial line.

6.11.15. OPEN

+-(BOTH-| Write Options |--+ +-SHARED-----+

>>-OPEN--+--------------------------+--+------------+----------->

+-(READ--------------------+ +-SHAREREAD--+

196

Chapter 6. Other Classes

+-(WRITE-| Write Options |-+ +-SHAREWRITE-+

+-----------------------------------+

V |

>----+-------------------------------+-+--+---+----------------><

+-NOBUFFER----------------------+ +-)-+

+-BINARY--+-------------------+-+

+-RECLENGTH--length-+

Write Options:

+-------------+

V +-APPEND--+ |

|----+---------+-+--|

+-REPLACE-+

Opens the stream to which you send the message and returnsREADY:. If the method is unsuccessful, it
returns an error message string in the same form that the DESCRIPTION method uses.

For most error conditions, the additional information is in the form of a numeric return code. This return
code is the value ofERRNO, which is set whenever one of the file system primitives returns with a-1.

By default, OPEN opens the stream for both reading and writing data, for example:'OPEN BOTH'. To
specify that the stream receiving the message can be only read or only written to, specify READ or
WRITE.

The options for the OPEN method are:

READ

Opens the stream only for reading.

WRITE

Opens the stream only for writing.

BOTH

Opens the stream for both reading and writing. (This is the default.) The language processor
maintains separate read and write pointers.

APPEND

Positions the write pointer at the end of the stream. (This is the default.) The write pointer cannot be
moved anywhere within the extent of the file as it existed when the file was opened.

REPLACE

Sets the write pointer to the beginning of the stream and truncates the file. In other words, this
option deletes all data that was in the stream when opened.

SHARED

Enables another process to work with the stream in a shared mode. (This is the default.) This mode
must be compatible with the shared mode (SHARED, SHAREREAD, or SHAREWRITE) used by
the process that opened the stream.

197

Chapter 6. Other Classes

SHAREREAD

Enables another process to read the stream in a shared mode.

SHAREWRITE

Enables another process to write the stream in a shared mode.

NOBUFFER

Turns off buffering of the stream. All data written to the stream is flushed immediately to the
operating system for writing. This option can have a severe impact on output performance. Use it
only when data integrity is a concern, or to force interleaved output to a stream to appear in the
exact order in which it was written.

BINARY

Opens the stream in binary mode. This means that line-end characters are ignored; they are treated
like any other byte of data. This is intended to force file operations that are compatible with other
Rexx language processors that run on record-based systems, or to process binary data using the line
operations.

Note: Specifying the BINARY option for a stream that does not exist but is opened for writing
also requires the RECLENGTH option to be specified. Omitting the RECLENGTH option in this
case raises an error condition.

RECLENGTHlength

Allows the specification of an exact length for each line in a stream. This allows line operations on
binary-mode streams to operate on individual fixed-length records. Without this option, line
operations on binary-mode files operate on the entire file (for example, as if you specified the
RECLENGTH option with a length equal to that of the file). Thelengthmust be1 or greater.

Examples:

stream_name~OPEN

stream_name~OPEN("write")

stream_name~OPEN("read")

6.11.16. POSITION

+- = -+ +-CHAR-+

>>-POSITION(-+-----+-offset-+-READ--+-+------+-)---------------><

+- < -+ +-WRITE-+ +-LINE-+

+- + -+

+- - -+

POSITION is a synonym for SEEK. (SeeSEEK.)

198

Chapter 6. Other Classes

6.11.17. QUALIFY

>>-QUALIFY---><

Returns the stream’s fully qualified name. The stream need not be open.

6.11.18. QUERY

>>-QUERY(--+-DATETIME--------------------------+--)------------><

+-EXISTS----------------------------+

+-HANDLE----------------------------+

| +-CHAR-+ |

+-+-SEEK-----+--+-READ--+------+--+-+

| +-POSITION-+ | +-LINE-+ | |

| | +-CHAR-+ | |

| +-WRITE--+------+-+ |

| | +-LINE-+ | |

| +-SYS-------------+ |

+-SIZE------------------------------+

+-STREAMTYPE------------------------+

+-TIMESTAMP-------------------------+

Used with these options, the QUERY method returns specific information about a stream. Except for
QUERY HANDLE and QUERY POSITION, the language processor returns the query information even
if the stream is not open. The language processor returns the null string for nonexistent streams.

DATETIME

returns the date and time stamps of the receiving stream object in US format. For example:

stream_name~query("datetime")

A sample output might be:

11-12-98 03:29:12

EXISTS

returns the full path specification of the receiving stream object, if it exists, or a null string. For
example:

stream_name ~query("exists")

A sample output might be:

c:\data\file.txt

HANDLE

returns the handle associated with the open stream that is the receiving stream object. For example:

stream_name ~query("handle")

199

Chapter 6. Other Classes

A sample output might be:

3

POSITION

returns the current read or write position for the receiving stream object, as qualified by the
following options:

READ

returns the current read position.

WRITE

returns the current write position.

Note: If the stream is open for both reading and writing, this returns the read position by default.
Otherwise, this returns the appropriate position by default.

CHAR

returns the position in terms of characters. This is the default.

LINE

returns the position in terms of lines. For non-binary streams, this operation can take a long
time to complete. This is because the language processor starts tracking the current line
number if not already doing so, and, thus, might require a scan of the stream from the top to
count the line-end characters. SeeLine versus Character Positioningfor a detailed discussion
of this issue. For example:

stream_name ~query("position write")

A sample output might be:

247

SYS

returns the operating system stream position in terms of characters.

SIZE

returns the size, in bytes, of a persistent stream that is the receiving stream object. For example:

stream_name ~query("size")

A sample output might be:

1305

200

Chapter 6. Other Classes

STREAMTYPE

returns a string indicating whether the receiving stream object isPERSISTENT, TRANSIENT, or
UNKNOWN.

TIMESTAMP

returns the date and time stamps of the receiving stream object in an international format. This is the
preferred method of getting the date and time because it provides the full 4-digit year. For example:

stream_name ~query("timestamp")

A sample output might be:

1998-11-12 03:29:12

6.11.19. SAY

>>-SAY--+----------------+-------------------------------------><

+-(-+--------+-)-+

+-string-+

Returns0 if successful in writingstring to the character output stream receiving the message or1 if an
error occurs while writing the line.

6.11.20. SEEK

+- = -+ +-CHAR-+

>>-SEEK(-+-----+-offset-+-------+-+------+-)-------------------><

+- < -+ +-READ--+ +-LINE-+

+- + -+ +-WRITE-+

+- - -+

Sets the read or write position to a given number (offset) within a persistent stream. If the stream is open
for both reading and writing and you do not specify READ or WRITE, both the read and write positions
are set.

Note: See Input and Output Streams for a discussion of read and write positions in a persistent
stream.

To use this method, you must first open the receiving stream object (with the OPEN method described
previously or implicitly with an input or output operation). One of the following characters can precede
theoffsetnumber:

201

Chapter 6. Other Classes

=

Explicitly specifies theoffsetfrom the beginning of the stream. This is the default if you supply no
prefix. For example, anoffsetof 1 means the beginning of the stream.

<

Specifiesoffsetfrom the end of the stream.

+

Specifiesoffsetforward from the current read or write position.

-

Specifiesoffsetbackward from the current read or write position.

The SEEK method returns the new position in the stream if the read or write position is successfully
located, or an appropriate error message.

The following is a description of the options for SEEK:

READ

specifies that the read position be set.

WRITE

specifies that the write position be set.

CHAR

specifies that positioning be done in terms of characters. This is the default.

LINE

specifies that the positioning be done in terms of lines. For non-binary streams, this is potentially an
operation that can take a long time to complete because, in most cases, the file must be scanned
from the top to count the line-end characters. However, for binary streams with a specified record
length, the new resulting line number is simply multiplied by the record length before character
positioning. SeeLine versus Character Positioningfor a detailed discussion of this issue.

Note: If you do line positioning in a file open only for writing, you receive an error message.

Examples:

stream_name ~seek("=2 read")

stream_name ~seek("+15 read")

stream_name ~seek("-7 write line")

fromend = 125

stream_name ~seek("<"fromend read)

202

Chapter 6. Other Classes

6.11.21. STATE

>>-STATE---><

Returns a string that indicates the current state of the specified stream.

The returned strings are as follows:

ERROR

The stream has been subject to an erroneous operation (possibly during input, output, or through the
STREAM function). SeeErrors during Input and Output. You might be able to obtain additional
information about the error with the DESCRIPTION method or by calling the STREAM function
with a request for the description.

NOTREADY

The stream is known to be in such a state that the usual input or output operations attempted upon
would raise the NOTREADY condition. (SeeErrors during Input and Output.) For example, a
simple input stream can have a defined length. An attempt to read that stream (with CHARIN or
LINEIN, perhaps) beyond that limit can make the stream unavailable until the stream has been
closed (for example, with LINEOUT(name)) and then reopened.

READY

The stream is known to be in such a state that the usual input or output operations might be
attempted. This is the usual state for a stream, although it does not guarantee that any particular
operation will succeed.

UNKNOWN

The state of the stream is unknown. This generally means that the stream is closed or has not yet
been opened.

6.11.22. SUPPLIER

>>-SUPPLIER--><

Returns a supplier object for the stream. When you send appropriate messages to the supplier object (see
The Supplier Class), it enumerates all the lines in the stream object. The supplier enumerates the items in
their line order.

6.12. The String Class
String objects represent character-string data values. A character string value can have any length and
contain any characters. If you are familiar with earlier versions of Rexx you might find the notation for
functions more convenient than the notation for methods. SeeFunctionsfor function descriptions.

The String class is a subclass of the Object class.

203

Chapter 6. Other Classes

Methods the String class defines:

NEW (Class method. Overrides Object class method)
Arithmetic methods: +, -, *, /, %, //, **
Comparison methods: =, \=,<>, ><, ==, \== (Override Object class methods)
Comparison methods: >,<, >=, \<, <=, \>, >>,<<, >>=, \<<, <<=, \>>
Logical methods: &, |, &&, \
Concatenation methods: "" (abuttal), " " (blank), ||
ABBREV
ABS
BITAND
BITOR
BITXOR
B2X
CENTER (or CENTRE)
CHANGESTR
COMPARE
COPIES
COUNTSTR
C2D
C2X
DATATYPE
DECODEBASE64
DELSTR
DELWORD
D2C
D2X
ENCODEBASE64
FORMAT
INSERT
LASTPOS
LEFT
LENGTH
MAKEARRAY
MAKESTRING
MAX
MIN
OVERLAY
POS
REVERSE
RIGHT
SIGN
SPACE
STRING (Overrides Object class method)
STRIP
SUBSTR
SUBWORD
TRANSLATE
TRUNC
VERIFY
WORD
WORDINDEX
WORDLENGTH
WORDPOS
WORDS
X2B
X2C
X2D

Methods inherited from the Object class:

CLASS
COPY
DEFAULTNAME
HASMETHOD
INIT

204

Chapter 6. Other Classes

OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
START
UNSETMETHOD

Note: The String class also has available class methods that its metaclass, the Class class, defines.

6.12.1. NEW (Class Method)

>>-NEW(stringvalue)--><

Returns a new string object initialized with the characters instringvalue.

6.12.2. Arithmetic Methods

>>-arithmetic_operator(argument)-------------------------------><

Note: For the prefix - and prefix + operators, omit the parentheses and argument .

Returns the result of performing the specified arithmetic operation on the receiver object. The receiver
object and theargumentmust be valid numbers (seeNumbers). Thearithmetic_operatorcan be:

+

Addition

-

Subtraction

*

Multiplication

/

Division

%

Integer division (divide and return the integer part of the result)

//

Remainder (divide and return the remainder--not modulo, because the result can be negative)

205

Chapter 6. Other Classes

**

Exponentiation (raise a number to a whole-number power)

Prefix -

Same as the subtraction:0 - number

Prefix +

Same as the addition:0 + number

SeeNumbers and Arithmeticfor details about precision, the format of valid numbers, and the operation
rules for arithmetic. Note that if an arithmetic result is shown in exponential notation, it might have been
rounded.

Examples:

5+5 -> 10

8-5 -> 3

5*2 -> 10

6/2 -> 3

9//4 -> 1

9%4 -> 2

2**3 -> 8

+5 -> 5 /* Prefix + */

-5 -> -5 /* Prefix - */

6.12.3. Comparison Methods

>>-comparison_operator(argument)-------------------------------><

Returns1 (true) or0 (false), the result of performing the specified comparison operation. The receiver
object and theargumentare the terms compared. Both must be string objects.

The comparison operators you can use in a message are:

=

True if the terms are equal (for example, numerically or when padded)

\=, ><, <>

True if the terms are not equal (inverse of =)

>

Greater than

<

Less than

>=

Greater than or equal to

206

Chapter 6. Other Classes

\<

Not less than

<=

Less than or equal to

\>

Not greater than

Examples:

5=5 -> 1 /* equal */

42\=41 -> 1 /* All of these are */

42><41 -> 1 /* "not equal" */

42<>41 -> 1

13>12 -> 1 /* Variations of */

12<13 -> 1 /* less than and */

13>=12 -> 1 /* greater than */

12\<13 -> 0

12<=13 -> 1

12\>13 -> 1

All strict comparison operations have one of the characters doubled that define the operator. The== and
\== operators check whether two strings match exactly. The two strings must be identical (character by
character) and of the same length to be considered strictly equal.

The strict comparison operators such as>> or << carry out a simple character-by-character comparison.
There is no padding of either of the strings being compared. The comparison of the two strings is from
left to right. If one string is shorter than and a leading substring of another, then it is smaller than (less
than) the other. The strict comparison operators do not attempt to perform a numeric comparison on the
two operands.

For all the other comparison operators, if both terms are numeric, the language processor does a numeric
comparison (ignoring, for example, leading zeros--seeNumeric Comparisons). Otherwise, it treats both
terms as character strings, ignoring leading and trailing blanks and padding the shorter string on the right
with blanks.

Character comparison and strict comparison operations are both case-sensitive, and for both the exact
collating order can depend on the character set. In an ASCII environment, the digits are lower than the
alphabetic characters, and lowercase alphabetic characters are higher than uppercase alphabetic
characters.

The strict comparison operators you can use in a message are:

==

True if terms are strictly equal (identical)

\==

True if the terms are NOT strictly equal (inverse of ==)

207

Chapter 6. Other Classes

>>

Strictly greater than

<<

Strictly less than

>>=

Strictly greater than or equal to

\<<

Strictly NOT less than

<<=

Strictly less than or equal to

\>>

Strictly NOT greater than

Examples:

"space"=="space" -> 1 /* Strictly equal */

"space"\==" space" -> 1 /* Strictly not equal */

"space">>" space" -> 1 /* Variations of */

" space"<<"space" -> 1 /* strictly greater */

"space">>=" space" -> 1 /* than and less than */

"space"\<<" space" -> 1

" space"<<="space" -> 1

" space"\>>"space" -> 1

6.12.4. Logical Methods

>>-logical_operator(argument)----------------------------------><

Note: For NOT (prefix \), omit the parentheses and argument .

Returns 1 (true) or 0 (false), the result of performing the specified logical operation. The receiver
object and the argument are character strings that evaluate to 1 or 0.

The logical_operatorcan be:

&

AND (Returns1 if both terms are true.)

208

Chapter 6. Other Classes

|

Inclusive OR (Returns1 if either term or both terms are true.)

&&

Exclusive OR (Returns1 if either term, but not both terms, is true.)

Prefix \

Logical NOT (Negates;1 becomes0, and0 becomes1.)

Examples:

1&0 -> 0

1|0 -> 1

1&&0 -> 1

\1 -> 0

6.12.5. Concatenation Methods

>>-concatenation_operator(argument)----------------------------><

Concatenates the receiver object withargument. (SeeString Concatenation.) The
concatenation_operatorcan be:

""

concatenates without an intervening blank. The abuttal operator "" is the null string. The language
processor uses the abuttal to concatenate two terms that another operator does not separate.

||

concatenates without an intervening blank.

" "

concatenates with one blank between the receiver object and theargument. (The operator " " is a
blank.)

Examples:

5+5 -> 10

8-5 -> 3

5*2 -> 10

6/2 -> 3

9//4 -> 1

9%4 -> 2

2**3 -> 8

+5 -> 5 /* Prefix + */

-5 -> -5 /* Prefix - */

209

Chapter 6. Other Classes

6.12.6. ABBREV

>>-ABBREV(info-+---------+-)-----------------------------------><

+-,length-+

Returns1 if info is equal to the leading characters of the receiving string and the length ofinfo is not less
thanlength. Returns0 if either of these conditions is not met.

If you specifylength, it must be a positive whole number or zero. The default forlengthis the number of
characters ininfo.

Examples:

"Print"~ABBREV("Pri") -> 1

"PRINT"~ABBREV("Pri") -> 0

"PRINT"~ABBREV("PRI",4) -> 0

"PRINT"~ABBREV("PRY") -> 0

"PRINT"~ABBREV("") -> 1

"PRINT"~ABBREV("",1) -> 0

Note: A null string always matches if a length of 0, or the default, is used. This allows a default
keyword to be selected automatically if desired.

Example:

say "Enter option:"; pull option .

select /* keyword1 is to be the default */

when "keyword1"~abbrev(option) then ...

when "keyword2"~abbrev(option) then ...

...

otherwise nop;

end;

(SeeABBREV (Abbreviation)for information about the ABBREV built-in function.)

6.12.7. ABS

>>-ABS---><

Returns the absolute value of the receiving string. The result has no sign and is formatted according to
the current NUMERIC settings.

Examples:

12.3~abs -> 12.3

"-0.307"~abs -> 0.307

(SeeABS (Absolute Value)for information about the ABS built-in function.)

210

Chapter 6. Other Classes

6.12.8. B2X

>>-B2X---><

Returns a string, in character format, that represents the receiving binary string converted to hexadecimal.

The receiving string is a string of binary (0 or 1) digits. It can be of any length. It can optionally include
blanks (at 4-digit boundaries only, not leading or trailing). These are to improve readability; the language
processor ignores them.

The returned string uses uppercase alphabetic characters for the valuesA-F and does not include blanks.

If the receiving binary string is a null string, B2X returns a null string. If the number of binary digits in
the receiving string is not a multiple of four, the language processor adds up to three0 digits on the left
before the conversion to make a total that is a multiple of four.

Examples:

"11000011"~B2X -> "C3"

"10111"~B2X -> "17"

"101"~B2X -> "5"

"1 1111 0000"~B2X -> "1F0"

You can combine B2X with the methods X2D and X2C to convert a binary number into other forms.

Example:

"10111"~B2X~X2D -> "23" /* decimal 23 */

(SeeB2X (Binary to Hexadecimal)for information about the B2X built-in function.)

6.12.9. BITAND

>>-BITAND-+--------------------+-------------------------------><

+-(string-+------+-)-+

+-,pad-+

Returns a string composed of the receiver string and the argumentstring logically ANDed together, bit
by bit. (The encodings of the strings are used in the logical operation.) The length of the result is the
length of the longer of the two strings. If you omit thepadcharacter, the AND operation stops when the
shorter of the two strings is exhausted, and the unprocessed portion of the longer string is appended to
the partial result. If you providepad, it extends the shorter of the two strings on the right before the
logical operation. The default forstring is the zero-length (null) string.

Examples:

"12"x~BITAND -> "12"x

"73"x~BITAND("27"x) -> "23"x

"13"x~BITAND("5555"x) -> "1155"x

"13"x~BITAND("5555"x,"74"x) -> "1154"x

"pQrS"~BITAND(,"DF"x) -> "PQRS" /* ASCII */

(SeeBITAND (Bit by Bit AND) for information about the BITAND built-in function.)

211

Chapter 6. Other Classes

6.12.10. BITOR

>>-BITOR-+--------------------+--------------------------------><

+-(string-+------+-)-+

+-,pad-+

Returns a string composed of the receiver string and the argumentstring logically inclusive-ORed, bit by
bit. The encodings of the strings are used in the logical operation. The length of the result is the length of
the longer of the two strings. If you omit thepadcharacter, the OR operation stops when the shorter of
the two strings is exhausted, and the unprocessed portion of the longer string is appended to the partial
result. If you providepad, it extends the shorter of the two strings on the right before the logical
operation. The default forstring is the zero-length (null) string.

Examples:

"12"x~BITOR -> "12"x

"15"x~BITOR("24"x) -> "35"x

"15"x~BITOR("2456"x) -> "3556"x

"15"x~BITOR("2456"x,"F0"x) -> "35F6"x

"1111"x~BITOR(,"4D"x) -> "5D5D"x

"pQrS"~BITOR(,"20"x) -> "pqrs" /* ASCII */

(SeeBITOR (Bit by Bit OR) for information about the BITOR built-in function.)

6.12.11. BITXOR

>>-BITXOR-+--------------------+-------------------------------><

+-(string-+------+-)-+

+-,pad-+

Returns a string composed of the receiver string and the argumentstring logically eXclusive-ORed, bit
by bit. The encodings of the strings are used in the logical operation. The length of the result is the length
of the longer of the two strings. If you omit thepadcharacter, the XOR operation stops when the shorter
of the two strings is exhausted, and the unprocessed portion of the longer string is appended to the partial
result. If you providepad, it extends the shorter of the two strings on the right before carrying out the
logical operation. The default forstring is the zero-length (null) string.

Examples:

"12"x~BITXOR -> "12"x

"12"x~BITXOR("22"x) -> "30"x

"1211"x~BITXOR("22"x) -> "3011"x

"1111"x~BITXOR("444444"x) -> "555544"x

"1111"x~BITXOR("444444"x,"40"x) -> "555504"x

"1111"x~BITXOR(,"4D"x) -> "5C5C"x

"C711"x~BITXOR("222222"x," ") -> "E53302"x /* ASCII */

(SeeBITXOR (Bit by Bit Exclusive OR)for information about the BITXOR built-in function.)

212

Chapter 6. Other Classes

6.12.12. C2D

>>-C2D-+-----+---><

+-(n)-+

Returns the decimal value of the binary representation of the receiving string. If the result cannot be
expressed as a whole number, an error results. That is, the result must not have more digits than the
current setting of NUMERIC DIGITS. If you specifyn, it is the length of the returned result. If you do
not specifyn, the receiving string is processed as an unsigned binary number. If the receiving string is
null, C2D returns0.

Examples:

"09"X~C2D -> 9

"81"X~C2D -> 129

"FF81"X~C2D -> 65409

""~C2D -> 0

"a"~C2D -> 97 /* ASCII */

If you specifyn, the receiving string is taken as a signed number expressed inn characters. The number
is positive if the leftmost bit is off, and negative if the leftmost bit is on. In both cases, it is converted to a
whole number, which can therefore be negative. The receiving string is padded on the left with "00"x
characters (not "sign-extended"), or truncated on the left ton characters. This padding or truncation is as
thoughreceiving_string~RIGHT(n,'00'x) had been processed. Ifn is 0, C2D always returns0.

Examples:

"81"X~C2D(1) -> -127

"81"X~C2D(2) -> 129

"FF81"X~C2D(2) -> -127

"FF81"X~C2D(1) -> -127

"FF7F"X~C2D(1) -> 127

"F081"X~C2D(2) -> -3967

"F081"X~C2D(1) -> -127

"0031"X~C2D(0) -> 0

(SeeC2D (Character to Decimal)for information about the C2D built-in function.)

6.12.13. C2X

>>-C2X---><

Returns a string, in character format, that represents the receiving string converted to hexadecimal. The
returned string contains twice as many bytes as the receiving string. On an ASCII system, sending a C2X
message to the receiving string1 returns31 because "31"X is the ASCII representation of1.

The returned string has uppercase alphabetic characters for the valuesA-F and does not include blanks.
The receiving string can be of any length. If the receiving string is null, C2X returns a null string.

Examples:

"0123"X~C2X -> "0123" /* "30313233"X in ASCII */

"ZD8"~C2X -> "5A4438" /* "354134343338"X in ASCII */

213

Chapter 6. Other Classes

(SeeC2X (Character to Hexadecimal)for information about the C2X built-in function.)

6.12.14. CENTER/CENTRE

>>-+-CENTER(-+-length-+--------+-)-----------------------------><

+-CENTRE(-+ +-,--pad-+

Returns a string of lengthlengthwith the receiving string centered in it. The language processor adds
padcharacters as necessary to make up length. Thelengthmust be a positive whole number or zero. The
defaultpadcharacter is blank. If the receiving string is longer thanlength, it is truncated at both ends to
fit. If an odd number of characters are truncated or added, the right-hand end loses or gains one more
character than the left-hand end.

Note: To avoid errors because of the difference between British and American spellings, this method
can be called either CENTRE or CENTER.

Examples:

abc~CENTER(7) -> " ABC "

abc~CENTER(8,"-") -> "--ABC---"

"The blue sky"~CENTRE(8) -> "e blue s"

"The blue sky"~CENTRE(7) -> "e blue "

(SeeCENTER (or CENTRE)for information about the CENTER built-in function.)

6.12.15. CHANGESTR

>>-CHANGESTR(needle,newneedle)---------------------------------><

Returns a copy of the receiver object in whichnewneedlereplaces all occurrences ofneedle.

Here are some examples:

101100~CHANGESTR("1","") -> "000"

101100~CHANGESTR("1","X") -> "X0XX00"

(SeeCHANGESTRfor information about the CHANGESTR built-in function.)

6.12.16. COMPARE

>>-COMPARE(string-+------+-)-----------------------------------><

+-,pad-+

Returns0 if the argumentstring is identical to the receiving string. Otherwise, returns the position of the
first character that does not match. The shorter string is padded on the right withpad if necessary. The
defaultpadcharacter is a blank.

214

Chapter 6. Other Classes

Examples:

"abc"~COMPARE("abc") -> 0

"abc"~COMPARE("ak") -> 2

"ab "~COMPARE("ab") -> 0

"ab "~COMPARE("ab"," ") -> 0

"ab "~COMPARE("ab","x") -> 3

"ab-- "~COMPARE("ab","-") -> 5

(SeeCOMPAREfor information about the COMPARE built-in function.)

6.12.17. COPIES

>>-COPIES(n)---><

Returnsn concatenated copies of the receiving string. Then must be a positive whole number or zero.

Examples:

"abc"~COPIES(3) -> "abcabcabc"

"abc"~COPIES(0) -> ""

(SeeCOPIESfor information about the COPIES built-in function.)

6.12.18. COUNTSTR

>>-COUNTSTR(needle)--><

Returns a count of the occurrences ofneedlein the receiving string that do not overlap.

Here are some examples:

"101101"~COUNTSTR("1") -> 4

"J0KKK0"~COUNTSTR("KK") -> 1

(SeeCOUNTSTRfor information about the COUNTSTR built-in function.)

6.12.19. D2C

>>-D2C-+-----+---><

+-(n)-+

Returns a string, in character format, that is the ASCII representation of the receiving string, a decimal
number. If you specifyn, it is the length of the final result in characters; leading blanks are added to the
returned string. Then must be a positive whole number or zero.

The receiving string must not have more digits than the current setting of NUMERIC DIGITS.

If you omit n, the receiving string must be a positive whole number or zero, and the result length is as
needed. Therefore, the returned result has no leading "00"x characters.

215

Chapter 6. Other Classes

Examples:

"65"~D2C -> "A" /* "41"x is an ASCII "A" */

"65"~D2C(1) -> "A"

"65"~D2C(2) -> " A"

"65"~D2C(5) -> " A"

"109"~D2C -> "m" /* "6D"x is an ASCII "m" */

"-109"~D2C(1) -> "ô" /* "93"x is an ASCII "ô" */

"76"~D2C(2) -> " L" /* "4C"x is an ASCII " L" */

"-180"~D2C(2) -> " L"

Implementation maximum: The returned string must not have more than 250 significant characters,
although a longer result is possible if it has additional leading sign characters ("00"x and "FF"x).

(SeeD2C (Decimal to Character)for information about the D2C built-in function.)

6.12.20. D2X

>>-D2X-+-----+---><

+-(n)-+

Returns a string, in character format, that represents the receiving string, a decimal number converted to
hexadecimal. The returned string uses uppercase alphabetic characters for the valuesA-F and does not
include blanks.

The receiving string must not have more digits than the current setting of NUMERIC DIGITS.

If you specifyn, it is the length of the final result in characters. After conversion the returned string is
sign-extended to the required length. If the number is too big to fit inton characters, it is truncated on the
left. If you specifyn, it must be a positive whole number or zero.

If you omit n, the receiving string must be a positive whole number or zero, and the returned result has
no leading zeros.

Examples:

"9"~D2X -> "9"

"129"~D2X -> "81"

"129"~D2X(1) -> "1"

"129"~D2X(2) -> "81"

"129"~D2X(4) -> "0081"

"257"~D2X(2) -> "01"

"-127"~D2X(2) -> "81"

"-127"~D2X(4) -> "FF81"

"12"~D2X(0) -> ""

Implementation maximum: The returned string must not have more than 500 significant hexadecimal
characters, although a longer result is possible if it has additional leading sign characters (0 and F).

(SeeD2X (Decimal to Hexadecimal)for information about the D2X built-in function.)

216

Chapter 6. Other Classes

6.12.21. DATATYPE

>>-DATATYPE-+--------+---><

+-(type)-+

ReturnsNUM if you specify no argument and the receiving string is a valid Rexx number that can be added
to 0 without error. It returnsCHAR if the receiving string is not a valid number.

If you specifytype, it returns1 if the receiving string matches the type. Otherwise, it returns0. If the
receiving string is null, the method returns0 (except when thetypeis X or B, for which DATATYPE
returns1 for a null string). The following are validtypes. You need to specify only the capitalized letter,
or the number of the last type listed. The language processor ignores all characters following it.

Alphanumeric

returns1 if the receiving string contains only characters from the rangesa-z, A-Z, and0-9.

Binary

returns1 if the receiving string contains only the characters0 or 1, or a blank. Blanks can appear
only between groups of 4 binary characters. It also returns 1 if string is a null string, which is a valid
binary string.

Lowercase

returns1 if the receiving string contains only characters from the rangea-z.

Mixed case

returns1 if the receiving string contains only characters from the rangesa-z andA-Z.

Number

returns1 if receiving_string~DATATYPE returnsNUM.

Symbol

returns1 if the receiving string is a valid symbol, that is, if SYMBOL(string) does not returnBAD.
(SeeSymbols.) Note that both uppercase and lowercase alphabetic characters are permitted.

Uppercase

returns1 if the receiving string contains only characters from the rangeA-Z.

Variable

returns1 if the receiving string could appear on the left-hand side of an assignment without causing
a SYNTAX condition.

Whole number

returns1 if the receiving string is a whole number under the current setting of NUMERIC DIGITS.

217

Chapter 6. Other Classes

heXadecimal

returns1 if the receiving string contains only characters from the rangesa-f, A-F, 0-9, and blank (as
long as blanks appear only between pairs of hexadecimal characters). Also returns1 if the receiving
string is a null string.

9 Digits

returns1 if receiving_string~DATATYPE("W") returns1 when NUMERIC DIGITS is set to 9.

Examples:

" 12 "~DATATYPE -> "NUM"

""~DATATYPE -> "CHAR"

"123*"~DATATYPE -> "CHAR"

"12.3"~DATATYPE("N") -> 1

"12.3"~DATATYPE("W") -> 0

"Fred"~DATATYPE("M") -> 1

""~DATATYPE("M") -> 0

"Fred"~DATATYPE("L") -> 0

"?20K"~DATATYPE("s") -> 1

"BCd3"~DATATYPE("X") -> 1

"BC d3"~DATATYPE("X") -> 1

Note: The DATATYPE method tests the meaning or type of characters in a string, independent of the
encoding of those characters (for example, ASCII or EBCDIC).

(SeeDATATYPE for information about the DATATYPE built-in function.)

6.12.22. DECODEBASE64

>>-DECODEBASE64--><

Returns the decoded version of the base64 encoded recieving string. If the recieving string is not in
base64 format then the returned result is undefined.

Examples:

"YWJjZGVm"~DECODEBASE64 -> "abcdef"

Please note that there is no corresponding DECODEBASE64 builtin function for this method in ooRexx.

6.12.23. DELSTR

>>-DELSTR(n--+---------+--)------------------------------------><

+-,length-+

Returns a copy of the receiving string after deleting the substring that begins at thenth character and is of
lengthcharacters. If you omitlength, or if lengthis greater than the number of characters fromn to the

218

Chapter 6. Other Classes

end ofstring, the method deletes the rest ofstring (including thenth character). Thelengthmust be a
positive whole number or zero. Then must be a positive whole number. Ifn is greater than the length of
the receiving string, the method returns the receiving string unchanged.

Examples:

"abcd"~DELSTR(3) -> "ab"

"abcde"~DELSTR(3,2) -> "abe"

"abcde"~DELSTR(6) -> "abcde"

(SeeDELSTR (Delete String)for information about the DELSTR built-in function.)

6.12.24. DELWORD

>>-DELWORD(n--+---------+--)-----------------------------------><

+-,length-+

Returns a copy of the receiving string after deleting the substring that starts at thenth word and is of
lengthblank-delimited words. If you omitlength, or if lengthis greater than the number of words fromn
to the end of the receiving string, the method deletes the remaining words in the receiving string
(including thenth word). Thelengthmust be a positive whole number or zero. Then must be a positive
whole number. Ifn is greater than the number of words in the receiving string, the method returns the
receiving string unchanged. The string deleted includes any blanks following the final word involved but
none of the blanks preceding the first word involved.

Examples:

"Now is the time"~DELWORD(2,2) -> "Now time"

"Now is the time "~DELWORD(3) -> "Now is "

"Now is the time"~DELWORD(5) -> "Now is the time"

"Now is the time"~DELWORD(3,1) -> "Now is time"

(SeeDELWORD (Delete Word)for information about the DELWORD built-in function.)

6.12.25. ENCODEBASE64

>>-ENCODEBASE64--><

Returns the base64 encoded version of the recieving string.

Examples:

"abcdef"~ENCODEBASE64 -> "YWJjZGVm"

Please note that there is no corresponding ENCODEBASE64 builtin function for this method in ooRexx.

6.12.26. FORMAT

>>-FORMAT-+---+-><

219

Chapter 6. Other Classes

+-(-before-+--+-)-+

+-,--+-------+--+------------------------+-+

+-after-+ +-,--+------+--+-------+-+

+-expp-+ +-,expt-+

Returns the receiving string, a number, rounded and formatted.

The number is first rounded according to standard Rexx rules, as though the operation
receiving_string+0 had been carried out. If you specify no arguments the result of the method is the
same as the result of this operation. If you specify any options, the number is formatted as described in
the following.

Thebeforeandafter options describe how many characters are to be used for the integer and decimal
parts of the result. If you omit either or both of them, the number of characters for that part is as needed.

If beforeis not large enough to contain the integer part of the number (plus the sign for a negative
number), an error results. Ifbeforeis larger than needed for that part, the number is padded on the left
with blanks. Ifafter is not the same size as the decimal part of the number, the number is rounded (or
extended with zeros) to fit. Specifying0 causes the number to be rounded to an integer.

Examples:

"3"~FORMAT(4) -> " 3"

"1.73"~FORMAT(4,0) -> " 2"

"1.73"~FORMAT(4,3) -> " 1.730"

"-.76"~FORMAT(4,1) -> " -0.8"

"3.03"~FORMAT(4) -> " 3.03"

" - 12.73"~FORMAT(,4) -> "-12.7300"

" - 12.73"~FORMAT -> "-12.73"

"0.000"~FORMAT -> "0"

exppandexptcontrol the exponent part of the result, which, by default, is formatted according to the
current NUMERIC settings of DIGITS and FORM.exppsets the number of places for the exponent part;
the default is to use as many as needed (which can be zero).exptspecifies when the exponential
expression is used. The default is the current setting of NUMERIC DIGITS.

If exppis 0, the number is not an exponential expression. Ifexppis not large enough to contain the
exponent, an error results.

If the number of places needed for the integer or decimal part exceedsexptor twiceexpt, respectively,
exponential notation is used. Ifexptis 0, exponential notation is always used unless the exponent would
be0. (If exppis 0, this overrides a0 value ofexpt.) If the exponent would be0 when a nonzeroexppis
specified, thenexpp+2 blanks are supplied for the exponent part of the result. If the exponent would be0

andexppis not specified, the number is not an exponential expression.

Examples:

"12345.73"~FORMAT(, ,2,2) -> "1.234573E+04"

"12345.73"~FORMAT(,3, ,0) -> "1.235E+4"

"1.234573"~FORMAT(,3, ,0) -> "1.235"

"12345.73"~FORMAT(, ,3,6) -> "12345.73"

"1234567e5"~FORMAT(,3,0) -> "123456700000.000"

(SeeFORMAT for information about the FORMAT built-in function.)

220

Chapter 6. Other Classes

6.12.27. INSERT

>>-INSERT(new-+---------------------------------------+-)------><

+-,--+---+--+-------------------------+-+

+-n-+ +-,--+--------+--+------+-+

+-length-+ +-,pad-+

Inserts the stringnew, padded or truncated to lengthlength, into the receiving string. after thenth
character. The default value forn is 0, which means insertion at the beginning of the string. If specified,n
andlengthmust be positive whole numbers or zero. Ifn is greater than the length of the receiving string,
the stringnewis padded at the beginning. The default value forlengthis the length ofnew. If lengthis
less than the length of the stringnew, then INSERT truncatesnewto lengthlength. The defaultpad
character is a blank.

Examples:

"abc"~INSERT("123") -> "123abc"

"abcdef"~INSERT(" ",3) -> "abc def"

"abc"~INSERT("123",5,6) -> "abc 123 "

"abc"~INSERT("123",5,6,"+") -> "abc++123+++"

"abc"~INSERT("123", ,5,"-") -> "123--abc"

(SeeINSERTfor information about the INSERT built-in function.)

6.12.28. LASTPOS

>>-LASTPOS(needle-+--------+-)---------------------------------><

+-,start-+

Returns the position of the last occurrence of a string,needle, in the receiving string. (See alsoPOS.) It
returns0 if needleis the null string or not found. By default, the search starts at the last character of the
receiving string and scans backward. You can override this by specifyingstart, the point at which the
backward scan starts. Thestart must be a positive whole number and defaults to
receiving_string~length if larger than that value or omitted.

Examples:

"abc def ghi"~LASTPOS(" ") -> 8

"abcdefghi"~LASTPOS(" ") -> 0

"efgxyz"~LASTPOS("xy") -> 4

"abc def ghi"~LASTPOS(" ",7) -> 4

(SeeLASTPOS (Last Position)for information about the LASTPOS built-in function.)

6.12.29. LEFT

>>-LEFT(length-+------+-)--------------------------------------><

+-,pad-+

221

Chapter 6. Other Classes

Returns a string of lengthlength, containing the leftmostlengthcharacters of the receiving string. The
string returned is padded withpadcharacters (or truncated) on the right as needed. The defaultpad
character is a blank. Thelengthmust be a positive whole number or zero. The LEFT method is exactly
equivalent to:

>>-SUBSTR(string,1,length-+------+-)---------------------------><

+-,pad-+

Examples:

"abc d"~LEFT(8) -> "abc d "

"abc d"~LEFT(8,".") -> "abc d..."

"abc def"~LEFT(7) -> "abc de"

(SeeLEFT for information about the LEFT built-in function.)

6.12.30. LENGTH

>>-LENGTH--><

Returns the length of the receiving string.

Examples:

"abcdefgh"~LENGTH -> 8

"abc defg"~LENGTH -> 8

""~LENGTH -> 0

(SeeLENGTH for information about the LENGTH built-in function.)

6.12.31. MAKEARRAY

>>-MAKEARRAY(-+-----------+-)----><

+-Separator-+

This method returns an array of strings containing the single lines that were separated using the separator
character. The default separator is the newline character.

Example:

nl = "0d0a"x

string = "hello"nl"world"nl"this is an array."

array = string~makearray

say "the second line is:" array[2]

string = "hello*world*this is an array."

array = string~makearray("*")

say "the third line is:" array[3]

222

Chapter 6. Other Classes

6.12.32. MAKESTRING

>>-MAKESTRING--><

Returns a string with the same string value as the receiver object. If the receiver is an instance of a
subclass of the String class, this method returns an equivalent string object. If the receiver is a string
object (not an instance of a subclass of the String class), this method returns the receiver object. See
Required String Values.

6.12.33. MAX

>>-MAX-+------------------+------------------------------------><

| +-,------. |

| V | |

+-(----number-+--)-+

Returns the largest number from among the receiver and any arguments. The number that MAX returns
is formatted according to the current NUMERIC settings. You can specify any number ofnumbers.

Examples:

12~MAX(6,7,9) -> 12

17.3~MAX(19,17.03) -> 19

"-7"~MAX("-3","-4.3") -> -3

1~MAX(2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21) -> 21

(SeeMAX (Maximum) for information about the MAX built-in function.)

6.12.34. MIN

>>-MIN-+------------------+------------------------------------><

| +-,------. |

| V | |

+-(----number-+--)-+

Returns the smallest number from among the receiver and any arguments. The number that MIN returns
is formatted according to the current NUMERIC settings. You can specify any number ofnumbers.

Examples:

12~MIN(6,7,9) -> 6

17.3~MIN(19,17.03) -> 17.03

"-7"~MIN("-3","-4.3") -> -7

21~MIN(20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1) -> 1

(SeeMIN (Minimum) for information about the MIN built-in function.)

223

Chapter 6. Other Classes

6.12.35. OVERLAY

>>-OVERLAY(new-+---------------------------------------+-)-----><

+-,--+---+--+-------------------------+-+

+-n-+ +-,--+--------+--+------+-+

+-length-+ +-,pad-+

Returns the receiving string, which, starting at thenth character, is overlaid with the stringnew, padded or
truncated to lengthlength. The overlay can extend beyond the end of the receiving string. If you specify
length, it must be a positive whole number or zero. The default value forlengthis the length ofnew. If n
is greater than the length of the receiving string, padding is added before thenewstring. The defaultpad
character is a blank, and the default value forn is 1. If you specifyn, it must be a positive whole number.

Examples:

"abcdef"~OVERLAY(" ",3) -> "ab def"

"abcdef"~OVERLAY(".",3,2) -> "ab. ef"

"abcd"~OVERLAY("qq") -> "qqcd"

"abcd"~OVERLAY("qq",4) -> "abcqq"

"abc"~OVERLAY("123",5,6,"+") -> "abc+123+++"

(SeeOVERLAY for information about the OVERLAY built-in function.)

6.12.36. POS

>>-POS(needle-+--------+-)-------------------------------------><

+-,start-+

Returns the position in the receiving string of another string,needle. (See alsoLASTPOS.) It returns0 if
needleis the null string or is not found or ifstart is greater than the length of the receiving string. By
default, the search starts at the first character of the receiving string (that is, the value ofstart is 1). You
can override this by specifyingstart (which must be a positive whole number), the point at which the
search starts.

Examples:

"Saturday"~POS("day") -> 6

"abc def ghi"~POS("x") -> 0

"abc def ghi"~POS(" ") -> 4

"abc def ghi"~POS(" ",5) -> 8

(SeePOS (Position)for information about the POS built-in function.)

6.12.37. REVERSE

>>-REVERSE---><

Returns the receiving string reversed.

Examples:

224

Chapter 6. Other Classes

"ABc."~REVERSE -> ".cBA"

"XYZ "~REVERSE -> " ZYX"

(SeeREVERSEfor information about the REVERSE built-in function.)

6.12.38. RIGHT

>>-RIGHT(length-+------+-)-------------------------------------><

+-,pad-+

Returns a string of lengthlengthcontaining the rightmostlengthcharacters of the receiving string. The
string returned is padded withpadcharacters, or truncated, on the left as needed. The defaultpad
character is a blank. Thelengthmust be a positive whole number or zero.

Examples:

"abc d"~RIGHT(8) -> " abc d"

"abc def"~RIGHT(5) -> "c def"

"12"~RIGHT(5,"0") -> "00012"

(SeeRIGHT for information about the RIGHT built-in function.)

6.12.39. SIGN

>>-SIGN--><

Returns a number that indicates the sign of the receiving string, which is a number. The receiving string
is first rounded according to standard Rexx rules, as though the operationreceiving_string+0 had been
carried out. It returns-1 if the receiving string is less than0, 0 if it is 0, and1 if it is greater than0.

Examples:

"12.3"~SIGN -> 1

" -0.307"~SIGN -> -1

0.0~SIGN -> 0

(SeeSIGNfor information about the SIGN built-in function.)

6.12.40. SPACE

>>-SPACE-+---------------+-------------------------------------><

+-(n-+------+-)-+

+-,pad-+

Returns the blank-delimited words in the receiving string, withn padcharacters between each word. If
you specifyn, it must be a positive whole number or zero. If it is0, all blanks are removed. Leading and
trailing blanks are always removed. The default forn is 1, and the defaultpadcharacter is a blank.

Examples:

225

Chapter 6. Other Classes

"abc def "~SPACE -> "abc def"

" abc def"~SPACE(3) -> "abc def"

"abc def "~SPACE(1) -> "abc def"

"abc def "~SPACE(0) -> "abcdef"

"abc def "~SPACE(2,"+") -> "abc++def"

(SeeSPACEfor information about the SPACE built-in function.)

6.12.41. STRING

>>-STRING--><

Returns a string with the same string value as the receiver object. If the receiver is an instance of a
subclass of the String class, this method returns a string having an equivalent value. If the receiver is a
string (but is not an instance of a subclass of the String class), this method returns the receiver object. See
also the STRING method of the Object class inSTRING.

6.12.42. STRIP

>>-STRIP-+---------------------+-------------------------------><

+-(option-+-------+-)-+

+-,char-+

Returns the receiving string with leading characters, trailing characters, or both, removed, based on the
optionyou specify. The following are validoptions. (You need to specify only the first capitalized letter;
the language processor ignores all characters following it.)

Both

Removes both leading and trailing characters. This is the default.

Leading

Removes leading characters.

Trailing

Removes trailing characters.

Thechar specifies the character to be removed, and the default is a blank. If you specifychar, it must be
exactly one character long.

Examples:

" ab c "~STRIP -> "ab c"

" ab c "~STRIP("L") -> "ab c "

" ab c "~STRIP("t") -> " ab c"

"12.7000"~STRIP(,0) -> "12.7"

"0012.700"~STRIP(,0) -> "12.7"

(SeeSTRIPfor information about the STRIP built-in function.)

226

Chapter 6. Other Classes

6.12.43. SUBSTR

>>-SUBSTR(n-+-------------------------+-)----------------------><

+-,--+--------+--+------+-+

+-length-+ +-,pad-+

Returns the substring of the receiving string that begins at thenth character and is of lengthlength,
padded withpad if necessary. Then must be a positive whole number. Ifn is greater than
receiving_string~LENGTH, only pad characters are returned.

If you omit length, the rest of the string is returned. The defaultpadcharacter is a blank.

Examples:

"abc"~SUBSTR(2) -> "bc"

"abc"~SUBSTR(2,4) -> "bc "

"abc"~SUBSTR(2,6,".") -> "bc...."

Note: In some situations the positional (numeric) patterns of parsing templates are more convenient
for selecting substrings, in particular if you need to extract more than one substring from a string.
See also LEFT and RIGHT.

(SeeSUBSTR (Substring)for information about the SUBSTR built-in function.)

6.12.44. SUBWORD

>>-SUBWORD(n-+---------+-)-------------------------------------><

+-,length-+

Returns the substring of the receiving string that starts at thenth word and is up tolengthblank-delimited
words. Then must be a positive whole number. If you omitlength, it defaults to the number of remaining
words in the receiving string. The returned string never has leading or trailing blanks, but includes all
blanks between the selected words.

Examples:

"Now is the time"~SUBWORD(2,2) -> "is the"

"Now is the time"~SUBWORD(3) -> "the time"

"Now is the time"~SUBWORD(5) -> ""

(SeeSUBWORDfor information about the SUBWORD built-in function.)

6.12.45. TRANSLATE

>>-TRANSLATE-+---+-><

+-(--+-------------------------------------+--)-+

+-tableo--+-------------------------+-+

+-,--+--------+--+------+-+

+-tablei-+ +-,pad-+

227

Chapter 6. Other Classes

Returns the receiving string with each character translated to another character or unchanged. You can
also use this method to reorder the characters in the receiving string.

The output table istableoand the input translation table istablei. TRANSLATE searchestablei for each
character in the receiving string. If the character is found, the corresponding character intableois used in
the result string. If there are duplicates intablei, the first (leftmost) occurrence is used. If the character is
not found, the original character in the receiving string is used. The result string is always of the same
length as the receiving string.

The tables can be of any length. If you specify translation table and omitpad, the receiving string is
translated to uppercase (that is, lowercasea-z to uppercaseA-Z), but if you includepad the language
processor translates the entire string topadcharacters.tableidefaults toXRANGE("00"x,"FF"x), and
tableodefaults to the null string and is padded withpador truncated as necessary. The defaultpad is a
blank.

Examples:

"abcdef"~TRANSLATE -> "ABCDEF"

"abcdef"~TRANSLATE("12","ec") -> "ab2d1f"

"abcdef"~TRANSLATE("12","abcd",".") -> "12..ef"

"APQRV"~TRANSLATE(,"PR") -> "A Q V"

"APQRV"~TRANSLATE(XRANGE("00"X,"Q")) -> "APQ "

"4123"~TRANSLATE("abcd","1234") -> "dabc"

Note: The last example shows how to use the TRANSLATE method to reorder the characters in a
string. In the example, the last character of any 4-character string specified as the first argument
would be moved to the beginning of the string.

(SeeTRANSLATE for information about the TRANSLATE built-in function.)

6.12.46. TRUNC

>>-TRUNC-+-----+---><

+-(n)-+

Returns the integer part the receiving string, which is a number, andn decimal places. The defaultn is 0

and returns an integer with no decimal point. If you specifyn, it must be a positive whole number or
zero. The receiving string is first rounded according to standard Rexx rules, as though the operation
receiving_string+0 had been carried out. This number is then truncated ton decimal places or trailing
zeros are added if needed to reach the specified length. The result is never in exponential form. If there
are no nonzero digits in the result, any minus sign is removed.

Examples:

12.3~TRUNC -> 12

127.09782~TRUNC(3) -> 127.097

127.1~TRUNC(3) -> 127.100

127~TRUNC(2) -> 127.00

228

Chapter 6. Other Classes

Note: The number is rounded according to the current setting of NUMERIC DIGITS if necessary,
before the method processes it.

(SeeTRUNC (Truncate)for information about the TRUNC built-in function.)

6.12.47. VERIFY

>>-VERIFY(reference-+---------------------------+-)------------><

+-,--+--------+--+--------+-+

+-option-+ +-,start-+

Returns a number that, by default, indicates whether the receiving string is composed only of characters
from reference. It returns0 if all characters in the receiving string are inreferenceor returns the position
of the first character in the receiving string not inreference.

Theoptioncan be eitherNomatch (the default) orMatch. (You need to specify only the first capitalized
and highlighted letter; the language processor ignores all characters following the first character, which
can be in uppercase or lowercase.)

If you specifyMatch, the method returns the position of the first character in the receiving string that is in
reference, or returns0 if none of the characters are found.

The default forstart is 1. Thus, the search starts at the first character of the receiving string. You can
override this by specifying a differentstart point, which must be a positive whole number.

If the receiving string is null, the method returns0, regardless of the value of theoption. Similarly, if
start is greater thanreceiving_string~LENGTH, the method returns0. If referenceis null, the method
returns0 if you specifyMatch. Otherwise, the method returns thestart value.

Examples:

"123"~VERIFY("1234567890") -> 0

"1Z3"~VERIFY("1234567890") -> 2

"AB4T"~VERIFY("1234567890") -> 1

"AB4T"~VERIFY("1234567890","M") -> 3

"AB4T"~VERIFY("1234567890","N") -> 1

"1P3Q4"~VERIFY("1234567890", ,3) -> 4

"123"~VERIFY("",N,2) -> 2

"ABCDE"~VERIFY("", ,3) -> 3

"AB3CD5"~VERIFY("1234567890","M",4) -> 6

(SeeVERIFY for information about the VERIFY built-in function.)

6.12.48. WORD

>>-WORD(n)---><

Returns thenth blank-delimited word in the receiving string or the null string if the receiving string has
fewer thann words. Then must be a positive whole number. This method is exactly equivalent to
receiving_string~SUBWORD(n,1).

229

Chapter 6. Other Classes

Examples:

"Now is the time"~WORD(3) -> "the"

"Now is the time"~WORD(5) -> ""

(SeeWORDfor information about the WORD built-in function.)

6.12.49. WORDINDEX

>>-WORDINDEX(n)--><

Returns the position of the first character in thenth blank-delimited word in the receiving string. It
returns0 if the receiving string has fewer thann words. Then must be a positive whole number.

Examples:

"Now is the time"~WORDINDEX(3) -> 8

"Now is the time"~WORDINDEX(6) -> 0

(SeeWORDINDEX for information about the WORDINDEX built-in function.)

6.12.50. WORDLENGTH

>>-WORDLENGTH(n)---><

Returns the length of thenth blank-delimited word in the receiving string or0 if the receiving string has
fewer thann words. Then must be a positive whole number.

Examples:

"Now is the time"~WORDLENGTH(2) -> 2

"Now comes the time"~WORDLENGTH(2) -> 5

"Now is the time"~WORDLENGTH(6) -> 0

(SeeWORDLENGTHfor information about the WORDLENGTH built-in function.)

6.12.51. WORDPOS

>>-WORDPOS(phrase-+--------+-)---------------------------------><

+-,start-+

Returns the word number of the first word ofphrasefound in the receiving string, or0 if phrasecontains
no words or ifphraseis not found. Several blanks between words in eitherphraseor the receiving string
are treated as a single blank for the comparison, but, otherwise, the words must match exactly.

By default the search starts at the first word in the receiving string. You can override this by specifying
start (which must be positive), the word at which the search is to be started.

Examples:

230

Chapter 6. Other Classes

"now is the time"~WORDPOS("the") -> 3

"now is the time"~WORDPOS("The") -> 0

"now is the time"~WORDPOS("is the") -> 2

"now is the time"~WORDPOS("is the") -> 2

"now is the time"~WORDPOS("is time ") -> 0

"To be or not to be"~WORDPOS("be") -> 2

"To be or not to be"~WORDPOS("be",3) -> 6

(SeeWORDPOS (Word Position)for information about the WORDPOS built-in function.)

6.12.52. WORDS

>>-WORDS---><

Returns the number of blank-delimited words in the receiving string.

Examples:

"Now is the time"~WORDS -> 4

" "~WORDS -> 0

(SeeWORDSfor information about the WORDS built-in function.)

6.12.53. X2B

>>-X2B---><

Returns a string, in character format, that represents the receiving string, which is a string of hexadecimal
characters converted to binary. The receiving string can be of any length. Each hexadecimal character is
converted to a string of 4 binary digits. The receiving string can optionally include blanks (at byte
boundaries only, not leading or trailing) to improve readability; they are ignored.

The returned string has a length that is a multiple of four, and does not include any blanks.

If the receiving string is null, the method returns a null string.

Examples:

"C3"~X2B -> "11000011"

"7"~X2B -> "0111"

"1 C1"~X2B -> "000111000001"

You can combine X2B with the methods D2X and C2X to convert numbers or character strings into
binary form.

Examples:

"C3"x~C2X~X2B -> "11000011"

"129"~D2X~X2B -> "10000001"

"12"~D2X~X2B -> "1100"

(SeeX2B (Hexadecimal to Binary)for information about the X2B built-in function.)

231

Chapter 6. Other Classes

6.12.54. X2C

>>-X2C---><

Returns a string, in character format, that represents the receiving string, which is a hexadecimal string
converted to character. The returned string is half as many bytes as the receiving string. The receiving
string can be any length. If necessary, it is padded with a leading 0 to make an even number of
hexadecimal digits.

You can optionally include blanks in the receiving string (at byte boundaries only, not leading or trailing)
to improve readability; they are ignored.

If the receiving string is null, the method returns a null string.

Examples:

"4865 6c6c 6f"~X2C -> "Hello" /* ASCII */

"3732 73"~X2C -> "72s" /* ASCII */

(SeeX2C (Hexadecimal to Character)for information about the X2C built-in function.)

6.12.55. X2D

>>-X2D-+-----+---><

+-(n)-+

Returns the decimal representation of the receiving string, which is a string of hexadecimal characters. If
the result cannot be expressed as a whole number, an error results. That is, the result must not have more
digits than the current setting of NUMERIC DIGITS.

You can optionally include blanks in the receiving string (at byte boundaries only, not leading or trailing)
to improve readability; they are ignored.

If the receiving string is null, the method returns0.

If you do not specifyn, the receiving string is processed as an unsigned binary number.

Examples:

"0E"~X2D -> 14

"81"~X2D -> 129

"F81"~X2D -> 3969

"FF81"~X2D -> 65409

"46 30"X~X2D -> 240 /* ASCII */

"66 30"X~X2D -> 240 /* ASCII */

If you specifyn, the receiving string is taken as a signed number expressed inn hexadecimal digits. If the
leftmost bit is off, then the number is positive; otherwise, it is a negative number. In both cases it is
converted to a whole number, which can be negative. Ifn is 0, the method returns0.

If necessary, the receiving string is padded on the left with0 characters (note, not "sign-extended"), or
truncated on the left ton characters.

Examples:

232

Chapter 6. Other Classes

"81"~X2D(2) -> -127

"81"~X2D(4) -> 129

"F081"~X2D(4) -> -3967

"F081"~X2D(3) -> 129

"F081"~X2D(2) -> -127

"F081"~X2D(1) -> 1

"0031"~X2D(0) -> 0

(SeeX2D (Hexadecimal to Decimal)for information about the X2D built-in function.)

6.13. The Supplier Class
You can use a supplier object to enumerate the items a collection contained at the time of the supplier’s
creation. The following methods return a supplier object:

• The SUPPLIER methods of the Array, Bag, Directory, List, Queue, Relation, Set, Table, and Stream
classes

• The METHODS method of the Class class

The Supplier class is a subclass of the Object class.

Methods the Supplier class defines:

NEW (Class method. Overrides Object class method.)
AVAILABLE
INDEX
ITEM
NEXT

Methods inherited from the Object class:

Operator methods: =, ==, \=, ><, <>, \==
CLASS
COPY
DEFAULTNAME
HASMETHOD
INIT
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
START
STRING
UNSETMETHOD

Note: The Supplier class also has available class methods that its metaclass, the Class class,
defines.

233

Chapter 6. Other Classes

6.13.1. NEW (Class Method)

>>-NEW(values,indexes)---><

Returns a new supplier object. Thevaluesargument must be an array of values over which the supplier
iterates. Theindexesargument is an array of index values with a one-to-one correspondence to the
objects contained in the values array. The created supplier iterates over the arrays, returning elements of
the values array in response to ITEM messages, and elements of the indexes array in response to INDEX
messages. The supplier iterates for the number of items contained in the values array, returning the NIL
object for any nonexistent items in either array.

6.13.2. AVAILABLE

>>-AVAILABLE---><

Returns1 (true) if an item is available from the supplier (that is, if the ITEM method would return a
value). It returns0 (false) if the collection is empty or the supplier has already enumerated the entire
collection.

6.13.3. INDEX

>>-INDEX---><

Returns the index of the current item in the collection. If no item is available, that is, if AVAILABLE
would return false, the language processor raises an error.

6.13.4. ITEM

>>-ITEM--><

Returns the current item in the collection. If no item is available, that is, if AVAILABLE would return
false, the language processor raises an error.

6.13.5. NEXT

>>-NEXT--><

Moves to the next item in the collection. By repeatedly sending NEXT to the supplier (as long as
AVAILABLE returns true), you can enumerate all items in the collection. If no item is available, that is,
if AVAILABLE would return false, the language processor raises an error.

6.13.6. Examples

desserts=.array~of(apples, peaches, pumpkins, 3.14159) /* Creates array */

234

Chapter 6. Other Classes

say "The desserts we have are:"

baker=desserts~supplier /* Creates supplier object named BAKER */

do while baker~available /* Array suppliers are sequenced */

if baker~index=4

then say baker~item "is pi, not pie!!!"

else say baker~item

baker~next

end

/* Produces: */

/* The desserts we have are: */

/* APPLES */

/* PEACHES */

/* PUMPKINS */

/* 3.14159 is pi, not pie!!! */

This method is used by INIT to set the attribute USERS to HKEY_USERS. Do not modify this attribute.

6.14. The WindowsClipboard Class
The WindowsClipboard class provides methods to access the data in the Windows clipboard.

The WindowsClipboard class is not a built-in class. It is defined in the WINSYSTM.CLS file. This
means, you must use a ::requires statement to activate its functionality, as follows:

::requires "WINSYSTM.CLS"

Methods the WindowsClipboard Class Defines

• COPY

• MAKEARRAY

• PASTE

• EMPTY

• ISDATAAVAILABLE

6.14.1. COPY

>>-COPY--(--text--)--><

Empties the clipboard and copies the specified text to it.

6.14.2. MAKEARRAY

>>-MAKEARRAY------><

235

Chapter 6. Other Classes

If the content of the clipboard is a string with newline characters in it, MAKEARRAY can be used to
split up the string into individual lines. An array is returned containing those lines.

6.14.3. PASTE

>>-PASTE---><

Retrieves the text data stored on the clipboard.

6.14.4. EMPTY

>>-EMPTY---><

Empties the clipboard.

6.14.5. ISDATAAVAILABLE

>>-ISDATAAVAILABLE---><

Returns 1 if the text data is available on the clipboard. If no data is available, 0 is returned.

6.15. The WindowsEventLog Class
Object Rexx provides a class for interaction with the Windows NT event log. You can use this class to
read, write, and clear event-log records. This class is specifically for Windows NT systems and might not
be available on other systems.

The WindowsEventLog class is not a built-in class; it is defined in the fileWINSYSTM.CLS. Use a
::requires statement to activate its function:

::requires "winsystm.cls"

A sample programEventLog.REX is provided in theooRexx\SAMPLES directory.

Methods the WindowsEventLog Class Defines

• INIT

• OPEN

• CLOSE

• READ

• WRITE

• CLEAR

236

Chapter 6. Other Classes

• GETNUMBER

6.15.1. INIT

>>-INIT--><

Creates an instance of the WindowsEventLog class and loads the required function package.

6.15.2. OPEN

>>-OPEN-+---------------------------------+--------------------><

+-(--+-----------------------+--)-+

+-server--+-----------+-+

+-,--source-+

Opens the specified event log.

Arguments:

The arguments are:

server

The UNC (universal naming convention) name of the server on which the event log is to be
opened. If this argument is not specified, the log is opened at the local machine.

source

The name of the source of the event log. It must be a subkey of a log file entry under the
EventLog key in the registry. If, for example, the registry looks as follows:

HKEY_LOCAL_MACHINE

System

CurrentControlSet

Services

EventLog

Application

WinApp1

Security

WinApp2

System

"Application", "Security", "System", "WinApp1", and "WinApp2" are valid sources. If the
source is not found, the "Application Log" is used.

Example:

The following example opens the Application log on the local machine:

rc = event_log1~OPEN

rc = event_log~OPEN(,"Application")

The following example opens the System log on SERVER01:

237

Chapter 6. Other Classes

rc = event_log~OPEN("\\SERVER01","System")

6.15.3. CLOSE

>>-CLOSE---><

Closes an open event log.

6.15.4. READ

>>-READ--+---+-->

| +-FORWARDS--+ |

+-(--+-----------+--,--+--------+--,--+--------+--,-+

+-BACKWARDS-+ +-server-+ +-source-+

>--+--------------------------+--------------------------------><

+-+-------+--,--+-----+--)-+

+-start-+ +-num-+

Reads event log records. If the event log was not opened with the OPEN method, the event log specified
by theserverandsourceis opened and closed after processing.

Arguments:

The arguments are:

server

The UNC (universal naming convention) name of the server on which the event log is to be
opened. If this argument is not specified, the log is opened at the local machine.

This argument is only used if the event log was not opened before.

source

The name of the source of the event log. It must be a subkey of a log file entry under the
EventLog key in the registry. If, for example, the registry looks as follows:

HKEY_LOCAL_MACHINE

System

CurrentControlSet

Services

EventLog

Application

WinApp1

Security

WinApp2

System

238

Chapter 6. Other Classes

"Application", "Security", "System", "WinApp1", and "WinApp2" are valid sources. If the
source is not found, the "Application Log" is used.

This argument is only used if the event log was not opened before.

start

The record number of the event log record to be started. The oldest record is always the first
record regardless of the direction specified.

num

The number of the event log record to be read.

Example:

evl = .WindowsEventLog~new

if evl~InitCode \= 0 then exit

say " reading complete System log forwards without opening it before "

events = evl~Read("FORWARDS", ,"System")

if events \= .nil then

call DisplayRecords

else

say "==> Error reading complete System event log"

evl~deinstall

exit 0 /* leave program */

DisplayRecords:

say evl~Events~items "records read"

do i=1 to evl~Events~items

say "==="

temp = evl~Events[i]

parse var temp type date time "'" sourcename"'" id,

userid computer "'" string "'" "'" data "'"

say "Type : "type

say "Date : "date

say "Time : "time

say "Source : "sourcename

say "ID : "id

say "UserId : "userid

say "Computer : "computer

say "Detail : "string

say "Data : "data

239

Chapter 6. Other Classes

end

return

::requires "winsystm.cls"

6.15.5. WRITE

>>-WRITE--+---+-->

| +-1--+ +-0--------+ |

+-(--+--------+--,--+--------+--,--+----+--,--+----------+--,-+

+-server-+ +-source-+ +-0--+ +-category-+

+-2--+

+-4--+

+-8--+

+-10-+

>--+---------------------------------------+-------------------><

| +-0--. |

+-+----+--,--+------+--,--+--------+--)-+

+-id-+ +-data-+ +-string-+

Reads event log records. If the event log was not opened with the Open method, the event log specified
by theserverandsourceis opened and closed after processing.

Arguments:

The arguments are:

server

The UNC (universal naming convention) name of the server on which the event log is to be
opened. If this argument is not specified, the log is opened at the local machine.

source

The name of the source of the event log. It must be a subkey of a log file entry under the
EventLog key in the registry. If, for example, the registry looks as follows:

HKEY_LOCAL_MACHINE

System

CurrentControlSet

Services

EventLog

Application

WinApp1

Security

WinApp2

System

"Application", "Security", "System", "WinApp1", and "WinApp2" are valid sources. If the
source is not found, the "Application Log" is used.

240

Chapter 6. Other Classes

type

The type of the events to be logged. It can be one of the numbers listed in the syntax diagram:

0

SUCCESS

1

ERROR, which is the default

2

WARNING

4

INFORMATION

8

AUDIT SUCCESS

10

AUDIT FAILURE

category

The event category. This is source-specific information that can have any value. The default is
0.

id

The event identifier specifying the message that, together with the event, is an entry in the
message file associated with the event source. The default is 0.

data

The binary data. This is source-specific information and can be omitted.

string

The strings merged into the message.

Example:

The following example writes the strings and the data to the system log. "MyApplication" must be a
subkey of a log file entry under the EventLog key in the registry. If the source name cannot be
found, event logging uses the Application log file.

HKEY_LOCAL_MACHINE

System

CurrentControlSet

Services

EventLog

Application

241

Chapter 6. Other Classes

Security

System

MyApplication

evl~Write(,"MyApplication", , , ,"1A 1B 1C 0000 00"x, ,

"First String", "Second String")

See theEventLog.REX for more examples.

6.15.6. CLEAR

>>-CLEAR-+--+-><

+-(--+--+--)-+

+-server--+--------------------------------------+-+

+-,--+--------+--+-------------------+-+

+-source-+ +-,--backupFileName-+

Clears the specified event log and, optionally, saves a copy of the current log file as a backup file. If the
event log was not opened with the Open method, the event log specified by theserverandsourceis
opened. The event log is closed after it is cleared.

Arguments:

The arguments are:

server

The UNC (universal naming convention) name of the server on which the event log is to be
opened. If this argument is not specified, the log is opened at the local machine.

This argument is only used if the event log was not opened before.

source

The name of the source of the event log. It must be a subkey of a log file entry under the
EventLog key in the registry. If, for example, the registry looks as follows:

HKEY_LOCAL_MACHINE

System

CurrentControlSet

Services

EventLog

Application

WinApp1

Security

WinApp2

System

"Application", "Security", "System", "WinApp1", and "WinApp2" are valid sources. If the
source is not found, the "Application Log" is used.

242

Chapter 6. Other Classes

This argument is only used if the event log was not opened before.

backupFileName

The name of a file to which the copy of the current event log file is to be written. If this file
already exists, the function fails. The file can reside on a remote server.

If you omit this argument, the current event log file is not backed up but cleared.

Example:

The following example creates a backup of the Application event log of the local machine and
clears it:

event_log~CLEAR(, ,"e:\evlbackup\application.evt")

The following example creates a backup of the System event log on the server \\SERVER01 and
clears it:

event_log~CLEAR("\\SERVER01","System","e:\evlbackup\system_server01.evt")

The following example clears the Application log on the local machine without a backup:

event_log~CLEAR

6.15.7. GETNUMBER

>>-GETNUMBER-+---------------------------------+---------------><

+-(--+-----------------------+--)-+

+-server--+-----------+-+

+-,--source-+

Retrieves the number of records in the specified event log. If the event log was not opened with the Open
method, the event log specified by theserverandsourceis opened and closed after processing.

Arguments:

The arguments are:

server

The UNC (universal naming convention) name of the server on which the event log is to be
opened. If this argument is not specified, the log is opened at the local machine.

This argument is only used if the event log was not opened before.

243

Chapter 6. Other Classes

source

The name of the source of the event log. It must be a subkey of a log file entry under the
EventLog key in the registry. If, for example, the registry looks as follows:

HKEY_LOCAL_MACHINE

System

CurrentControlSet

Services

EventLog

Application

WinApp1

Security

WinApp2

System

"Application", "Security", "System", "WinApp1", and "WinApp2" are valid sources. If the
source is not found, the "Application Log" is used.

This argument is only used if the event log was not opened before.

Example:

The following example returns the number of event log records in the Application log of the local
machine:

num = event_log~GETNUMBER

6.16. The WindowsManager Class
The WindowsManager class provides methods to query, manipulate, and interact with windows on your
desktop. This class is specifically for Windows NT and Windows 2000 systems and might not be
available on other systems.

The WindowsManager class is not a built-in class; it is defined in the fileWINSYSTM.CLS. Use a
::requires statement to activate its function:

::requires "winsystm.cls"

Methods the WindowsManager Class Defines

• FIND

• FOREGROUNDWINDOW

• WINDOWATPOSITION

• CONSOLETITLE

• CONSOLETITLE=

• SENDTEXTTOWINDOW

244

Chapter 6. Other Classes

• PUSHBUTTONINWINDOW

• PROCESSWINDOWCOMMAND

6.16.1. FIND

>>-FIND--(--title--)---><

Searches for a top-level window (not a child window) on your desktop with the specifiedtitle.

If this window already exists, an instance of the WindowObject class is returned. Otherwise, .NIL is
returned.

6.16.2. FOREGROUNDWINDOW

>>-FOREGROUNDWINDOW--><

Returns an instance of the WindowObject class that is associated with the current foreground window.

6.16.3. WINDOWATPOSITION

>>-WINDOWATPOSITION--(--x--,--y--)-----------------------------><

Returns an instance of the WindowObject class that is associated with the window at the specified
position (x,y). The coordinates are specified in screen pixels. This method does not retrieve hidden or
disabled windows. If you are interested in a particular child window, use methodCHILDATPOSITION.

6.16.4. CONSOLETITLE

>>-CONSOLETITLE--><

Returns the title of the current console.

6.16.5. CONSOLETITLE=

>>-CONSOLETITLE=--title--><

Sets the title of the current console.

6.16.6. SENDTEXTTOWINDOW

>>-SENDTEXTTOWINDOW--(--title--,--text--)----------------------><

Sends a case-sensitivetext to the window with the specifiedtitle..

245

Chapter 6. Other Classes

6.16.7. PUSHBUTTONINWINDOW

>>-PUSHBUTTONINWINDOW--(--title--,--text--)--------------------><

Selects the button with labeltext in the window with the specifiedtitle. If the button’s label contains a
mnemonic (underscored letter), you must specify an ampersand (&) in front of it. You can also use this
method to select radio buttons and to check or uncheck check boxes.

Example:

winmgr~PushButtonInWindow("Testwindow","List &Employees")

6.16.8. PROCESSMENUCOMMAND

>>-PROCESSMENUCOMMAND--(--+-------+--,--+-------+--,------------>

+-title-+ +-popup-+

+-,-------+

V |

>----submenu-+--,--menuItem--)---------------------------------><

Selects an item of the menu or submenu of the specified windowtitle. You can specify as many
submenus as necessary to get to the required item.

6.17. The WindowObject Class
The WindowObject class provides methods to query, manipulate, and interact with a particular window
or one of its child windows.

Methods the WindowObject Class Defines

• ASSOCWINDOW

• CHILDATPOSITION

• COORDINATES

• DISABLE

• ENABLE

• ENUMERATECHILDREN

• FINDCHILD

• FIRST

• FIRSTCHILD

• FOCUSITEM

• FOCUSNEXTITEM

246

Chapter 6. Other Classes

• FOCUSPREVIOUSITEM

• HANDLE

• HIDE

• ID

• ISMENU

• LAST

• MAXIMIZE

• MENU

• MINIMIZE

• MOVETO

• NEXT

• OWNER

• PREVIOUS

• PROCESSMENUCOMMAND

• PUSHBUTTON

• RESIZE

• RESTORE

• SENDCHAR

• SENDCOMMAND

• SENDKEY

• SENDKEYDOWN

• SENDKEYUP

• SENDMENUCOMMAND

• SENDMESSAGE

• SENDMOUSECLICK

• SENDSYSCOMMAND

• SENDTEXT

• STATE

• SYSTEMMENU

• TITLE

• TITLE=

• TOFOREGROUND

• WCLASS

247

Chapter 6. Other Classes

6.17.1. ASSOCWINDOW

>>-ASSOCWINDOW--(--handle--)-----------------------------------><

Assigns a new windowhandleto the WindowObject instance.

6.17.2. HANDLE

>>-HANDLE--><

Returns the handle of the associated window.

6.17.3. TITLE

>>-TITLE---><

Returns the title of the window.

6.17.4. TITLE=

>>-TITLE=--newTitle--><

Sets a new title for the window.

6.17.5. WCLASS

>>-WCLASS--><

Returns the class of the window associated with the WindowObject instance.

6.17.6. ID

>>-ID--><

Returns the numeric ID of the window.

6.17.7. COORDINATES

>>-COORDINATES---><

Returns the upper left and the lower right corner positions of the window in the format
"left,top,right,bottom".

248

Chapter 6. Other Classes

6.17.8. STATE

>>-STATE---><

Returns information about the window state. The returned state can contain one or more of the following
constants:

• "Enables" or "Disabled"

• "Visible" or "Invisible"

• "Zoomed" or "Minimized"

• "Foreground"

6.17.9. RESTORE

>>-RESTORE---><

Activates and displays the associated window. If the window is minimized or maximized, it is restored to
its original size and position.

6.17.10. HIDE

>>-HIDE--><

Hides the associated window and activates another window.

6.17.11. MINIMIZE

>>-MINIMIZE--><

Minimizes the associated window and activates the next higher-level window.

6.17.12. MAXIMIZE

>>-MAXIMIZE--><

Maximizes the associated window.

6.17.13. RESIZE

>>-RESIZE--(--width--,--height--)------------------------------><

Resizes the associated window to the specified width and height. The width and height are specified in
screen coordinates.

249

Chapter 6. Other Classes

6.17.14. ENABLE

>>-ENABLE--><

Enables the associated window if it was disabled.

6.17.15. DISABLE

>>-DISABLE---><

Disables the associated window.

6.17.16. MOVETO

>>-MOVETO--(--x--,--y--)---------------------------------------><

Moves the associated window to the specified position (x,y). Specify the new position in screen pixels.

6.17.17. TOFOREGROUND

>>-TOFOREGROUND--><

Makes the associated window the foreground window.

6.17.18. FOCUSNEXTITEM

>>-FOCUSNEXTITEM---><

Sets the input focus to the next child window of the associated window.

6.17.19. FOCUSPREVIOUSITEM

>>-FOCUSPREVIOUSITEM---><

Sets the input focus to the previous child window of the associated window.

6.17.20. FOCUSITEM

>>-FOCUSITEM--(--wndObject--)----------------------------------><

Sets the input focus to the child window associated with the specified WindowObject instance
wndObject.

Example:

250

Chapter 6. Other Classes

The following example sets the input focus to the last child window:

dlg = wndmgr~Find("TestDialog")

if dlg \= .Nil then do

fChild = dlg~FirstChild

lChild = fChild~Last

dlg~FocusItem(lChild)

end

6.17.21. FINDCHILD

>>-FINDCHILD--(--label--)--------------------------------------><

Returns an instance of the WindowObject class associated with the child window with the specified
label. If the associated window does not own such a window, the .NIL object is returned.

6.17.22. CHILDATPOSITION

>>-CHILDATPOSITION--(--x--,--y--)------------------------------><

Returns an instance of the WindowObject class associated with the child window at the specified client
position (x,y). The coordinates that are relative to the upper left corner of the associated window must be
specified in screen pixels. To retrieve top-level windows, use methodWINDOWATPOSITION.

6.17.23. NEXT

>>-NEXT--><

Returns an instance of the WindowObject class associated with the next window of the same level as the
associated window. If the associated window is the last window of a level, the .NIL object is returned.

6.17.24. PREVIOUS

>>-PREVIOUS--><

Returns an instance of the WindowObject class associated with the previous window of the same level as
the associated window. If the associated window is the first window of a level, the .NIL object is returned.

6.17.25. FIRST

>>-FIRST---><

Returns an instance of the WindowObject class associated with the first window of the same level as the
associated window.

251

Chapter 6. Other Classes

6.17.26. LAST

>>-LAST--><

Returns an instance of the WindowObject class associated with the last window of the same level as the
associated window.

6.17.27. OWNER

>>-OWNER---><

Returns an instance of the WindowObject class associated with the window that owns the associated
window (parent). If the associated window is a top-level window, the .NIL object is returned.

6.17.28. FIRSTCHILD

>>-FIRSTCHILD--><

Returns an instance of the WindowObject class associated with the first child window of the associated
window. If no child window exists, the .NIL object is returned.

6.17.29. ENUMERATECHILDREN

>>-ENUMERATECHILDREN---><

Returns a stem that stores information about the child windows of the associated window. "Stem.0"
contains the number of child windows. The returned stem contains as many records as child windows.
The first record is stored at "Stem.1" continued by increments of 1. Each record contains the following
entries, where each entry starts with an exclamation mark (!):

!Handle

The handle of the window.

!Title

!Class

The window class.

!State

!Coordinates

252

Chapter 6. Other Classes

!Children

1 if the window has child windows, 0 if is has none.

!Id

Example:

wo = winmgr~Find("TestDialog")

enum. = wo~EnumerateChildren

do i = 1 to enum.0 /* number of children */

say "---"

say "Handle:" enum.i.!Handle

say "Title:" enum.i.!Title

say "Class:" enum.i.!Class

say "Id:" enum.i.!Id

say "Children:" enum.i.!Children

say "State:" enum.i.!State

say "Rect:" enum.i.!Coordinates

end

6.17.30. SENDMESSAGE

>>-SENDMESSAGE--(--message--,--wParam--,--lParam--)------------><

Sends a message to the associated window.

6.17.31. SENDCOMMAND

>>-SENDCOMMAND--(--command--)----------------------------------><

Sends a WM_COMMAND message to the associated window. WM_COMMAND is sent, for example,
when a button is pressed, wherecommandis the button ID.

6.17.32. SENDMENUCOMMAND

>>-SENDMENUCOMMAND--(--id--)-----------------------------------><

Selects the menu itemid of the associated window. MethodIDOF returns the ID of a menu item.

6.17.33. SENDMOUSECLICK

+-"LEFT"---+ +-"DBLCLK"-+

>>-SENDMOUSECLICK--(--+-"RIGHT"--+--,--+-"UP"-----+----,--x--,--y-->

+-"MIDDLE"-+ +-"DOWN"---+

253

Chapter 6. Other Classes

>--+-----------------------------+--)--------------------------><

| +----------------+ |

| V | |

+-,--"----+-LEFTDOWN---+-+--"-+

+-RIGHTDOWN--+

+-MIDDLEDOWN-+

+-SHIFT------+

+-CONTROL----+

Simulates a mouse click event in the associated window.

Arguments:

The arguments are:

which

Specifies which mouse button is simulated. LEFT is the default.

kind

Selects the simulated mouse action. DBLCLK is the default.

x,y

Specifies the coordinates of the mouse click event, in screen coordinates, relative to the upper left
corner of the window.

ext

Can be one or more of the following strings:

LEFTDOWN

Simulates the pressed left mouse button.

RIGHTDOWN

Simulates the pressed right mouse button.

MIDDLEDOWN

Simulates the pressed middle mouse button.

SHIFT

Simulates the pressed Shift key.

CONTROL

Simulates the pressed Control key.

254

Chapter 6. Other Classes

6.17.34. SENDSYSCOMMAND

>>-SENDSYSCOMMAND--(--"--+-SIZE--------+--"--)-----------------><

+-MOVE--------+

+-MINIMIZE----+

+-MAXIMIZE----+

+-NEXTWINDOW--+

+-PREVWINDOW--+

+-CLOSE-------+

+-VSCROLL-----+

+-HSCROLL-----+

+-ARRANGE-----+

+-RESTORE-----+

+-TASKLIST----+

+-SCREENSAVE--+

+-CONTEXTHELP-+

Sends a WM_SYSCOMMAND message to the associated window. These messages are normally sent
when the user selects a command in the Window menu.

Argument:

The only argument is:

command

One of the commands listed in the syntax diagram:

SIZE

Puts the window in size mode.

MOVE

Puts the window in move mode.

MINIMIZE

Minimizes the window.

MAXIMIZE

Maximizes the window.

NEXTWINDOW

Moves to the next window.

PREVWINDOW

Moves to the previous window.

CLOSE

Closes the window.

255

Chapter 6. Other Classes

VSCROLL

Scrolls vertically.

HSCROLL

Scrolls horizontally.

ARRANGE

Arranges the window.

RESTORE

Restores the window to its normal position and size.

TASKLIST

Activates the Start menu.

SCREENSAVE

Executes the screen-saver application specified in the [boot] section of the SYSTEM.INI file.

CONTEXTHELP

Changes the cursor to a question mark with a pointer. If the user then clicks on a control in the
dialog box, the control receives a WM_HELP message.

6.17.35. PUSHBUTTON

>>-PUSHBUTTON--(--label--)-------------------------------------><

Selects the button with the specifiedlabelwithin the associated window and sends the corresponding
WM_COMMAND message. If the button’s label contains a mnemonic (underscored letter), you must
specify an ampersand (&) in front of it. You can also use this method to select radio buttons and check or
uncheck check boxes.

6.17.36. SENDKEY

>>-SENDKEY--(--keyName--+------------------------+--)----------><

+-,--+-----+--+--------+-+

+-alt-+ +-,--ext-+

Sends all messages (CHAR, KEYDOWN, and KEYUP) that would be sent by pressing a specific key on
the keyboard. Character keys (a to z) are not case-sensitive.

If the alt argument is 1, the Alt key flag is set, which is equal to pressing the specified key together with
the Alt key.

TheExt argument must be 1 if the key is an extended key, such as a right Ctrl or a right Shift.

For a list of key names, refer toSymbolic Names for Virtual Keys.

256

Chapter 6. Other Classes

6.17.37. SENDCHAR

>>-SENDCHAR--(--character--+--------+--)-----------------------><

+-,--alt-+

Sends a WM_CHAR message to the associated window. If thealt argument is 1, a pressed Alt key is
simulated.

6.17.38. SENDKEYDOWN

>>-SENDKEYDOWN--(--keyName--+--------+--)----------------------><

+-,--ext-+

Sends a WM_KEYDOWN message to the associated window. Theextargument must be 1 if the key is
an extended key, such as a right Ctrl or a right Shift.

For a list of key names, refer toSymbolic Names for Virtual Keys.

6.17.39. SENDKEYUP

>>-SENDKEYUP--(--keyName--+--------+--)------------------------><

+-,--ext-+

Sends a WM_KEYUP message to the associated window. Theextargument must be 1 if the key is an
extended key, such as a right Ctrl or a right Shift.

For a list of key names, refer toSymbolic Names for Virtual Keys.

6.17.40. SENDTEXT

>>-SENDTEXT--(--text--)--><

Sends a (case-sensitive) text to the associated window by sending a sequence of WM_CHAR,
WM_KEYDOWN, and WM_KEYUP messages.

6.17.41. MENU

>>-MENU--><

Returns an instance of the MenuObject class that refers to the menu of the associated window.

6.17.42. SYSTEMMENU

>>-SYSTEMMENU--><

257

Chapter 6. Other Classes

Returns an instance of the MenuObject class that refers to the system menu of the associated window.

6.17.43. ISMENU

>>-ISMENU--><

Returns 1 if the associated window is a menu, otherwise 0.

6.17.44. PROCESSMENUCOMMAND

+-,-------+

V |

>>-PROCESSMENUCOMMAND--(--+------+--,----submenu-+--,--menuItem--)-><

+-menu-+

Selects an item of the menu or submenu of the associated window. You can specify as many submenus as
necessary to get to the required item.

6.18. The WindowsProgramManager Class
Object Rexx provides a class for interaction with the Windows Program Manager. You can use this class
to create program groups and shortcuts to access your programs. This class is specifically for Windows
systems and may not be available on other systems.

The WindowsProgramManager class is defined in the file WINSYSTM.CLS. Use a::requires

statement to activate its function:

::requires "winsystm.cls"

A sample programDESKTOP.REX is provided in theooRexx\SAMPLES directory.

Methods of the WindowsProgramManager class are:

Table 6-1. Methods Available to the WindowsProgramManager Class

Method... ...on page

AddDeskTopIcon AddDesktopIcon

AddGroup AddGroup

AddItem AddItem

AddShortCut AddShortCut

DeleteDesktopIcon DeleteDesktopIcon

DeleteGroup DeleteGroup

DeleteItem DeleteItem

Init Init

258

Chapter 6. Other Classes

Method... ...on page

ShowGroup ShowGroup

6.18.1. ADDDESKTOPICON

>>-AddDesktopIcon--(--name--,--program--+--------------------------------+-->

| +-0------+ |

+-,--+----------+--,--+--------+-+

+-iconfile-+ +-iconnr-+

>--+--+-)-><

| +-"PERSONAL"-+ +-"NORMAL"----+ |

+-,-+---------+-,-+------------+-,-+------+-,-+--------+-,-+-------------+-+

+-workdir-+ +-"COMMON"---+ +-args-+ +-hotkey-+ +-"MAXIMIZED"-+

+-"MINIMIZED"-+

Adds a shortcut to the Windows desktop. A sample programDESKICON.REX is provided in the
ooRexx\SAMPLES directory.

Arguments:

The arguments are:

name

The name of the shortcut, displayed below the icon.

program

The program file launched by the shortcut.

iconfile

The name of the icon used for the shortcut. If not specified, the icon ofprogramis used.

iconnr

The number of the icon within theiconfile. The default is 0.

workdir

The working directory of the shortcut.

location

Either of the following locations:

"PERSONAL"

The shortcut is personal and displayed only on the desktop of the user.

"COMMON"

The shortcut is common to all users and displayed on the desktop of all users.

259

Chapter 6. Other Classes

args

The arguments passed to the program that the shortcut refers to.

hotkey

The virtual key to be used as a hotkey to open the shortcut. For a list of the key names, see
Symbolic Names for Virtual Keys.

run

Specifies one of the options listed in the syntax diagram. The default is "NORMAL".

6.18.2. ADDSHORTCUT

>>-AddShortCut--(--name--,--program--------------------------------------->

>--+-->

| +-0------+

+-,-+----------+-,-+--------+-,-+---------+-,-+------+-,-+--------+-,-->

+-iconfile-+ +-iconnr-+ +-workdir-+ +-args-+ +-hotkey-+

>-------------------+--)---><

+-"NORMAL"----+ |

>---+-------------+-+

+-"MAXIMIZED"-+

+-"MINIMIZED"-+

Creates a shortcut within the specified folder.

Arguments:

The arguments are:

name

The full name of the shortcut.

program

The program file launched by the shortcut.

iconfile

The name of the icon used for the shortcut. If not specified, the icon ofprogramis used.

iconnr

The number of the icon within theiconfile. The default is 0.

workdir

The working directory of the shortcut.

260

Chapter 6. Other Classes

args

The arguments passed to the program that the shortcut refers to.

hotkey

The virtual key to be used as a hotkey to open the shortcut. For a list of the key names, see
Symbolic Names for Virtual Keys.

run

Specifies one of the options listed in the syntax diagram. The default is "NORMAL".

Example:

The following example creates a shortcut named "My NotePad" to the Notepad editor wihin the
directory c:\temp:

pm = .WindowsProgramManager~new

if pm~InitCode \= 0 then exit

pm~AddShortCut("c:\temp\My Notepad","%SystemRoot%\system32\notepad.exe")

::requires "winsystm.cls"

6.18.3. ADDGROUP

>>-AddGroup(-group-)---><

Adds a program group to the Programs group of the desktop. If the group already exists, it is opened.
Thegroupargument specifies the name of the program group to be added. Example:

AddGroup("Object Rexx Redbook")

Note: The name that you specify for the group argument must not contain any brackets or
parenthesis. Otherwise, this method fails.

Return value:

0

The method was successful.

1

The method failed.

6.18.4. ADDITEM

>>-AddItem--(--shortcut,program--------------------------------->

>--+--+----->

261

Chapter 6. Other Classes

+-,--+----------+--+---------------------------------+-+

+-iconfile-+ +-,--+------------+--+----------+-+

+-iconnumber-+ +-,workdir-+

>--)---><

Adds a shortcut to a program group. The shortcut is placed into the last group used with either
AddGroup or ShowGroup. Example:

AddItem("OODialog Samples", ,

"rexx oodialog\samples\sample.rex", ,

"oodialog\samples\oodialog.ico")

Note: The name that you specify for the group argument must not contain characters that are not
valid, such as brackets or parenthesis. Otherwise, this method fails. Some characters are changed,
for example / to _.

Return value:

0

The method was successful.

1

The method failed.

6.18.5. DELETEDESKTOPICON

+-"PERSONAL"-+

DeleteDesktopIcon--(--name--,---+------------+-)

+-"COMMON"---+

Deletes a shortcut from the Windows desktop that was previously created with AddDesktopIcon.

The arguments are:

name

The name of the shortcut to be deleted.

location

Either of the following locations:

"PERSONAL"

The shortcut was previously created with AddDektopIcon and the location option
"PERSONAL". This is the default.

262

Chapter 6. Other Classes

"COMMON"

The shortcut was previously created with AddDektopIcon and the location option
"COMMON".

Return codes:

0

Shortcut deleted successfully.

2

Shortcut not found.

3

Path to shortcut not found.

5

Access denied or busy.

26

Not a DOS disk.

32

Sharing violation.

36

Sharing buffer exceeded.

87

Does not exist.

206

Shortcut name exceeds range error.

Note:: Return code 2 is also returned when a "PERSONAL" should be deleted that was previously
created with "COMMON" and vice versa.

Example:

pm = .WindowsProgramManager~new

if pm~InitCode \= 0 then exit

rc = pm~DeleteDesktopIcon("MyNotepad1", ,

"%SystemRoot%\system32\notepad.exe")

if rc \= 0 then do

say "Error deleting shortcut: My Notepad 1"

263

Chapter 6. Other Classes

exit

end

exit

::requires "winsystm.cls"

6.18.6. DELETEGROUP

>>-DeleteGroup(-group-)--><

Deletes a program group from the desktop. Thegroupargument specifies the name of the program group
to be deleted.

Return value:

0

The method was successful.

1

The method failed.

6.18.7. DELETEITEM

>>-DeleteItem(shortcut)--><

Deletes a shortcut from a program group.

Return value:

0

The method was successful.

1

The method failed.

6.18.8. INIT

>>-Init--><

Creates an instance of the WindowsProgramManager class and loads the required function package.

264

Chapter 6. Other Classes

6.18.9. SHOWGROUP

>>-ShowGroup(-group,-+-----+-)---------------------------------><

+-MIN-+

+-MAX-+

Opens a program group. Thegroupargument specifies the name of the program group to be opened. If
MIN or MAX is specified, the program group is opened minimized or maximized.

Return value:

0

The method was successful.

1

The method failed.

6.18.10. Symbolic Names for Virtual Keys
Table 3shows the symbolic names and the keyboard equivalents for the virtual keys used by Object
Rexx.

Table 6-2. Symbolic Names for Virtual Keys

Symbolic Name Mouse or Keyboard Equivalent

LBUTTON Left mouse button

RBUTTON Right mouse button

CANCEL Control-break processing

MBUTTON Middle mouse button (three-button mouse)

BACK BACKSPACE key

TAB TAB key

CLEAR CLEAR key

RETURN ENTER key

SHIFT SHIFT key

CONTROL CRTL key

MENU ALT key

PAUSE PAUSE key

CAPITAL CAPS LOCK key

ESCAPE ESC key

SPACE SPACEBAR

PRIOR PAGE UP key

NEXT PAGE DOWN key

END END key

265

Chapter 6. Other Classes

Symbolic Name Mouse or Keyboard Equivalent

HOME HOME key

LEFT LEFT ARROW key

UP UP ARROW key

RIGHT RIGHT ARROW key

DOWN DOWN ARROW key

SELECT SELECT key

EXECUTE EXECUTE key

SNAPSHOT PRINT SCREEN key

INSERT INS key

DELETE DEL key

HELP HELP key

0 0 key

1 1 key

2 2 key

3 3 key

4 4 key

5 5 key

6 6 key

7 7 key

8 8 key

9 9 key

A A key

B B key

C C key

D D key

E E key

F F key

G G key

H H key

I I key

J J key

K K key

L L key

M M key

N N key

O O key

Q Q key

R R key

266

Chapter 6. Other Classes

Symbolic Name Mouse or Keyboard Equivalent

S S key

T T key

U U key

V V key

W W key

X X key

Y Y key

Z Z key

NUMPAD0 Numeric keypad 0 key

NUMPAD1 Numeric keypad 1 key

NUMPAD2 Numeric keypad 2 key

NUMPAD3 Numeric keypad 3 key

NUMPAD4 Numeric keypad 4 key

NUMPAD5 Numeric keypad 5 key

NUMPAD6 Numeric keypad 6 key

NUMPAD7 Numeric keypad 7 key

NUMPAD8 Numeric keypad 8 key

NUMPAD9 Numeric keypad 9 key

MULTIPLY Multiply key

ADD Add key

SEPARATOR Separator key

SUBTRACT Subtract key

DECIMAL Decimal key

DIVIDE Divide key

F1 F1 key

F2 F2 key

F3 F3 key

F4 F4 key

F5 F5 key

F6 F6 key

F7 F7 key

F8 F8 key

F9 F9 key

F10 F10 key

F11 F11 key

F12 F12 key

F13 F13 key

F14 F14 key

267

Chapter 6. Other Classes

Symbolic Name Mouse or Keyboard Equivalent

F15 F15 key

F16 F16 key

F17 F17 key

F18 F18 key

F19 F19 key

F20 F20 key

F21 F21 key

F22 F22 key

F23 F23 key

F24 F24 key

NUMLOCK NUM LOCK key

SCROLL SCROLL LOCK key

6.19. The WindowsRegistry Class
Object Rexx provides a class for interaction with the WindowsRegistry. You can use this class to query
the registry and modify, add, and delete entries. This class is specifically for Windows systems and may
not be available on other systems.

The WindowsRegistry class is not a built-in class; it is defined in the file WINSYSTM.CLS.

Use a::requires statement to activate its function:

::requires "winsystm.cls"

A sample program,REGISTRY.REX, is provided in theooRexx\SAMPLES directory

Methods the WindowsRegistry Class Defines

• CLASSES_ROOT

• CLASSES_ROOT=

• CLOSE

• CREATE

• CURRENT_KEY

• CURRENT_KEY=

• CURRENT_USER

• CURRENT_USER=

• DELETE

• DELETEVALUE

• FLUSH

268

Chapter 6. Other Classes

• GETVALUE

• INIT

• LIST

• LISTVALUES

• LOAD

• LOCAL_MACHINE

• LOCAL_MACHINE=

• OPEN

• QUERY

• REPLACE

• RESTORE

• SAVE

• SETVALUE

• UNLOAD

• USERS

• USERS=

6.19.1. CLASSES_ROOT

>>-CLASSES_ROOT--><

Returns the handle of the root key HKEY_CLASSES_ROOT.

6.19.2. CLASSES_ROOT=

>>-CLASSES_ROOT=---><

This method is used by INIT to set the attribute CLASSES_ROOT to HKEY_CLASSES_ROOT. Do not
modify this attribute.

6.19.3. CLOSE

>>-CLOSE(-+------------+-)-------------------------------------><

+-key_handle-+

Closes a previously opened key specified by its handle. Example:

rg~close(objectrexxkey)

It can take several seconds before all data is written to disk. You can use FLUSH to empty the cache.

269

Chapter 6. Other Classes

If key_handleis omitted, CURRENT_KEY is closed.

6.19.4. CONNECT

>>-CONNECT(-key,computer-)-------------------------------------><

Opens a key on a remote computer. This is supported only for HKEY_LOCAL_MACHINE and
HKEY_USERS.

6.19.5. CREATE

>>-CREATE(-+--------+-,subkey)---------------------------------><

+-parent-+

Adds a new named subkey to the registry and returns its handle. The parent key handleparentcan be a
root key or a key retrieved using OPEN. If theparentkey is omitted, CURRENT_KEY is used. Example:

newkey = rg~create(rg~local_machine,"MyOwnKey")

6.19.6. CURRENT_KEY

>>-CURRENT_KEY---><

Returns the handle of the current key. The current key is set by INIT, CREATE, and OPEN. It is used as
a default value if the key is omitted in other methods.

6.19.7. CURRENT_KEY=

>>-CURRENT_KEY=--><

Sets the handle of the current key.

6.19.8. CURRENT_USER

>>-CURRENT_USER--><

Returns the handle of the root key HKEY_CURRENT_USER.

6.19.9. CURRENT_USER=

>>-CURRENT_USER=---><

270

Chapter 6. Other Classes

This method is used by INIT to set the attribute CURRENT_USER to HKEY_CURRENT_USER. Do
not modify this attribute.

6.19.10. DELETE

>>-DELETE(-+------------+-,subkeyname)-------------------------><

+-key_handle-+

Deletes a given named subkey of an open key specified by its handle and all its subkeys and values. If
key_handleis omitted, CURRENT_KEY is used.

6.19.11. DELETEVALUE

>>-DELETEVALUE(-+------------+-+--------+-)--------------------><

+-key_handle-+ +-,value-+

Deletes the named value for a given key. Ifkey_handleis omitted, CURRENT_KEY is used. Ifvalueis
blank or omitted, the default value is deleted.

6.19.12. FLUSH

>>-FLUSH(-+------------+-)-------------------------------------><

+-key_handle-+

Forces the system to write the cache buffer of a given key to disk. Ifkey_handleis omitted,
CURRENT_KEY is flushed.

6.19.13. GETVALUE

>>-GETVALUE(-+------------+-+--------+-)-----------------------><

+-key_handle-+ +-,value-+

Retrieves the data and type for a named value of a given key. The result is a compound variable with
suffixes data and type. Ifkey_handleis omitted, CURRENT_KEY is used. If namedvalueis blank or
omitted, the default value is retrieved. Example:

myval. = rg~GETVALUE(,"filesystem") /* current key */

say "Type is" myval.type

if myval.type = "NORMAL" then say "Value is" myval.data

myval. = rg~GETVALUE(mykey)

say "my default value is:" myval.data

myval. = rg~GETVALUE(mykey,"")

say "my default value is:" myval.data

Possible types: NORMAL, EXPAND, MULTI, NUMBER, BINARY, NONE, OTHER.

271

Chapter 6. Other Classes

6.19.14. INIT

>>-INIT--><

Creates an instance of the WindowsRegistry class and loads the required external function package. The
current key is set to HKEY_LOCAL_MACHINE.

6.19.15. LIST

>>-LIST(-+------------+-,stem.)--------------------------------><

+-key_handle-+

Retrieves the list of subkeys for a given key in a stem variable. The name of the stem variable must
include the period. The keys are returned as stem.1, stem.2, and so on. Example:

rg~LIST(objectrexxkey,orexxkeys.)

do i over orexxkeys.

say orexxkeys.i

end

6.19.16. LISTVALUES

>>-LISTVALUES(-+------------+-,variable.)----------------------><

+-key_handle-+

Retrieves all value entries of a given key into a compound variable. The name of the variable must
include the period. The suffixes of the compound variable are numbered starting with 1, and for each
number the three values are the name (var.i.name), the data (var.i.data), and the type (var.i.type). The
type is NORMAL for alphabetic values, EXPAND for expandable strings such as a path, NONE for no
specified type, MULTI for multiple strings, NUMBER for a 4-byte value, and BINARY for any data
format.

If key_handleis omitted, the values of CURRENT_KEY are listed.

Example:

qstem. = rg~QUERY(objectrexxkey)

rg~LISTVALUES(objectrexxkey,lv.)

do i=1 to qstem.values

say "name of value:" lv.i.name "(type="lv.i.type")"

if lv.i.type = "NORMAL" then

say "data of value:" lv.i.data

end

6.19.17. LOAD

>>-LOAD(-+------------+-,subkeyname, filename)-----------------><

+-key_handle-+

272

Chapter 6. Other Classes

Load creates a named subkey under the open key key_handle and loads registry data from the file
filename (created bySAVE) and stores the data under the newly created subkey.

key_handle can only be HKEY_USERS or HKEY_LOCAL_MACHINE. Registry information is stored
in the form of a hive - a discrete body of keys, subkeys, and values that is rooted at the top of the registry
hierarchy. A hive is backed by a single file.

If key_handleis omitted, the subkey is created under HKEY_LOCAL_MACHINE.

UseUNLOAD to delete the subkey and to unlock the registry data file filename.

6.19.18. LOCAL_MACHINE

>>-LOCAL_MACHINE---><

Returns the handle of the root key HKEY_LOCAL_MACHINE.

6.19.19. LOCAL_MACHINE=

>>-LOCAL_MACHINE=--><

This method is used by INIT to set the attribute LOCAL_MACHINE to HKEY_LOCAL_MACHINE.
Do not modify this attribute.

6.19.20. OPEN

>>-OPEN(-+---------------+-,subkey-+--------------+-)----------><

+-parent_handle-+ +-,-| access |-+

access:

+-ALL-+

|--+-----+-->

+--+

V |

>----+-------+-+------+-+-------+-+---------+-+--------+-+------+-+--|

+-WRITE-+ +-READ-+ +-QUERY-+ +-EXECUTE-+ +-NOTIFY-+ +-LINK-+

Opens a named subkey and return its handle. SeeCREATEfor more information aboutparent_handle.
Possible values foraccessare:

ALL

Default

WRITE

Create subkeys, set values

273

Chapter 6. Other Classes

READ

Query subkeys and values

QUERY

Values

EXECUTE

Key access, no subkey access

NOTIFY

Change notification

LINK

Create symbolic links

More than one value can be specified separated by blanks.

Notice that on Windows NT some keys require certain access rights and do not allow to open the key
with all but only with certain access values.

6.19.21. QUERY

>>-QUERY--(--+------------+--)---------------------------------><

+-key_handle-+

Retrieves information about a given key in a compound variable. The values returned areclass(class
name),subkeys(number of subkeys)values(number of value entries),dateandtimeof last modification.
If key_handleis omitted, CURRENT_KEY is queried. Example:

myquery. = rg~QUERY(objectrexxkey)

say "class="myquery.class "at" myquery.date

say "subkeys="myquery.subkeys "values="myquery.values

6.19.22. REPLACE

>>-REPLACE(-+------------+-,-+------------+-,newfilename,oldfilename-)-><

+-key_handle-+ +-subkeyname-+

Replaces the backup file of a key or subkey with a new file. Key must be an immediate descendant of
HKEY_LOCAL_MACHINE or HKEY_USERS. Ifkey_handleis omitted, the backup file of
CURRENT_KEY is replaced. The values in the new file become active when the system is restarted. If
subkeynameis omitted, the key and all its subkeys will be replaced.

274

Chapter 6. Other Classes

6.19.23. RESTORE

>>-RESTORE(-+------------+-,filename-+-------------+-)---------><

+-key_handle-+ +-,"VOLATILE"-+

Restores a key from a file. Ifkey_handleis omitted, CURRENT_KEY is restored. Example:

rg~RESTORE(objectrexxkey,"\objrexx\orexx")

The VOLATILE keyword creates a new memory-only set of registry information that is valid only until
the system is restarted.

6.19.24. SAVE

>>-SAVE(-+------------+-,filename)-----------------------------><

+-key_handle-+

Saves the entries of a given key into a file. Ifkey_handleis omitted, CURRENT_KEY is saved. Example:

rg~SAVE(objectrexxkey,"\objrexx\orexx")

On a FAT system, do not use a file extension infilename.

6.19.25. SETVALUE

>>-SETVALUE(-+------------+-,-+------+-,value-+---------+-)----><

+-key_handle-+ +-name-+ +-,NORMAL-+

+-,EXPAND-+

+-,MULTI--+

+-,NUMBER-+

+-,BINARY-+

+-,NONE---+

Sets a named value of a given key. Ifnameis blank or omitted, the default value is set. Examples:

rg~SETVALUE(objectrexxkey, ,"My default","NORMAL")

rg~SETVALUE(objectrexxkey,"Product_Name","Object Rexx")

rg~SETVALUE(objectrexxkey,"VERSION","1.0")

6.19.26. UNLOAD

>>-UNLOAD(-+------------+-,subkey)-----------------------------><

+-key_handle-+

Removes a named subkey (created withLOAD) and its dependents from the registry, but does not
modify the file containing the registry information. Ifkey_handleis omitted, the subkey under
CURRENT_KEY is unloaded. Unload also unlocks the registry information file.

275

Chapter 6. Other Classes

6.19.27. USERS

>>-USERS---><

Returns the handle of the root key HKEY_USERS.

6.19.28. USERS=

>>-USERS=--><

6.20. The Windows OLEObject Class
This class provides support for OLE automation. OLE (Object Linking and Embedding) is an
implementation of COM (Component Object Model). OLE automation makes it possible for one
application to manipulate objects implemented in another application, or to expose objects so they can be
manipulated.

An automation client is an application that can manipulate exposed objects belonging to another
application. An automation server is an application that exposes the objects. The OLEObject class
enables Rexx to be an OLE automation client. Note that the OLE acronym has now been replaced by
ActiveX.

Applications can provide OLE objects, and OLE objects that support automation can be used by a Rexx
script to remotely control the object through the supplied methods. This lets you write a Rexx script that,
for example, starts a Web browser, navigates to a certain page, and changes the display mode of the
browser.

Every application that supports OLE places a unique identifier in the registry. This identifier is called the
class ID (CLSID) of the OLE object. It consists of several hexadecimal numbers separated by the minus
symbol.

Example: CLSID of Microsoft® Internet Explorer (Version 5.00.2014.0216):

"{0002DF01-0000-0000-C000-000000000046}"

The CLSID number can prove inconvenient when you want to create or access a certain object, so a
corresponding easy-to-remember entry is provided in the registry, and this entry is mapped to the CLSID.
This entry is called the ProgID (the program ID), and is a string containing words separated by periods.

Example: ProgID of Microsoft Internet Explorer:"InternetExplorer.Application"

To find the ProgID of an application, you can use the sample scriptOLEINFO.REX or the Microsoft
OLEViewer, or you can consult the documentation of the application or search the registry manually.

The OLEObject class is a built-in class.

Several sample programs are provided in the Object Rexx installation directory under Samples\OLE.

• The APPS directory contains 13 examples of how to use Rexx to remote-control other applications.

276

Chapter 6. Other Classes

• The OLEINFO directory is a sample Rexx application that can be used to browse through the
information an OLE object provides.

• In the ADSI directory there are eight examples of how to use the Active Directory Services Interface
with the Rexx OLE interface.

• The METHINFO directory contains a very basic example of how to access the information an OLE
object provides.

• Finally, the WMI directory contains five examples of how to work with the Windows Management
Instrumentation.

Methods available to the OLEObject class:

DISPATCH
INIT
GETCONSTANT
GETKNOWNEVENTS
GETKNOWNMETHODS
GETOBJECT(Class method)
GETOUTPARAMETERS
UNKNOWN

Note: The Rexx OLE object acts as a proxy to the real OLE object. The OLE object has its own
methods, depending on its individual implementation; its methods are accessed transparently
through the method mechanism UNKNOWN.

6.20.1. DISPATCH

>>-DISPATCH(methodname--+------------+--)----------------------><

| +------+ |

| V | |

+----,arg-+--+

Dispatches a method with the optionally supplied arguments.

6.20.2. INIT

+-, "NOEVENTS"---+

>>-INIT(-+-ProgID-+-+----------------+-)-----------------------><

+-CLSID--+ +-, "WITHEVENTS"-+

Instantiates an OLE object of the given ProgID or CLSID. If the creation fails, an error will be raised
(see list of OLE specific errors on page***).

The optional parameter "events" defines whether events are to be used or not. Allowed values for events
are'NOEVENTS' (the default) and'WITHEVENTS'.

Example:

myOLEObject = .OLEObject~new("InternetExplorer.Application")

277

Chapter 6. Other Classes

6.20.3. GETCONSTANT

>>-GETCONSTANT(-+--------------+-)-----------------------------><

+-ConstantName-+

Retrieves the value of a constant that is associated with this OLE object. If no constant of that name
exists, the .NIL object will be returned. You can also omit the name of the constant; this returns a stem
with all known constants and their values. In this case the constant names will be prefixed with a "!"
symbol.

Example 1:

myExcel = .OLEObject~new("Excel.Application")

say "xlCenter has the value" myExcel~GetConstant("xlCenter")

myExcel~quit

exit

Possible output:

xlCenter has the value -4108

Example 2:

myExcel = .OLEObject~new("Excel.Application")

constants. = myExcel~GetConstant

myExcel~quit

do i over constants.

say i"="constants.i

end

Possible output:

!XLFORMULA=5

!XLMOVE=2

!XLTEXTMAC=19

...

6.20.4. GETKNOWNEVENTS

>>-GETKNOWNEVENTS--><

Returns a stem with information on the events that the OLE object can create. It collects this information
from the type library of the object. A type library provides the names, types, and arguments of the
provided methods.

The stem provides the following information:

278

Chapter 6. Other Classes

Table 6-3. Stem Information

stem.0 The number of events.

stem.n.!NAME Name of n-th event.

stem.n.!DOC Description of n-th event (if available).

stem.n.!PARAMS.0 Number of parameters for n-th event.

stem.n.!PARAMS.i.!NAME Name of i-th parameter of n-th event.

stem.n.!PARAMS.i.!TYPE Type of i-th parameter of n-th event.

stem.n.!PARAMS.i.!FLAGS Flags of i-th parameter of n-th event; can be "in",
"out", "opt", or any combination of these.

If no information is available, the .NIL object is returned and this OLE object does not have any events.

Example script:

myIE = .OLEObject~new("InternetExplorer.Application","NOEVENTS")

events. = myIE~GetKnownEvents

if events. == .nil then

say "Sorry, this object does not have any events."

else do

say "The following events may occur:"

do i = 1 to events.0

say events.i.!NAME

end

end

exit

Sample output:

The following events may occur:

ONTHEATERMODE

ONFULLSCREEN

ONSTATUSBAR

...

For an example of how to use events, see examples OLE\APPS\SAMP12.REX and
OLE\APPS\SAMP13.REX in the SAMPLES directory.

6.20.5. GETKNOWNMETHODS

>>-GETKNOWNMETHODS---><

Returns a stem with information on the methods that the OLE object supplies. It collects this information
from the type library of the object. A type library provides the names, types, and arguments of the
provided methods. Parts of the supplied information have only informational character as you cannot use
them directly.

279

Chapter 6. Other Classes

The stem provides the following information:

Table 6-4. Stem Information

stem.0 The number of methods.

stem.!LIBNAME Name of the type library that describes this object.

stem.!LIBDOC A help string describing the type library. Only set
when the string is available.

stem.n.!NAME The name of the n-th method.

stem.n.!DOC A help string for the n-th method. If this
information is not supplied in the type library this
value will not be set.

stem.n.!INVKIND A number that represents the invocation kind of
the method: 1 = normal method call, 2 =property
get, 4 = property put. A normal method call is
used with brackets; for aproperty get only the
name is to be specified; and aproperty set uses
the "=" symbol, as in these examples:
object~methodCall(a,b,c)

object~propertyPut="Hello" say

object~propertyGet

stem.n.!RETTYPE The return type of the n-th method. The return
type will be automatically converted to a Rexx
object (seeType Conversionin the description of
the UNKNOWN method of the OLEObject class).

stem.n.!MEMID The MemberID of the n-th method. This is only
used internally to call the method.

stem.n.!PARAMS.0 The number of parameters of the n-th method.

stem.n.!PARAMS.i.!NAME The name of the i-th parameter of the n-th method.

stem.n.!PARAMS.i.!TYPE The type of the i-th parameter of the n-th method.

stem.n.!PARAMS.i.!FLAGS The flags of the i-th parameter of the n-th method;
can be "in", "out", "opt", or any combination of
these (for example: "[in, opt]").

If no information is available, the .NIL object is returned.

Note: An object might provide additional methods that cannot be retrieved for display but that can be
invoked. In these cases, consult the documentation of those objects.

There are mechanisms to ’hide’ methods from the user, because these methods can only be used
internally. It might happen that these are not hidden properly and will get displayed. Be careful with
methods like:

AddRef
GetTypeInfoCount

280

Chapter 6. Other Classes

GetTypeInfo
GetIDsOfNames
QueryInterface
Release

Example script:

myOLEObject = .OLEObject~new("InternetExplorer.Application")

methods. = myOLEObject~GetKnownMethods

if methods. == .nil then

say "Sorry, no information on the methods available!"

else do

say "The following methods are available to this OLE object:"

do i = 1 to methods.0

say methods.i.!NAME

end

end

exit

Sample output:

The following methods are available to this OLE object:

GoBack

GoForward

GoHome

...

6.20.6. GETOBJECT

>>-GETOBJECT(Moniker-+--------+-)------------------------------><

+-,class-+

This is a class method that allows you to obtain an OLE object through the use of a so-called moniker or
nickname (a string). A moniker is used to find out which object has to be created or, if it is already
running, addressed. The moniker itself tells OLE which type of object is required. The optional
parameter class can be used to specify a subclass of OLEObject, and can be used to obtain an OLE
object that supports events (the'WITHEVENTS' option will be used in this case). This method is similar to
theInit method where you have to specify a ProgID or CLSID.

Example:

/* create a Word.Document by opening a certain file */

myOLEObject = .OLEObject~GetObject("C:\DOCS\HELLOWORLD.DOC")

6.20.7. GETOUTPARAMETERS

>>-GETOUTPARAMETERS--><

281

Chapter 6. Other Classes

Returns an array containing the results of the singleout parameters of the OLE object, or the .NIL object
if it does not have any.Out parameters are arguments to the OLE object that are filled in by the OLE
object. As this is not possible in Rexx due to data encapsulation, the results are placed in the array
mentioned above.

Example:

Consider an OLE object method with the following signature:

aMethod([in] A, [in] B, [out] sumAB)

The resultingout parameter of the method invocation will be placed in theout array at position one; the
"normal" return value gets processed as usual. In this case the method will return the .NIL object:

resultTest = myOLEObject~aMethod(1, 2, .NIL)

say "Invocation result :" resultTest

say "Result in out array:" myOLEObject~GetOutParameters~at(1)

The output of this sample script will be:

The NIL object

3

Out parameters are placed in theout array in order from left to right. If the above OLE method looked
like this:

aMethod([in] A, [in] B, [out] sumAB, [out] productAB),

then theout array would contain the sum of A and B at position one, and the product at position two.

6.20.8. UNKNOWN

>>-UNKNOWN(messagename--+----------------+--)------------------><

+--,messageargs--+

TheUNKNOWN message is the central mechanism through which methods of the OLE object are called.

For further information, seeDefining an UNKNOWN Method.

You can invoke the methods of the real OLE object by simply stating their names to the Rexx (proxy)
OLE object like this:

myOLEObject~OLEMethodName

This calls the method"OLEMethodName" of the real OLE object for any message that does not exist for
the Rexx OLE object by dispatching the call to the real OLE object.

If an OLE object offers a method with a name that is identical to one that is defined forOLEObject, you
must callUNKNOWN directly, like this:

msgs = .array~of("Hello","World")

val = myOLEObject~Unknown("Unknown",msgs)

This invokes the method"UNKNOWN" of the OLE object with two arguments,"Hello" and"World".

282

Chapter 6. Other Classes

Parameters for the OLE object are used in the usual way, with the exception of so-called"out"

parameters.Out parameters will be filled in by the OLE object itself. As this is not possible in Rexx due
to data encapsulation, a special method,GETOUTPARAMETERS, has to be used. Specify the .NIL
object for anyOut parameters when invoking this method.

6.20.9. Type Conversion
Unlike Rexx, OLE uses strict typing of data. Conversion to and from these types is done automatically, if
conversion is possible. OLE types are called variants, because they are stored in one structure that gets
flagged with the type it represents. The following is a list of common types that OLE uses and the Rexx
objects that they are converted into.

Table 6-5. OLE/Rexx Types

VARIANT type Rexx object

VT_EMPTY .NIL

VT_NULL .NIL

VT_VOID .NIL

VT_I1 Rexx string (a whole number)

VT_I2 Rexx string (a whole number)

VT_I4 Rexx string (a whole number)

VT_I8 Rexx string (a whole number)

VT_UI1 Rexx string (a whole, positive number)

VT_UI2 Rexx string (a whole, positive number)

VT_UI4 Rexx string (a whole, positive number)

VT_UI8 Rexx string (a whole, positive number)

VT_R4 Rexx string (a real number)

VT_R8 Rexx string (a real number)

VT_CY Rexx string (a fixed-point number with 15 digits to
the left of the decimal point and 4 digits to the
right)

VT_DATE Rexx string

VT_BSTR Rexx string

VT_DISPATCH Rexx OLEObject

VT_BOOL .TRUE or .FALSE *

VT_VARIANT Any Rexx object that can be represented as a
VARIANT

VT_PTR see VT_VARIANT

VT_SAFEARRAY Rexx Array

* When you pass .TRUE or .FALSE to an OLE object, these get passed as 1 or 0, respectively.

283

Chapter 6. Other Classes

284

Chapter 7. Other Objects
In addition to the class objects described in the previous chapter, Rexx also provides the following
objects:

• The Environment object

• The NIL object

• The Local environment object

• The Error object

• The Input object

• The Output object

7.1. The Environment Object (.ENVIRONMENT)
The Environment object is a directory of public objects that are always accessible. To access the entries
of the Environment object, you can use environment symbols. An environment symbol starts with a
period and has at least one other character, which cannot be a digit. For example, the term:

.method /* Same as .METHOD */

refers to the Method class.

Note: All environment objects that Rexx provides are single symbols. Users are recommended to
use compound symbols when creating environment objects.

(SeeEnvironment Symbolsfor details about environment symbols.) Rexx provides the following public
objects:

.ALARM

The Alarm class. SeeThe Alarm Class.

.ARRAY

The Array class. SeeThe Array Class.

.BAG

The Bag class. SeeThe Bag Class.

.CLASS

The Class class. SeeThe Class Class.

.DIRECTORY

The Directory class. SeeThe Directory Class.

285

Chapter 7. Other Objects

.ENVIRONMENT

The Environment directory.

.ERROR

The Error object

.FALSE

The FALSE object (the value0).

.INPUT

The INPUT object

.LIST

The List class. SeeThe List Class.

.LOCAL

The Local environment directory. SeeThe Local Environment Object (.LOCAL).

.MESSAGE

The Message class. SeeThe Message Class.

.METHOD

The Method class. SeeThe Method Class.

.METHODS

The Methods object.

.MONITOR

The Monitor class. SeeThe Monitor Class.

.NIL

The NIL object. SeeThe NIL Object.

.OBJECT

The Object class. SeeThe Object Class.

.OLEOBJECT

The OLEObject class. SeeThe OLEObject Class.

.OUTPUT

The OUTPUT class.

.QUEUE

The Queue class. SeeThe Queue Class.

286

Chapter 7. Other Objects

.RELATION

The Relation class. SeeThe Relation Class.

.RS

The Rs class.

.SET

The Set class. SeeThe Set Class.

.STEM

The Stem class. SeeThe Stem Class.

.STREAM

The Stream class. SeeThe Stream Class.

.STRING

The String class. SeeThe String Class.

.SUPPLIER

The Supplier class. SeeThe Supplier Class.

.TABLE

The Table class. SeeThe Table Class.

.TRUE

The TRUE object (the value1).

7.2. The Local Environment Object (.LOCAL)
The Local environment object is a directory of process-specific objects that are always accessible. You
can access objects in the Local environment object in the same way as objects in the Environment object.
Rexx provides the following objects in the Local environment object:

.ERROR

The Error object (default error stream). SeeThe Error Object. This is the object to which Rexx error
messages and trace output are written.

.INPUT

The Input object (default input stream). SeeThe Input Object.

.OUTPUT

The Output object (default output stream). SeeThe Output Object.

287

Chapter 7. Other Objects

.STDERR

The Error object (default error stream). SeeThe Error Object. This is the object to which Rexx error
messages and trace output are written.

.STDIN

The Input object (default input stream). SeeThe Input Object.

.STDOUT

The Output object (default output stream). SeeThe Output Object.

.STDQUE

The current default Rexx Queue.

Objects in the Environment object and objects in the Local environment object are available only to
programs running within the same process.

Because both of these environment objects are directory objects, you can place objects into, or retrieve
objects from, these environments by using any of the directory messages ([],[]=, PUT, AT, SETENTRY,
ENTRY, or SETMETHOD). To avoid potential name clashes with built-in objects and public objects that
Rexx provides, each object that your programs add to these environments should have a period in its
index.

Examples:

/* .LOCAL example--places something in the Local environment directory */

.local~my.alarm = theAlarm

/* To retrieve it */

say .local~my.alarm

/* Another .LOCAL example */

.environment["MYAPP.PASSWORD"] = "topsecret"

.environment["MYAPP.UID"] = 200

/* Create a local directory for */

/* my stuff. */

.local["MYAPP.LOCAL"] = .directory~new

/* Add log file for my local directory */

.myapp.local["LOG"] = .stream~new("C:\MYAPP.LOG")

say .myapp.password /* Displays "topsecret" */

say .myapp.uid /* Displays "200" */

/* Write a line to the log file */

.myapp.local~log~lineout("Logon at "time()" on "date())

/* Redirect SAY lines into a file: */

.local["OUTPUT"] = .stream~new("C:\SAY_REDIRECT.TXT")

say "This goes into a file, and not onto the screen!"

7.2.1. The Error Object (.ERROR)
This monitor object (seeThe Monitor Class) holds the trace stream object. You can redirect the trace
output in the same way as with the output object in the Monitor class example.

288

Chapter 7. Other Objects

7.2.2. The Input Object (.INPUT)
This monitor object (seeThe Monitor Class) holds the default input stream object (seeInput and Output
Streams). This input stream is the source for the PARSE LINEIN instruction, the LINEIN method of the
Stream class, and, if you specify no stream name, the LINEIN built-in function. It is also the source for
the PULL and PARSE PULL instructions if the external data queue is empty.

7.2.3. The Output Object (.OUTPUT)
This monitor object (seeThe Monitor Class) holds the default output stream object (seeInput and Output
Streams). This is the destination for output from the SAY instruction, the LINEOUT method
(.OUTPUT~LINEOUT), and, if you specify no stream name, the LINEOUT built-in function. You can
replace this object in the environment to direct such output elsewhere (for example, to a transcript
window).

7.3. .METHODS
The .METHODS environment symbol identifies a directory (seeThe Directory Class) of methods that
::METHOD directives in the currently running program define. The directory indexes are the method
names. The directory values are the method objects. SeeThe Method Class.

Only methods that are not preceded by a ::CLASS directive are in the .METHODS directory. If there are
no such methods, the .METHODS symbol has the default value of.METHODS.

Example:

use arg class, methname

class~define(methname,.methods["a"])

::method a

use arg text

say text

7.4. The NIL Object (.NIL)
The NIL object is a special object that does not contain data. It usually represents the absence of an
object, as a null string represents a string with no characters. It has only the methods of the Object class.
Note that you use the .NIL object (rather than the null string ("")) to test for the absence of data in an
array entry:

if .nil = board[row,col] /* .NIL rather than "" */

then ...

289

Chapter 7. Other Objects

7.5. .RS
.RS is set to the return status from any executed command (including those submitted with the
ADDRESS instruction). The .RS environment symbol has a value of-1 when a command returns a
FAILURE condition, a value of1 when a command returns an ERROR condition, and a value of0 when
a command indicates successful completion. The value of .RS is also available after trapping the ERROR
or FAILURE condition.

Note: Commands executed manually during interactive tracing do not change the value of .RS. The
initial value of .RS is .RS.

290

Chapter 8. Functions
A function is an internal, built-in, or external routine that returns a single result object. (A subroutine is a
function that is an internal, built-in, or external routine that might return a result and is called with the
CALL instruction.)

8.1. Syntax
A function call is a term in an expression calling a routine that carries out some procedures and returns
an object. This object replaces the function call in the continuing evaluation of the expression. You can
include function calls to internal and external routines in an expression anywhere that a data term (such
as a string) would be valid, using the following notation:

+-,--------------+

V |

>>-function_name(----+------------+-+--)-----------------------><

+-expression-+

Thefunction_nameis a literal string or a single symbol, which is taken to be a constant.

There can be any number of expressions, separated by commas, between the parentheses. These
expressions are called the arguments to the function. Each argument expression can include further
function calls.

Note that the left parenthesis must be adjacent to the name of the function, with no blank in between. (A
blank operator would be assumed at this point instead.) Only a comment can appear between the name
and the left parenthesis.

The arguments are evaluated in turn from left to right and the resulting objects are then all passed to the
function. This function then runs some operation (usually dependent on the argument objects passed,
though arguments are not mandatory) and eventually returns a single object. This object is then included
in the original expression as though the entire function reference had been replaced by the name of a
variable whose value is the returned object.

For example, the function SUBSTR is built into the language processor and could be used as:

N1="abcdefghijk"

Z1="Part of N1 is: "substr(N1,2,7)

/* Sets Z1 to "Part of N1 is: bcdefgh" */

A function can have a variable number of arguments.You need to specify only those required. For
example,SUBSTR("ABCDEF",4) would returnDEF.

8.2. Functions and Subroutines
Functions and subroutines are called in the same way. The only difference between functions and
subroutines is that functions must return data, whereas subroutines need not.

The following types of routines can be called as functions:

291

Chapter 8. Functions

Internal

If the routine name exists as a label in the program, the current processing status is saved for a later
return to the point of invocation to resume execution. Control is then passed to the first label in the
program that matches the name. As with a routine called by the CALL instruction, status
information, such as TRACE and NUMERIC settings, is saved too. See the CALL instruction
(CALL) for details.

If you call an internal routine as a function, you must specify an expression in any RETURN
instruction so that the routine can return. This is not necessary if it is called as a subroutine.

Example:

/* Recursive internal function execution... */

arg x

say x"! =" factorial(x)

exit

factorial: procedure /* Calculate factorial by */

arg n /* recursive invocation. */

if n=0 then return 1

return factorial(n-1) * n

FACTORIAL is unusual in that it calls itself (this is recursive invocation). The PROCEDURE
instruction ensures that a new variablen is created for each invocation.

Built-in

These functions are always available and are defined inBuilt-in Functions.

External

You can write or use functions that are external to your program and to the language processor. An
external routine can be written in any language, including Rexx, that supports the system-dependent
interfaces the language processor uses to call it. You can call a Rexx program as a function and, in
this case, pass more than one argument string. The ARG, PARSE ARG, or USE ARG instruction or
the ARG built-in function can retrieve these argument strings. When called as a function, a program
must return data to the caller.

Notes:

1. Calling an external Rexx program as a function is similar to calling an internal routine. For an
external routine, however, the caller’s variables are hidden. To leave the called Rexx program,
you can use either EXIT or RETURN. In either case, you must specify an expression.

2. You can use the INTERPRET instruction to process a function with a variable function name.
However, avoid this if possible because it reduces the clarity of the program.

8.2.1. Search Order
Functions are searched in the following sequence: internal routines, built-in functions, external functions.

292

Chapter 8. Functions

The name of internal routines must not be specified as a literal string, that is, in quotation marks, whereas
the name of built-in functions or external routines must be specified in quotation marks. Be aware of this
when you want to extend the capabilities of an existing internal function, for example, and call it as a
built-in function or external routine under the same name as the existing internal function. In this case,
you must specify the name in quotation marks.

Example:

/* This internal DATE function modifies the */

/* default for the DATE function to standard date. */

date: procedure

arg in

if in="" then in="Standard"

return "DATE"(in)

Built-in functions have uppercase names, and so the name in the literal string must be in uppercase for the
search to succeed. File names can be in uppercase, lowercase, or mixed case. The operating system uses
a case-insensitive search for files. When calling a Rexx subroutine, the case of the name does not matter.

External functions and subroutines have a system-defined search order.

The search order for external functions is as follows:

1. Functions defined on ::ROUTINE directives within the program.

2. Public functions defined on ::ROUTINE directives of programs referenced with ::REQUIRES.

3. Functions that have been loaded into the macrospace for preorder execution. (See theOpen Object
Rexx: Programming Guidefor details.)

4. Functions that are part of a function package. (See theOpen Object Rexx: Programming Guidefor
details.)

5. Rexx functions in the current directory, with the current extension.

6. Rexx functions along environment PATH, with the current extension.

7. Rexx functions in the current directory, with the default extension (.REX or .CMD).

8. Rexx functions along environment PATH, with the default extension (.REX or .CMD).

9. Functions that have been loaded into the macrospace for postorder execution.

The full search pattern for functions and routines is shown inFunction and Routine Resolution and
Execution.

8.2.2. Errors during Execution
If an external or built-in function detects an error, the language processor is informed, and a syntax error
results. Execution of the clause that included the function call is, therefore, ended. Similarly, if an
external function fails to return data correctly, the language processor detects this and reports it as an
error.

If a syntax error occurs during the execution of an internal function, it can be trapped (using SIGNAL
ON SYNTAX) and recovery might then be possible. If the error is not trapped, the program is ended.

293

Chapter 8. Functions

Figure 8-1. Function and Routine Resolution and Execution

294

Chapter 8. Functions

8.3. Return Values
A function usually returns a value that is substituted for the function call when the expression is
evaluated.

How the value returned by a function (or any Rexx routine) is handled depends on whether it is called by
a function call or as a subroutine with the CALL instruction.

• A routine called as a subroutine: If the routine returns a value, that value is stored in the special
variable named RESULT. Otherwise, the RESULT variable is dropped, and its value is the string
RESULT.

• A routine called as a function: If the function returns a value, that value is substituted in the expression
at the position where the function was called. Otherwise, the language processor stops with an error
message.

Here are some examples of how to call a Rexx procedure:

call Beep 500, 100 /* Example 1: a subroutine call */

The built-in function BEEP is called as a Rexx subroutine. The return value from BEEP is placed in the
Rexx special variableRESULT.

bc = Beep(500, 100) /* Example 2: a function call */

BEEP is called as a Rexx function. The return value from the function is substituted for the function call.
The clause itself is an assignment instruction; the return value from the BEEP function is placed in the
variablebc.

Beep(500, 100) /* Example 3: result passed as */

/* a command */

The BEEP function is processed and its return value is substituted in the expression for the function call,
like in the preceding example. In this case, however, the clause as a whole evaluates to a single
expression. Therefore, the evaluated expression is passed to the current default environment as a
command.

Note: Many other languages, such as C, throw away the return value of a function if it is not assigned
to a variable. In Rexx, however, a value returned like in the third example is passed on to the current
environment or subcommand handler. If that environment is the default, the operating system
performs a disk search for what seems to be a command.

8.4. Built-in Functions
Rexx provides a set of built-in functions, including character manipulation, conversion, and information
functions. The following are general notes on the built-in functions:

295

Chapter 8. Functions

• The parentheses in a function are always needed, even if no arguments are required. The first
parenthesis must follow the name of the function with no space in between.

• The built-in functions internally work with NUMERIC DIGITS 9 and NUMERIC FUZZ 0 and are
unaffected by changes to the NUMERIC settings, except where stated. Any argument named as a
numberis rounded, if necessary, according to the current setting of NUMERIC DIGITS (as though the
number had been added to 0) and checked for validity before use. This occurs in the following
functions: ABS, FORMAT, MAX, MIN, SIGN, and TRUNC, and for certain options of DATATYPE.

• Any argument named as astringcan be a null string.

• If an argument specifies alength, it must be a positive whole number or zero. If it specifies astart
character or word in a string, it must be a positive whole number, unless otherwise stated.

• If the last argument is optional, you can always include a comma to indicate that you have omitted it.
For example,DATATYPE(1,), like DATATYPE(1), would returnNUM. You can include any number of
trailing commas; they are ignored. If there are actual parameters, the default values apply.

• If you specify apad character, it must be exactly one character long. A pad character extends a string,
usually on the right. For an example, see the LEFT built-in functionLEFT.

• If a function has anoptionthat you can select by specifying the first character of a string, that
character can be in uppercase or lowercase.

• Many of the built-in functions send messages the String class defines (seeThe String Class). For the
functions ABBREV, ABS, BITAND, BITOR, BITXOR, B2X, CENTER, CENTRE, CHANGESTR,
COMPARE, COPIES, COUNTSTR, C2D, C2X, DATATYPE, DELSTR, DELWORD, D2C, D2X,
FORMAT, LEFT, LENGTH, MAX, MIN, REVERSE, RIGHT, SIGN, SPACE, STRIP, SUBSTR,
SUBWORD, TRANSLATE, TRUNC, VERIFY, WORD, WORDINDEX, WORDLENGTH,
WORDS, X2B, X2C, and X2D, the first argument to the built-in function is used as the receiver object
for the message sent, and the remaining arguments are used in the same order as the message
arguments. For example, SUBSTR("abcde",3,2) is equivalent to "abcde"~SUBSTR(3,2).

For the functions INSERT, LASTPOS, OVERLAY, POS, and WORDPOS, the second argument to the
built-in functions is used as the receiver object for the message sent, and the other arguments are used
in the same order as the message arguments. For example,POS("a","Haystack",3) is equivalent to
"Haystack"~POS("a",3).

• The language processor evaluates all built-in function arguments to produce character strings.

8.4.1. ABBREV (Abbreviation)

>>-ABBREV(information,info--+---------+--)---------------------><

+-,length-+

Returns1 if info is equal to the leading characters ofinformationand the length ofinfo is not less than
length. It returns0 if either of these conditions is not met.

If you specifylength, it must be a positive whole number or zero. The default forlengthis the number of
characters ininfo.

Here are some examples:

296

Chapter 8. Functions

ABBREV("Print","Pri") -> 1

ABBREV("PRINT","Pri") -> 0

ABBREV("PRINT","PRI",4) -> 0

ABBREV("PRINT","PRY") -> 0

ABBREV("PRINT","") -> 1

ABBREV("PRINT","",1) -> 0

Note: A null string always matches if a length of 0, or the default, is used. This allows a default
keyword to be selected automatically if desired; for example:

say "Enter option:"; pull option .

select /* keyword1 is to be the default */

when abbrev("keyword1",option) then ...

when abbrev("keyword2",option) then ...

...

otherwise nop;

end;

8.4.2. ABS (Absolute Value)

>>-ABS(number)---><

Returns the absolute value ofnumber. The result has no sign and is formatted according to the current
NUMERIC settings.

Here are some examples:

ABS("12.3") -> 12.3

ABS(" -0.307") -> 0.307

8.4.3. ADDRESS

>>-ADDRESS()---><

Returns the name of the environment to which commands are currently submitted. Trailing blanks are
removed from the result.

Here is an example:

ADDRESS() -> "CMD" /* default under Windows */

ADDRESS() -> "bash" /* default under Linux */

297

Chapter 8. Functions

8.4.4. ARG (Argument)

>>-ARG(--+----------------+--)---------------------------------><

+-n--+---------+-+

+-,option-+

Returns one or more arguments, or information about the arguments to a program, internal routine, or
method.

If you do not specifyn, the number of arguments passed to the program or internal routine is returned.

If you specify onlyn, thenth argument object is returned. If the argument object does not exist, the null
string is returned.n must be a positive whole number.

If you specifyoption, the value returned depends on the value ofoption. The following are validoptions.
(Only the capitalized letter is needed; all characters following it are ignored.)

Array

returns a single-index array containing the arguments, starting with thenth argument. The array
indexes correspond to the argument positions, so that thenth argument is at index 1, the following
argument at index 2, and so on. If any arguments are omitted, their corresponding indexes are
absent.

Exists

returns1 if the nth argument exists; that is, if it was explicitly specified when the routine was called.
Otherwise, it returns0.

Normal

returns thenth argument, if it exists, or a null string.

Omitted

returns1 if the nth argument was omitted; that is, if it was not explicitly specified when the routine
was called. Otherwise, it returns0.

Here are some examples:

/* following "Call name;" (no arguments) */

ARG() -> 0

ARG(1) -> ""

ARG(2) -> ""

ARG(1,"e") -> 0

ARG(1,"O") -> 1

ARG(1,"a") -> .array~of()

/* following "Call name 'a', ,'b';" */

ARG() -> 3

ARG(1) -> "a"

ARG(2) -> ""

ARG(3) -> "b"

ARG(n) -> "" /* for n>=4 */

ARG(1,"e") -> 1

298

Chapter 8. Functions

ARG(2,"E") -> 0

ARG(2,"O") -> 1

ARG(3,"o") -> 0

ARG(4,"o") -> 1

ARG(1,"A") -> .array~of(a, ,b)

ARG(3,"a") -> .array~of(b)

Notes:

1. The number of argument strings is the largest numbern for whichARG(n,"e") returns1 or 0 if there
are no explicit argument strings. That is, it is the position of the last explicitly specified argument
string.

2. Programs called as commands can have only 0 or 1 argument strings. The program has 0 argument
strings if it is called with the name only and has 1 argument string if anything else (including blanks)
is included in the command.

3. Programs called by the RexxStart entry point can have several argument strings. (See theOpen
Object Rexx: Programming Guidefor information about RexxStart.)

4. You can access the argument objects of a program with the USE instruction. SeeUSEfor more
information.

5. You can retrieve and directly parse the argument strings of a program or internal routine with the
ARG or PARSE ARG instructions.

8.4.5. B2X (Binary to Hexadecimal)

>>-B2X(binary_string)--><

Returns a string, in character format, that representsbinary_stringconverted to hexadecimal.

Thebinary_stringis a string of binary (0 or 1) digits. It can be of any length. You can optionally include
blanks inbinary_string(at 4-digit boundaries only, not leading or trailing) to improve readability; they
are ignored.

The returned string uses uppercase alphabetical characters for the valuesA-F, and does not include
blanks.

If binary_stringis the null string, B2X returns a null string. If the number of binary digits in
binary_stringis not a multiple of 4, then up to three0 digits are added on the left before the conversion
to make a total that is a multiple of 4.

Here are some examples:

B2X("11000011") -> "C3"

B2X("10111") -> "17"

B2X("101") -> "5"

B2X("1 1111 0000") -> "1F0"

You can combine B2X with the functions X2D and X2C to convert a binary number into other forms. For
example:

X2D(B2X("10111")) -> "23" /* decimal 23 */

299

Chapter 8. Functions

8.4.6. BEEP

>>-BEEP(frequency,duration)------------------------------------><

Sounds the speaker at frequency (Hertz) for duration (milliseconds). The frequency can be any whole
number in the range 37 to 32767 Hertz. The duration can be any number in the range 1 to 60000
milliseconds.

This routine is most useful when called as a subroutine. A null string is returned.

Note: Both parameters (frequency, duration) are ignored on Windows 95 and Linux. On computers
with multimedia support the function plays the default sound event. On computers without
soundcard, the function plays the standard system beep (if activated).

Here is an example for Windows NT:

/* C scale */

note.1 = 262 /* middle C */

note.2 = 294 /* D */

note.3 = 330 /* E */

note.4 = 349 /* F */

note.5 = 392 /* G */

note.6 = 440 /* A */

note.7 = 494 /* B */

note.8 = 523 /* C */

do i=1 to 8

call beep note.i,250 /* hold each note for */

/* one-quarter second */

end

8.4.7. BITAND (Bit by Bit AND)

>>-BITAND(string1--+--------------------------+--)-------------><

+-,--+---------+--+------+-+

+-string2-+ +-,pad-+

Returns a string composed of the two input strings logically ANDed, bit by bit. (The encodings of the
strings are used in the logical operation.) The length of the result is the length of the longer of the two
strings. If nopadcharacter is provided, the AND operation stops when the shorter of the two strings is
exhausted, and the unprocessed portion of the longer string is appended to the partial result. Ifpad is
provided, it extends the shorter of the two strings on the right before carrying out the logical operation.
The default forstring2 is the zero-length (null) string.

Here are some examples:

BITAND("12"x) -> "12"x

BITAND("73"x,"27"x) -> "23"x

BITAND("13"x,"5555"x) -> "1155"x

BITAND("13"x,"5555"x,"74"x) -> "1154"x

300

Chapter 8. Functions

BITAND("pQrS", ,"DF"x) -> "PQRS" /* ASCII */

8.4.8. BITOR (Bit by Bit OR)

>>-BITOR(string1--+--------------------------+--)--------------><

+-,--+---------+--+------+-+

+-string2-+ +-,pad-+

Returns a string composed of the two input strings logically inclusive-ORed, bit by bit. (The encodings
of the strings are used in the logical operation.) The length of the result is the length of the longer of the
two strings. If nopadcharacter is provided, the OR operation stops when the shorter of the two strings is
exhausted, and the unprocessed portion of the longer string is appended to the partial result. Ifpad is
provided, it extends the shorter of the two strings on the right before carrying out the logical operation.
The default forstring2 is the zero-length (null) string.

Here are some examples:

BITOR("12"x) -> "12"x

BITOR("15"x,"24"x) -> "35"x

BITOR("15"x,"2456"x) -> "3556"x

BITOR("15"x,"2456"x,"F0"x) -> "35F6"x

BITOR("1111"x, ,"4D"x) -> "5D5D"x

BITOR("pQrS", ,"20"x) -> "pqrs" /* ASCII */

8.4.9. BITXOR (Bit by Bit Exclusive OR)

>>-BITXOR(string1--+--------------------------+--)-------------><

+-,--+---------+--+------+-+

+-string2-+ +-,pad-+

Returns a string composed of the two input strings logically eXclusive-ORed, bit by bit. (The encodings
of the strings are used in the logical operation.) The length of the result is the length of the longer of the
two strings. If nopadcharacter is provided, the XOR operation stops when the shorter of the two strings
is exhausted, and the unprocessed portion of the longer string is appended to the partial result. Ifpad is
provided, it extends the shorter of the two strings on the right before carrying out the logical operation.
The default forstring2 is the zero-length (null) string.

Here are some examples:

BITXOR("12"x) -> "12"x

BITXOR("12"x,"22"x) -> "30"x

BITXOR("1211"x,"22"x) -> "3011"x

BITXOR("1111"x,"444444"x) -> "555544"x

BITXOR("1111"x,"444444"x,"40"x) -> "555504"x

BITXOR("1111"x, ,"4D"x) -> "5C5C"x

BITXOR("C711"x,"222222"x," ") -> "E53302"x /* ASCII */

301

Chapter 8. Functions

8.4.10. C2D (Character to Decimal)

>>-C2D(string--+----+--)---------------------------------------><

+-,n-+

Returns the decimal value of the binary representation ofstring. If the result cannot be expressed as a
whole number, an error results. That is, the result must not have more digits than the current setting of
NUMERIC DIGITS. If you specifyn, it is the length of the returned result. If you do not specifyn, string
is processed as an unsigned binary number.

If string is null, 0 is returned.

Here are some examples:

C2D("09"X) -> 9

C2D("81"X) -> 129

C2D("FF81"X) -> 65409

C2D("") -> 0

C2D("a") -> 97 /* ASCII */

If you specifyn, the string is taken as a signed number expressed inn characters. The number is positive
if the leftmost bit is off, and negative if the leftmost bit is on. In both cases, it is converted to a whole
number, which can be negative. Thestring is padded on the left with "00"x characters (not
"sign-extended"), or truncated on the left ton characters. This padding or truncation is as though
RIGHT(string, n,"00"x) had been processed. Ifn is 0, C2D always returns0.

Here are some examples:

C2D("81"X,1) -> -127

C2D("81"X,2) -> 129

C2D("FF81"X,2) -> -127

C2D("FF81"X,1) -> -127

C2D("FF7F"X,1) -> 127

C2D("F081"X,2) -> -3967

C2D("F081"X,1) -> -127

C2D("0031"X,0) -> 0

8.4.11. C2X (Character to Hexadecimal)

>>-C2X(string)---><

Returns a string, in character format, that representsstringconverted to hexadecimal. The returned string
contains twice as many bytes as the input string. On an ASCII system, C2X(1) returns31 because the
ASCII representation of the character 1 is "31"X.

The string returned uses uppercase alphabetical characters for the valuesA-F and does not include blanks.
Thestringcan be of any length. Ifstring is null, a null string is returned.

Here are some examples:

C2X("0123"X) -> "0123" /* "30313233"X in ASCII */

C2X("ZD8") -> "5A4438" /* "354134343338"X in ASCII */

302

Chapter 8. Functions

8.4.12. CENTER (or CENTRE)

>>-+-CENTER(-+--string,length--+------+--)---------------------><

+-CENTRE(-+ +-,pad-+

Returns a string of lengthlengthwith stringcentered in it and withpadcharacters added as necessary to
make up length. Thelengthmust be a positive whole number or zero. The defaultpadcharacter is blank.
If the string is longer thanlength, it is truncated at both ends to fit. If an odd number of characters is
truncated or added, the right-hand end loses or gains one more character than the left-hand end.

Here are some examples:

CENTER(abc,7) -> " ABC "

CENTER(abc,8,"-") -> "--ABC---"

CENTRE("The blue sky",8) -> "e blue s"

CENTRE("The blue sky",7) -> "e blue "

Note: To avoid errors because of the difference between British and American spellings, this function
can be called either CENTRE or CENTER.

8.4.13. CHANGESTR

>>-CHANGESTR(needle,haystack,newneedle)------------------------><

Returns a copy ofhaystackin whichnewneedlereplaces all occurrences ofneedle. The following defines
the effect:

result = ""

$tempx = 1

do forever

$tempy = pos(needle, haystack, $tempx)

if $tempy = 0 then leave

result = result || substr(haystack, $tempx, $tempy - $tempx) || newneedle

$tempx = $tempy + length(needle)

end

result = result || substr(haystack, $tempx)

Here are some examples:

CHANGESTR("1","101100","") -> "000"

CHANGESTR("1","101100","X") -> "X0XX00"

8.4.14. CHARIN (Character Input)

>>-CHARIN(--+------+--+---------------------------+--)---------><

+-name-+ +-,--+-------+--+---------+-+

+-start-+ +-,length-+

303

Chapter 8. Functions

Returns a string of up tolengthcharacters read from the character input streamname. (To understand the
input and output functions, seeInput and Output Streams.) If you omit name, characters are read from
STDIN, which is the default input stream. The defaultlengthis 1.

For persistent streams, a read position is maintained for each stream. Any read from the stream starts at
the current read position by default. When the language processor completes reading, the read position is
increased by the number of characters read. You can give astart value to specify an explicit read
position. This read position must be positive and within the bounds of the stream, and must not be
specified for a transient stream. A value of1 for start refers to the first character in the stream.

If you specify alengthof 0, then the read position is set to the value ofstart, but no characters are read
and the null string is returned.

In a transient stream, if there are fewer thanlengthcharacters available, the execution of the program
generally stops until sufficient characters become available. If, however, it is impossible for those
characters to become available because of an error or another problem, the NOTREADY condition is
raised (seeErrors during Input and Output) and CHARIN returns with fewer than the requested number
of characters.

Here are some examples:

CHARIN(myfile,1,3) -> "MFC" /* the first 3 */

/* characters */

CHARIN(myfile,1,0) -> "" /* now at start */

CHARIN(myfile) -> "M" /* after last call */

CHARIN(myfile, ,2) -> "FC" /* after last call */

/* Reading from the default input (here, the keyboard) */

/* User types "abcd efg" */

CHARIN() -> "a" /* default is */

/* 1 character */

CHARIN(, ,5) -> "bcd e"

Notes:

1. CHARIN returns all characters that appear in the stream, including control characters such as line
feed, carriage return, and end of file.

2. When CHARIN reads from the keyboard, program execution stops until you press the Enter key.

8.4.15. CHAROUT (Character Output)

>>-CHAROUT(--+------+--+---------------------------+--)--------><

+-name-+ +-,--+--------+--+--------+-+

+-string-+ +-,start-+

Returns the count of characters remaining after attempting to writestring to the character output stream
name. (To understand the input and output functions, seeInput and Output Streams.) If you omit name,
characters instringare written to STDOUT (generally the display), which is the default output stream.
Thestringcan be a null string, in which case no characters are written to the stream, and0 is always
returned.

304

Chapter 8. Functions

For persistent streams, a write position is maintained for each stream. Any write to the stream starts at
the current write position by default. When the language processor completes writing, the write position
is increased by the number of characters written. When the stream is first opened, the write position is at
the end of the stream so that calls to CHAROUT append characters to the end of the stream.

You can give astart value to specify an explicit write position for a persistent stream. This write position
must be a positive whole number. A value of1 for start refers to the first character in the stream.

You can omit thestring for persistent streams. In this case, the write position is set to the value ofstart
that was given, no characters are written to the stream, and0 is returned. If you do not specifystart or
string, the stream is closed and0 is returned.

Execution of the program usually stops until the output operation is complete.

For example, when data is sent to a printer, the system accepts the data and returns control to Rexx, even
though the output data might not have been printed. Rexx considers this to be complete, even though the
data has not been printed. If, however, it is impossible for all the characters to be written, the
NOTREADY condition is raised (seeErrors during Input and Output) and CHAROUT returns with the
number of characters that could not be written (the residual count).

Here are some examples:

CHAROUT(myfile,"Hi") -> 0 /* typically */

CHAROUT(myfile,"Hi",5) -> 0 /* typically */

CHAROUT(myfile, ,6) -> 0 /* now at char 6 */

CHAROUT(myfile) -> 0 /* at end of stream */

CHAROUT(,"Hi") -> 0 /* typically */

CHAROUT(,"Hello") -> 2 /* maybe */

Note: This routine is often best called as a subroutine. The residual count is then available in the
variable RESULT.

For example:

Call CHAROUT myfile,"Hello"

Call CHAROUT myfile,"Hi",6

Call CHAROUT myfile

8.4.16. CHARS (Characters Remaining)

>>-CHARS(--+------+--)---><

+-name-+

Returns the total number of characters remaining in the character input streamname. The count includes
any line separator characters, if these are defined for the stream. In the case of persistent streams, it is the
count of characters from the current read position. (SeeInput and Output Streamsfor a discussion of
Rexx input and output.) If you omitname, the number of characters available in the default input stream
(STDIN) is returned.

305

Chapter 8. Functions

The total number of characters remaining cannot be determined for some streams (for example, STDIN).
For these streams, the CHARS function returns1 to indicate that data is present, or0 if no data is present.
For windows devices, CHARS always returns1.

Here are some examples:

CHARS(myfile) -> 42 /* perhaps */

CHARS(nonfile) -> 0

CHARS() -> 1 /* perhaps */

8.4.17. COMPARE

>>-COMPARE(string1,string2--+------+--)------------------------><

+-,pad-+

Returns0 if the stringsstring1andstring2are identical. Otherwise, it returns the position of the first
character that does not match. The shorter string is padded on the right withpad if necessary. The default
padcharacter is a blank.

Here are some examples:

COMPARE("abc","abc") -> 0

COMPARE("abc","ak") -> 2

COMPARE("ab ","ab") -> 0

COMPARE("ab ","ab"," ") -> 0

COMPARE("ab ","ab","x") -> 3

COMPARE("ab-- ","ab","-") -> 5

8.4.18. CONDITION

>>-CONDITION(--+--------+--)-----------------------------------><

+-option-+

Returns the condition information associated with the current trapped condition. (SeeConditions and
Condition Trapsfor a description of condition traps.) You can request the following pieces of
information:

• The name of the current trapped condition

• Any descriptive string associated with that condition

• Any condition-specific information associated with the current trapped condition

• The instruction processed as a result of the condition trap (CALL or SIGNAL)

• The status of the trapped condition

In addition, you can request a condition object containing all of the preceding information.

To select the information to be returned, use the followingoptions. (Only the capitalized letter is needed;
all characters following it are ignored.)

306

Chapter 8. Functions

Additional

returns any additional object information associated with the current trapped condition. See
Additional Object Informationfor a list of possible values. If no additional object information is
available or no condition has been trapped, the language processor returns the NIL object.

Condition name

returns the name of the current trapped condition. For user conditions, the returned string is a
concatenation of the wordUSER and the user condition name, separated by a blank.

Description

returns any descriptive string associated with the current trapped condition. SeeDescriptive Strings
for the list of possible values. If no description is available or no condition has been trapped, it
returns a null string.

Instruction

returns eitherCALL or SIGNAL, the keyword for the instruction processed when the current condition
was trapped. This is the default if you omitoption. If no condition has been trapped, it returns a null
string.

Object

returns an object that contains all the information about the current trapped condition. See
Conditions and Condition Trapsfor more information. If no condition has been trapped, it returns
the NIL object.

Status

returns the status of the current trapped condition. This can change during processing, and is one of
the following:

• ON - the condition is enabled

• OFF - the condition is disabled

• DELAY - any new occurrence of the condition is delayed or ignored

If no condition has been trapped, a null string is returned.

Here are some examples:

CONDITION() -> "CALL" /* perhaps */

CONDITION("C") -> "FAILURE"

CONDITION("I") -> "CALL"

CONDITION("D") -> "FailureTest"

CONDITION("S") -> "OFF" /* perhaps */

Note: The CONDITION function returns condition information that is saved and restored across
subroutine calls (including those a CALL ON condition trap causes). Therefore, after a subroutine
called with CALL ON trapname has returned, the current trapped condition reverts to the condition
that was current before the CALL took place (which can be none). CONDITION returns the values it
returned before the condition was trapped.

307

Chapter 8. Functions

8.4.19. COPIES

>>-COPIES(string,n)--><

Returnsn concatenated copies ofstring. Then must be a positive whole number or zero.

Here are some examples:

COPIES("abc",3) -> "abcabcabc"

COPIES("abc",0) -> ""

8.4.20. COUNTSTR

>>-COUNTSTR(needle,haystack)-----------------------------------><

Returns a count of the occurrences ofneedlein haystackthat do not overlap. The following defines the
effect:

result=0

$tempx=pos(needle,haystack)

do while $temp > 0

result=result+1

$temp=pos(needle,haystack,$temp+length(needle))

end

Here are some examples:

COUNTSTR("1","101101") -> 4

COUNTSTR("KK","J0KKK0") -> 1

8.4.21. D2C (Decimal to Character)

>>-D2C(wholenumber--+----+--)----------------------------------><

+-,n-+

Returns a string, in character format, that is the ASCII representation of the decimal number. If you
specifyn, it is the length of the final result in characters; leading "00"x (for a positivewholenumber) or
"FF"x (for a negativewholenumber) characters are added to the result string as necessary.n must be a
positive whole number or zero.

Wholenumbermust not have more digits than the current setting of NUMERIC DIGITS.

If you omit n, wholenumbermust be a positive whole number or zero, and the result length is as needed.
Therefore, the returned result has no leading "00"x characters.

Here are some examples:

308

Chapter 8. Functions

D2C(65) -> "A" /* "41"x is an ASCII "A" */

D2C(65,1) -> "A"

D2C(65,2) -> " A" /* the leading character is a "00"x */

D2C(65,5) -> " A" /* the leading characters are "00"x */

D2C(109) -> "m" /* "6D"x is an ASCII "m" */

D2C(-109,1) -> "ô" /* "93"x is an ASCII "ô" */

D2C(76,2) -> " L" /* "4C"x is an ASCII "L" */

D2C(-180,2) -> " L" /* the leading character is a "FF"x */

Implementation maximum: The output string must not have more than 250 significant characters,
although it can be longer if it contains leading sign characters ("00"x and "FF"x).

8.4.22. D2X (Decimal to Hexadecimal)

>>-D2X(wholenumber--+----+--)----------------------------------><

+-,n-+

Returns a string, in character format, that representswholenumber, a decimal number, converted to
hexadecimal. The returned string uses uppercase alphabetics for the valuesA-F and does not include
blanks.

Wholenumbermust not have more digits than the current setting of NUMERIC DIGITS.

If you specifyn, it is the length of the final result in characters. After conversion the input string is
sign-extended to the required length. If the number is too big to fitn characters, it is truncated on the left.
n must be a positive whole number or zero.

If you omit n, wholenumbermust be a positive whole number or zero, and the returned result has no
leading zeros.

Here are some examples:

D2X(9) -> "9"

D2X(129) -> "81"

D2X(129,1) -> "1"

D2X(129,2) -> "81"

D2X(129,4) -> "0081"

D2X(257,2) -> "01"

D2X(-127,2) -> "81"

D2X(-127,4) -> "FF81"

D2X(12,0) -> ""

Implementation maximum: The output string must not have more than 500 significant hexadecimal
characters, although it can be longer if it contains leading sign characters (0 and F).

8.4.23. DATATYPE

>>-DATATYPE(string--+-------+--)-------------------------------><

+-,type-+

309

Chapter 8. Functions

ReturnsNUM if you specify onlystringand ifstring is a valid Rexx number that can be added to 0 without
error; returnsCHAR if string is not a valid number.

If you specifytype, it returns1 if stringmatches the type. Otherwise, it returns0. If string is null, the
function returns0 (except when thetypeis X or B, for which DATATYPE returns1 for a null string). The
following are validtypes. (Only the capitalized letter, or the number of the last type listed, is needed; all
characters following it are ignored. Note that for thehexadecimal option, you must start your string
specifying the name of the option withx rather thanh.)

Alphanumeric

returns1 if stringcontains only characters from the rangesa-z, A-Z, and0-9.

Binary

returns1 if stringcontains only the character0 or 1, or a blank. Blanks can appear only between
groups of 4 binary characters. It also returns1 if string is a null string, which is a valid binary string.

Lowercase

returns1 if stringcontains only characters from the rangea-z.

Mixed case

returns1 if stringcontains only characters from the rangesa-z andA-Z.

Number

returns1 if DATATYPE(string) returnsNUM.

Symbol

returns1 if string is a valid symbol, that is, ifSYMBOL(string) does not returnBAD. (SeeSymbols.)
Note that both uppercase and lowercase alphabetics are permitted.

Uppercase

returns1 if stringcontains only characters from the rangeA-Z.

Variable

returns1 if stringcould appear on the left-hand side of an assignment without causing a SYNTAX
condition.

Whole number

returns1 if string is a Rexx whole number under the current setting of NUMERIC DIGITS.

heXadecimal

returns1 if stringcontains only characters from the rangesa-f, A-F, 0-9, and blank (as long as
blanks appear only between pairs of hexadecimal characters). It also returns1 if string is a null
string, which is a valid hexadecimal string.

9 digits

returns1 if DATATYPE(string,"W") returns1 when NUMERIC DIGITS is set to9.

310

Chapter 8. Functions

Here are some examples:

DATATYPE(" 12 ") -> "NUM"

DATATYPE("") -> "CHAR"

DATATYPE("123*") -> "CHAR"

DATATYPE("12.3","N") -> 1

DATATYPE("12.3","W") -> 0

DATATYPE("Fred","M") -> 1

DATATYPE("Fred","U") -> 0

DATATYPE("Fred","L") -> 0

DATATYPE("?20K","s") -> 1

DATATYPE("BCd3","X") -> 1

DATATYPE("BC d3","X") -> 1

Note: The DATATYPE function tests the meaning or type of characters in a string, independent of the
encoding of those characters (for example, ASCII or EBCDIC).

8.4.24. DATE

>>-DATE(-->

>--+---+-->

+-option--+---+-+

+-,string--+----------+---------------------------+

| +-,option2-+ |

+-+-,--,------------------+--+-,osep------------+-+

+-,string--+-,option2-+-+ +-+-,osep-+--,isep-+

+-,--------+ +-,-----+

>--)---><

Returns, by default, the local date in the format:dd mon yyyy(day month year--for example,13 Nov

1998), with no leading zero or blank on the day. The first three characters of the English name of the
month are used.

You can use the followingoptions to obtain specific formats. (Only the capitalized letter is needed; all
characters following it are ignored.)

Base

returns the number of complete days (that is, not including the current day) since and including the
base date, 1 January 0001, in the format:dddddd(no leading zeros or blanks). The expression
DATE("B")//7 returns a number in the range0-6 that corresponds to the current day of the week,
where0 is Monday and6 is Sunday.

Note: The base date of 1 January 0001 is determined by extending the current Gregorian
calendar backward (365 days each year, with an extra day every year that is divisible by 4

311

Chapter 8. Functions

except century years that are not divisible by 400. It does not take into account any errors in the
calendar system that created the Gregorian calendar originally.

Days

returns the number of days, including the current day, that have passed this year in the formatddd
(no leading zeros or blanks).

European

returns the date in the format dd/mm/yy.

Language

returns the date in an implementation- and language-dependent, or local, date format. The format is
dd month yyyy. The name of the month is according to the national language installed on the
system. If no local date format is available, the default format is returned.

Note: This format is intended to be used as a whole; Rexx programs must not make any
assumptions about the form or content of the returned string.

Month

returns the full English name of the current month, for example,August.

Normal

returns the date in the formatdd mon yyyy. This is the default.

Ordered

returns the date in the formatyy/mm/dd(suitable for sorting, for example).

Standard

returns the date in the formatyyyymmdd(suitable for sorting, for example).

Usa

returns the date in the formatmm/dd/yy.

Weekday

returns the English name for the day of the week, in mixed case, for example,Tuesday.

Here are some examples, assuming today is 13 November 1996:

DATE() -> "13 Nov 1996"

DATE("B") -> 728975

DATE("D") -> 318

DATE("E") -> "13/11/96"

DATE("L") -> "13 November 1996"

312

Chapter 8. Functions

DATE("M") -> "November"

DATE("N") -> "13 Nov 1996"

DATE("O") -> "96/11/13"

DATE("S") -> "19961113"

DATE("U") -> "11/13/96"

DATE("W") -> "Wednesday"

Note: The first call to DATE or TIME in one clause causes a time stamp to be made that is then used
for all calls to these functions in that clause. Therefore, several calls to any of the DATE or TIME
functions, or both, in a single expression or clause are consistent with each other.

If you specifystring, DATE returns the date corresponding tostring in the formatoption. Thestring
must be supplied in the formatoption2. Theoption2format must specify day, month, and year (that is,
not "D", "L", "M", or "W"). The default foroption2is "N", so you need to specifyoption2if string is not
in the Normal format. Here are some examples:

DATE("O","13 Feb 1923") -> "23/02/13"

DATE("O","06/01/50","U") -> "50/06/01"

If you specify an output separator characterosep, the days, month, and year returned are separated by
this character. Any nonalphanumeric character or an empty string can be used. A separator character is
only valid for the formats "E", "N", "O", "S", and "U". Here are some examples:

DATE("S","13 Feb 1996","N","-") -> "1996-02-13"

DATE("N","13 Feb 1996","N","") -> "13Feb1996"

DATE("N","13 Feb 1996","N","-") -> "13-Feb-1996"

DATE("O","06/01/50","U","") -> "500601"

DATE("E","02/13/96","U",".") -> "13.02.96"

DATE("N", , ,"_") -> "26_Mar_1998" (today)

In this way, formats can be created that are derived from their respective default format, which is the
format associated withoptionusing its default separator character. The default separator character for
each of these formats is:

Option Default separator

European "/"

Normal " "

Ordered "/"

Standard "" (empty string)

Usa "/"

If you specify astringcontaining a separator that is different from the default separator character of
option2, you must also specifyisepto indicate which separator character is valid forstring. Basically,
any date format that can be generated with any valid separator character can be used as input datestring
as long as its format has the generalized form specified byoption2and its separator character matches
the character specified byisep.

Here are some examples:

DATE("S","1996-11-13","S","","-") -> "19961113"

313

Chapter 8. Functions

DATE("S","13-Nov-1996","N","","-") -> "19961113"

DATE("O","06*01*50","U","","*") -> "500601"

DATE("U","13.Feb.1996","N", ,".") -> "02/13/96"

You can determine the number of days between two dates; for example:

say date("B","12/25/96","U")-date("B") " shopping days till Christmas!"

If stringdoes not include the century butoptiondefines that the century be returned as part of the date,
the century is determined depending on whether the year to be returned is within the past 50 years or the
next 49 years. Assume, for example, that you specify 10/15/43 forstringand today’s date is 10/27/1998.
In this case, 1943 would be 55 years ago and 2043 would be 45 years in the future. So, 10/15/2043
would be the returned date.

Note: This rule is suitable for dates that are close to today’s date. However, when working with birth
dates, it is recommended that you explicitly provide the century.

8.4.25. DELSTR (Delete String)

>>-DELSTR(string,n--+---------+--)-----------------------------><

+-,length-+

Returnsstringafter deleting the substring that begins at thenth character and is oflengthcharacters. If
you omit length, or if lengthis greater than the number of characters fromn to the end ofstring, the
function deletes the rest ofstring (including thenth character). Thelengthmust be a positive whole
number or zero.n must be a positive whole number. Ifn is greater than the length ofstring, the function
returnsstringunchanged.

Here are some examples:

DELSTR("abcd",3) -> "ab"

DELSTR("abcde",3,2) -> "abe"

DELSTR("abcde",6) -> "abcde"

8.4.26. DELWORD (Delete Word)

>>-DELWORD(string,n--+---------+--)----------------------------><

+-,length-+

Returnsstringafter deleting the substring that starts at thenth word and is oflengthblank-delimited
words. If you omitlength, or if lengthis greater than the number of words fromn to the end ofstring, the
function deletes the remaining words instring (including thenth word). Thelengthmust be a positive
whole number or zero.n must be a positive whole number. Ifn is greater than the number of words in
string, the function returnsstringunchanged. The string deleted includes any blanks following the final
word involved but none of the blanks preceding the first word involved.

Here are some examples:

314

Chapter 8. Functions

DELWORD("Now is the time",2,2) -> "Now time"

DELWORD("Now is the time ",3) -> "Now is "

DELWORD("Now is the time",5) -> "Now is the time"

DELWORD("Now is the time",3,1) -> "Now is time"

DELWORD("Now is the time",2,2) -> "Now time"

8.4.27. DIGITS

>>-DIGITS()--><

Returns the current setting of NUMERIC DIGITS. SeeNUMERIC for more information.

Here is an example:

DIGITS() -> 9 /* by default */

8.4.28. DIRECTORY

>>-DIRECTORY(--+--------------+--)-----------------------------><

+-newdirectory-+

Returns the current directory, changing it tonewdirectoryif an argument is supplied and the named
directory exists. Ifnewdirectoryis not specified, the name of the current directory is returned. Otherwise,
an attempt is made to change to the specifiednewdirectory. If successful, the name of thenewdirectoryis
returned; if an error occurred, null is returned.

For example, the following program fragment saves the current directory and switches to a new
directory; it performs an operation there, and then returns to the former directory.

/* get current directory */

curdir = directory()

/* go play a game */

newdir = directory("/usr/bin") /* Linux type subdirectory */

if newdir = "/usr/games" then

do

fortune /* tell a fortune */

/* return to former directory */

call directory curdir

end

else

say "Can't find /usr/games"

8.4.29. ENDLOCAL (Linux only)

>>-ENDLOCAL()--><

315

Chapter 8. Functions

Restores the directory and environment variables in effect before the lastSETLOCAL function was run.
If ENDLOCAL is not included in a procedure, the initial environment saved by SETLOCAL is restored
upon exiting the procedure.

ENDLOCAL returns a value of 1 if the initial environment is successfully restored and a value of 0 if no
SETLOCAL was issued or the action is otherwise unsuccessful.

Here is an example:

n = SETLOCAL() /* saves the current environment */

/*

The program can now change environment variables

(with the VALUE function) and then work in the

changed environment.

*/

n = ENDLOCAL() /* restores the initial environment */

For additional examples, seeSETLOCAL.

8.4.30. ERRORTEXT

>>-ERRORTEXT(n)--><

Returns the Rexx error message associated with error numbern. n must be in the range0-99. It returns
the null string ifn is in the allowed range but is not a defined Rexx error number. SeeError Numbers and
Messagesfor a complete description of error numbers and messages.

Here are some examples:

ERRORTEXT(16) -> "Label not found"

ERRORTEXT(60) -> ""

8.4.31. FILESPEC

>>-FILESPEC(option,filespec)-----------------------------------><

Returns a selected element of filespec, a given file specification, identified by one of the following strings
for option:

Drive

The drive letter of the given filespec.

Path

The directory path of the givenfilespec.

Name

The file name of the givenfilespec.

If the requested string is not found, then FILESPEC returns a null string ("").

316

Chapter 8. Functions

Note: Only the initial letter of option is needed.

Here are some Windows examples:

thisfile = "C:\WINDOWS\UTIL\SYSTEM.INI"

say FILESPEC("drive",thisfile) /* says "C:" */

say FILESPEC("path",thisfile) /* says "\WINDOWS\UTIL\" */

say FILESPEC("name",thisfile) /* says "SYSTEM.INI" */

part = "name"

say FILESPEC(part,thisfile) /* says "SYSTEM.INI" */

8.4.32. FORM

>>-FORM()--><

Returns the current setting of NUMERIC FORM. SeeNUMERIC for more information.

Here is an example:

FORM() -> "SCIENTIFIC" /* by default */

8.4.33. FORMAT

>>-FORMAT(number-->

>--+---+-->

+-,--+--------+--+--+-+

+-before-+ +-,--+-------+--+------------------------+-+

+-after-+ +-,--+------+--+-------+-+

+-expp-+ +-,expt-+

>--)---><

Returnsnumber, rounded and formatted.

Thenumberis first rounded according to standard Rexx rules, as though the operationnumber+0 had
been carried out. The result is precisely that of this operation if you specify onlynumber. If you specify
any other options, thenumberis formatted as described in the following.

Thebeforeandafter options describe how many characters are used for the integer and decimal parts of
the result, respectively. If you omit either or both of them, the number of characters used for that part is
as needed.

If beforeis not large enough to contain the integer part of the number (plus the sign for a negative
number), an error results. Ifbeforeis larger than needed for that part, the number is padded on the left
with blanks. Ifafter is not the same size as the decimal part of the number, the number is rounded (or
extended with zeros) to fit. Specifying0 causes the number to be rounded to an integer.

Here are some examples:

317

Chapter 8. Functions

FORMAT("3",4) -> " 3"

FORMAT("1.73",4,0) -> " 2"

FORMAT("1.73",4,3) -> " 1.730"

FORMAT("-.76",4,1) -> " -0.8"

FORMAT("3.03",4) -> " 3.03"

FORMAT(" - 12.73", ,4) -> "-12.7300"

FORMAT(" - 12.73") -> "-12.73"

FORMAT("0.000") -> "0"

The first three arguments are as described previously. In addition,exppandexptcontrol the exponent part
of the result, which, by default, is formatted according to the current NUMERIC settings of DIGITS and
FORM.exppsets the number of places for the exponent part; the default is to use as many as needed
(which can be zero).exptspecifies when the exponential expression is used. The default is the current
setting of NUMERIC DIGITS.

If exppis 0, the number is not in exponential notation. Ifexppis not large enough to contain the
exponent, an error results.

If the number of places needed for the integer or decimal part exceedsexptor twiceexpt, respectively,
the exponential notation is used. Ifexptis 0, the exponential notation is always used unless the exponent
would be0. (If exppis 0, this overrides a0 value ofexpt.) If the exponent would be0 when a nonzero
exppis specified, thenexpp+2 blanks are supplied for the exponent part of the result. If the exponent
would be0 andexppis not specified, the number is not an exponential expression.

Here are some examples:

FORMAT("12345.73", , ,2,2) -> "1.234573E+04"

FORMAT("12345.73", ,3, ,0) -> "1.235E+4"

FORMAT("1.234573", ,3, ,0) -> "1.235"

FORMAT("12345.73", , ,3,6) -> "12345.73"

FORMAT("1234567e5", ,3,0) -> "123456700000.000"

8.4.34. FUZZ

>>-FUZZ()--><

Returns the current setting of NUMERIC FUZZ. SeeNUMERIC for more information.

Here is an example:

FUZZ() -> 0 /* by default */

8.4.35. INSERT

>>-INSERT(new,target-->

>--+---------------------------------------+--)----------------><

+-,--+---+--+-------------------------+-+

+-n-+ +-,--+--------+--+------+-+

+-length-+ +-,pad-+

318

Chapter 8. Functions

Inserts the stringnew, padded or truncated to lengthlength, into the stringtargetafter thenth character.
The default value forn is 0, which means insertion before the beginning of the string. If specified,n and
lengthmust be positive whole numbers or zero. Ifn is greater than the length of the target string, the
stringnewis padded at the beginning. The default value forlengthis the length ofnew. If lengthis less
than the length of the stringnew, then INSERT truncatesnewto lengthlength. The defaultpadcharacter
is a blank.

Here are some examples:

INSERT(" ","abcdef",3) -> "abc def"

INSERT("123","abc",5,6) -> "abc 123 "

INSERT("123","abc",5,6,"+") -> "abc++123+++"

INSERT("123","abc") -> "123abc"

INSERT("123","abc", ,5,"-") -> "123--abc"

8.4.36. LASTPOS (Last Position)

>>-LASTPOS(needle,haystack--+--------+--)----------------------><

+-,start-+

Returns the position of the last occurrence of one string,needle, in another,haystack. (See alsoPOS
(Position).) It returns0 if needleis a null string or not found. By default, the search starts at the last
character ofhaystackand scans backward. You can override this by specifyingstart, the point at which
the backward scan starts.start must be a positive whole number and defaults toLENGTH(haystack) if
larger than that value or omitted.

Here are some examples:

LASTPOS(" ","abc def ghi") -> 8

LASTPOS(" ","abcdefghi") -> 0

LASTPOS("xy","efgxyz") -> 4

LASTPOS(" ","abc def ghi",7) -> 4

8.4.37. LEFT

>>-LEFT(string,length--+------+--)-----------------------------><

+-,pad-+

Returns a string of lengthlength, containing the leftmostlengthcharacters ofstring. The string returned
is padded withpadcharacters, or truncated, on the right as needed. The defaultpadcharacter is a blank.
lengthmust be a positive whole number or zero. The LEFT function is exactly equivalent to:

>>-SUBSTR(string,1,length--+------+--)-------------------------><

+-,pad-+

Here are some examples:

LEFT("abc d",8) -> "abc d "

LEFT("abc d",8,".") -> "abc d..."

319

Chapter 8. Functions

LEFT("abc def",7) -> "abc de"

8.4.38. LENGTH

>>-LENGTH(string)--><

Returns the length ofstring.

Here are some examples:

LENGTH("abcdefgh") -> 8

LENGTH("abc defg") -> 8

LENGTH("") -> 0

8.4.39. LINEIN (Line Input)

>>-LINEIN(--+------+--+-------------------------+--)-----------><

+-name-+ +-,--+------+--+--------+-+

+-line-+ +-,count-+

Returnscountlines read from the character input streamname. Thecountmust be1 or 0 (To understand
the input and output functions, seeInput and Output Streams.) If you omit name, the line is read from the
default input stream, STDIN. The defaultcountis 1.

For persistent streams, a read position is maintained for each stream. Any read from the stream starts at
the current read position by default. Under certain circumstances, a call to LINEIN returns a partial line.
This can happen if the stream has already been read with the CHARIN function, and part but not all of a
line (and its termination, if any) has already been read. When the language processor completes reading,
the read position is moved to the beginning of the next line.

A line number may be given to set the read position to the start of a specified line. This line number must
be positive and within the bounds of the stream, and must not be specified for a transient stream. The
read position can be set to the beginning of the stream by givingline a value of1.

If you give acountof 0, then no characters are read and a null string is returned.

For transient streams, if a complete line is not available in the stream, then execution of the program
usually stops until the line is complete. If, however, it is impossible for a line to be completed because of
an error or another problem, the NOTREADY condition is raised (seeErrors during Input and Output)
and LINEIN returns whatever characters are available.

Here are some examples:

LINEIN() /* Reads one line from the */

/* default input stream; */

/* usually this is an entry */

/* typed at the keyboard */

myfile = "ANYFILE.TXT"

LINEIN(myfile) -> "Current line" /* Reads one line from */

/* ANYFILE.TXT, beginning */

/* at the current read */

320

Chapter 8. Functions

/* position. (If first call, */

/* file is opened and the */

/* first line is read.) */

LINEIN(myfile,1,1) -> "first line" /* Opens and reads the first */

/* line of ANYFILE.TXT (if */

/* the file is already open, */

/* reads first line); sets */

/* read position on the */

/* second line. */

LINEIN(myfile,1,0) -> "" /* No read; opens ANYFILE.TXT */

/* (if file is already open, */

/* sets the read position to */

/* the first line). */

LINEIN(myfile, ,0) -> "" /* No read; opens ANYFILE.TXT */

/* (no action if the file is */

/* already open). */

LINEIN("QUEUE:") -> "Queue line" /* Read a line from the queue. */

/* If the queue is empty, the */

/* program waits until a line */

/* is put on the queue. */

Note: If you want to read complete lines from the default input stream, as in a dialog with a user, use
the PULL or PARSE PULL instruction.

The PARSE LINEIN instruction is also useful in certain cases. (SeePARSE LINEIN.)

8.4.40. LINEOUT (Line Output)

>>-LINEOUT(--+------+--+--------------------------+--)---------><

+-name-+ +-,--+--------+--+-------+-+

+-string-+ +-,line-+

Returns0 if successful in writingstring to the character output streamname, or 1 if an error occurs while
writing the line. (To understand the input and output functions, seeInput and Output Streams.) If you
omit stringbut includeline, only the write position is repositioned. Ifstring is a null string, LINEOUT
repositions the write position (if you includeline) and does a carriage return. Otherwise, the stream is
closed. LINEOUT adds a line-feed and a carriage-return character to the end ofstring.

If you omit name, the line is written to the default output stream STDOUT (usually the display).

For persistent streams, a write position is maintained for each stream. Any write to the stream starts at
the current write position by default. (Under certain circumstances the characters written by a call to
LINEOUT can be added to a partial line previously written to the stream with the CHAROUT routine.
LINEOUT stops a line at the end of each call.) When the language processor completes writing, the
write position is set to the beginning of the line following the one just written. When the stream is first

321

Chapter 8. Functions

opened, the write position is at the end of the stream, so that calls to LINEOUT append lines to the end
of the stream.

You can specify aline number to set the write position to the start of a particular line in a persistent
stream. This line number must be positive and within the bounds of the stream unless it is a binary
stream (though it can specify the line number immediately after the end of the stream). A value of1 for
line refers to the first line in the stream. Note that, unlike CHAROUT, you cannot specify a position
beyond the end of the stream for non-binary streams.

You can omit thestring for persistent streams. If you specifyline, the write position is set to the start of
the line that was given, nothing is written to the stream, and the function returns0. If you specify neither
line norstring, the stream is closed. Again, the function returns0.

Execution of the program usually stops until the output operation is effectively complete. For example,
when data is sent to a printer, the system accepts the data and returns control to Rexx, even though the
output data might not have been printed. Rexx considers this to be complete, even though the data has
not been printed. If, however, it is impossible for a line to be written, the NOTREADY condition is raised
(seeErrors during Input and Output), and LINEOUT returns a result of1, that is, the residual count of
lines written.

Here are some examples:

LINEOUT(,"Display this") /* Writes string to the default */

/* output stream (usually, the */

/* display); returns 0 if */

/* successful */

myfile = "ANYFILE.TXT"

LINEOUT(myfile,"A new line") /* Opens the file ANYFILE.TXT and */

/* appends the string to the end. */

/* If the file is already open, */

/* the string is written at the */

/* current write position. */

/* Returns 0 if successful. */

LINEOUT(myfile,"A new start",1) /* Opens the file (if not already */

/* open); overwrites first line */

/* with a new line. */

/* Returns 0 if successful. */

LINEOUT(myfile, ,1) /* Opens the file (if not already */

/* open). No write; sets write */

/* position at first character. */

LINEOUT(myfile) /* Closes ANYFILE.TXT */

LINEOUT is often most useful when called as a subroutine. The return value is then available in the
variable RESULT. For example:

Call LINEOUT "A:rexx.bat","Shell",1

Call LINEOUT ,"Hello"

322

Chapter 8. Functions

Note: If the lines are to be written to the default output stream without the possibility of error, use the
SAY instruction instead.

8.4.41. LINES (Lines Remaining)

+-, Normal-+

>>-LINES(--+------+-----+----------+---)-----------------------><

+-name-+ +-, Count--+

Returns1 if any data remains between the current read position and the end of the character input stream
name. It returns0 if no data remains. In effect, LINES reports whether a read action that CHARIN (see
CHARIN (Character Input)) or LINEIN (seeLINEIN (Line Input)) performs will succeed. (To
understand the input and output functions, seeInput and Output Streams.)

The ANSI Standard has extended this function to allow an option: "Count". If this option is used, LINES
returns the actual number of complete lines remaining in the stream, irrespective of how long this
operation takes.

The option "Normal" returns 1 if there is at least one complete line remaining in the file or 0 if no lines
remain.

The default is "Normal".

Here are some examples:

LINES(myfile) -> 0 /* at end of the file */

LINES() -> 1 /* data remains in the */

/* default input stream */

/* STDIN: */

Note: The CHARS function returns the number of characters in a persistent stream or the presence
of data in a transient stream.

8.4.42. MAX (Maximum)

+-,------+

V |

>>-MAX(----number-+--)---><

Returns the largest number of the list specified, formatted according to the current NUMERIC settings.
You can specify any number ofnumbers.

Here are some examples:

MAX(12,6,7,9) -> 12

MAX(17.3,19,17.03) -> 19

MAX(-7,-3,-4.3) -> -3

323

Chapter 8. Functions

MAX(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21) -> 21

8.4.43. MIN (Minimum)

+-,------+

V |

>>-MIN(----number-+--)---><

Returns the smallest number of the list specified, formatted according to the current NUMERIC settings.
You can specify any number ofnumbers.

Here are some examples:

MIN(12,6,7,9) -> 6

MIN(17.3,19,17.03) -> 17.03

MIN(-7,-3,-4.3) -> -7

MIN(21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1) -> 1

8.4.44. OVERLAY

>>-OVERLAY(new,target--->

>--+---------------------------------------+--)----------------><

+-,--+---+--+-------------------------+-+

+-n-+ +-,--+--------+--+------+-+

+-length-+ +-,pad-+

Returns the stringtarget, which, starting at thenth character, is overlaid with the stringnew, padded or
truncated to lengthlength. The overlay must extend beyond the end of the originaltargetstring. If you
specifylength, it must be a positive whole number or zero. The default value forlengthis the length of
new. If n is greater than the length of the target string, the stringnewis padded at the beginning. The
defaultpadcharacter is a blank, and the default value forn is 1. If you specifyn, it must be a positive
whole number.

Here are some examples:

OVERLAY(" ","abcdef",3) -> "ab def"

OVERLAY(".","abcdef",3,2) -> "ab. ef"

OVERLAY("qq","abcd") -> "qqcd"

OVERLAY("qq","abcd",4) -> "abcqq"

OVERLAY("123","abc",5,6,"+") -> "abc+123+++"

8.4.45. POS (Position)

>>-POS(needle,haystack--+--------+--)--------------------------><

+-,start-+

324

Chapter 8. Functions

Returns the position of one string,needle, in another,haystack. (See alsoLASTPOS (Last Position).) It
returns0 if needleis a null string or not found or ifstart is greater than the length ofhaystack. By
default, the search starts at the first character ofhaystack, that is, the value ofstart is 1. You can override
this by specifyingstart (which must be a positive whole number), the point at which the search starts.

Here are some examples:

POS("day","Saturday") -> 6

POS("x","abc def ghi") -> 0

POS(" ","abc def ghi") -> 4

POS(" ","abc def ghi",5) -> 8

8.4.46. QUEUED

>>-QUEUED()--><

Returns the number of lines remaining in the external data queue when the function is called. (SeeInput
and Output Streamsfor a discussion of Rexx input and output.)

Here is an example:

QUEUED() -> 5 /* Perhaps */

8.4.47. RANDOM

>>-RANDOM(--+------------------------------------+--)----------><

+--max-------------------------------+

+-+--------+-,-+-------+--+--------+-+

+--min--+ +--max--+ +--,seed-+

Returns a quasi-random nonnegative whole number in the rangemin to maxinclusive. If you specifymax
or min,max, thenmaxminusmincannot exceed 100000.minandmaxdefault to0 and999, respectively.
To start a repeatable sequence of results, use a specificseedas the third argument, as described in Note1.
Thisseedmust be a positive whole number from 0 to 999999999.

Here are some examples:

RANDOM() -> 305

RANDOM(5,8) -> 7

RANDOM(2) -> 0 /* 0 to 2 */

RANDOM(, ,1983) -> 123 /* reproducible */

Notes:

1. To obtain a predictable sequence of quasi-random numbers, use RANDOM a number of times, but
specify aseedonly the first time. For example, to simulate 40 throws of a 6-sided, unbiased die:

sequence = RANDOM(1,6,12345) /* any number would */

/* do for a seed */

325

Chapter 8. Functions

do 39

sequence = sequence RANDOM(1,6)

end

say sequence

The numbers are generated mathematically, using the initialseed, so that as far as possible they
appear to be random. Running the program again produces the same sequence; using a different
initial seedalmost certainly produces a different sequence. If you do not supply aseed, the first time
RANDOM is called, an arbitrary seed is used. Hence, your program usually gives different results
each time it is run.

2. The random number generator is global for an entire program; the current seed is not saved across
internal routine calls.

8.4.48. REVERSE

>>-REVERSE(string)---><

Returnsstring reversed.

Here are some examples:

REVERSE("ABc.") -> ".cBA"

REVERSE("XYZ ") -> " ZYX"

8.4.49. RIGHT

>>-RIGHT(string,length--+------+--)----------------------------><

+-,pad-+

Returns a string of lengthlengthcontaining the rightmostlengthcharacters ofstring. The string returned
is padded withpadcharacter, or truncated, on the left as needed. The defaultpadcharacter is a blank.
The lengthmust be a positive whole number or zero.

Here are some examples:

RIGHT("abc d",8) -> " abc d"

RIGHT("abc def",5) -> "c def"

RIGHT("12",5,"0") -> "00012"

8.4.50. RXFUNCADD

>>-RXFUNCADD(name,module-+------------+-)----------------------><

+-,procedure-+

Registers the functionname, making it available to Rexx procedures. A return value 0 signifies
successful registration. A return value 1 signifies that the function is already registered.

rxfuncadd("SysCls","rexxutil", "SysCls") -> 0 /* if not already registered */

326

Chapter 8. Functions

-> 1 /* if already registered */

Note: A return code of 0 signifies only that the function is successfully registered, but not that the
function or module is actually available.

Note: The name and module arguments are case-sensitive in some environments like Linux

8.4.51. RXFUNCDROP

>>-RXFUNCDROP(name)--><

Removes (deregisters) the functionnamefrom the list of available functions. A zero return value
signifies successful removal.

rxfuncdrop("SysLoadFuncs") -> 0 /* if successfully removed */

8.4.52. RXFUNCQUERY

>>-RXFUNCQUERY(name)---><

Queries the list of available functions for the functionname. It returns a value of0 if the function is
registered, and a value of1 if it is not.

rxfuncquery("SysLoadFuncs") -> 0 /* if registered */

8.4.53. RXQUEUE

>>-RXQUEUE(-+-"Create"-+------------+-+-)----------------------><

| +-,queuename-+ |

+-"Delete",queuename------+

+-"Get"-------------------+

+-"Set",newqueuename------+

Creates and deletes external data queues. It also sets and queries their names.

"Create"

creates a queue with the namequeuenameif you specifyqueuenameand if no queue of that name
exists already. You must not use SESSION as aqueuename. If you specify noqueuename, then the
language processor provides a name. The name of the queue is returned in either case.

The maximum length ofqueuenamecan be 1024 characters.

327

Chapter 8. Functions

Many queues can exist at the same time, and most systems have sufficient resources available to
support several hundred queues at a time. If a queue with the specified name exists already, a queue
is still created with a name assigned by the language processor. The assigned name is then returned
to you.

"Delete"

deletes the named queue. It returns 0 if successful or a nonzero number if an error occurs. Possible
return values are:

0

Queue has been deleted.

5

Not a valid queue name or tried to delete queue named "SESSION".

9

Specified queue does not exist.

10

Queue is busy; wait is active.

12

A memory failure has occurred.

1002

Failure in memory manager.

"Get"

returns the name of the queue currently in use.

"Set"

sets the name of the current queue tonewqueuenameand returns the previously active queue name.

The first parameter determines the function. Only the first character of the first parameter is significant.
The parameter can be entered in any case. The syntax for a valid queue name is the same as for a valid
Rexx symbol.

The second parameter specified for Create, Set, and Delete must follow the same syntax rules as the
Rexx variable names. There is no connection, however, between queue names and variable names. A
program can have a variable and a queue with the same name. The actual name of the queue is the
uppercase value of the name requested.

Named queues prevent different Rexx programs that are running in a single session from interfering with
each other. They allow Rexx programs running in different sessions to synchronize execution and pass
data. LINEIN("QUEUE:") is especially useful because the calling program stops running until another
program places a line on the queue.

328

Chapter 8. Functions

/* default queue */

rxqueue("Get") -> "SESSION"

/* assuming FRED does not already exist */

rxqueue("Create", "Fred") -> "FRED"

/* assuming SESSION had been active */

rxqueue("Set", "Fred") -> "SESSION"

/* assuming FRED did not exist */

rxqueue("delete", "Fred") -> "0"

8.4.54. SETLOCAL (Linux only)

>>-SETLOCAL()--><

Saves the current working directory and the current values of the environment variables that are local to
the current process.

For example, SETLOCAL can be used to save the current environment before changing selected settings
with the VALUE function (seeVALUE. To restore the directory and environment, use the ENDLOCAL
function (seeENDLOCAL.

SETLOCAL returns a value of 1 if the initial directory and environment are successfully saved and a
value of 0 if unsuccessful. If SETLOCAL is not followed by an ENDLOCAL function in a procedure,
the initial environment saved by SETLOCAL is restored upon exiting the procedure.

Here is an example:

/* Current path is "user/bin" */

n = SETLOCAL() /* saves all environment settings */

/* Now use the VALUE function to change the PATH variable */

p = VALUE("Path","home/user/bin"."ENVIRONMENT")

/* Programs in directory home/user/bin can now be run */

n = ENDLOCAL() /* restores initial environment including */

/* the changed PATH variable, which is */

/* "user/bin" */

8.4.55. SIGN

>>-SIGN(number)--><

Returns a number that indicates the sign ofnumber. Thenumberis first rounded according to standard
Rexx rules, as though the operationnumber+0 had been carried out. It returns-1 if numberis less than0,
0 if it is 0, and1 if it is greater than0.

Here are some examples:

SIGN("12.3") -> 1

SIGN(" -0.307") -> -1

SIGN(0.0) -> 0

329

Chapter 8. Functions

8.4.56. SOURCELINE

>>-SOURCELINE(--+---+--)---------------------------------------><

+-n-+

Returns the line number of the final line in the program if you omitn. If you specifyn, returns thenth
line in the program if available at the time of execution. Otherwise, it returns a null string. If specified,n
must be a positive whole number and must not exceed the number that a call to SOURCELINE with no
arguments returns.

If the Rexx program is in tokenized form the this function raises an error for all attempts to retrieve a line
of the program.

Here are some examples:

SOURCELINE() -> 10

SOURCELINE(1) -> "/* This is a 10-line Rexx program */"

8.4.57. SPACE

>>-SPACE(string--+--------------------+--)---------------------><

+-,--+---+--+------+-+

+-n-+ +-,pad-+

Returns the blank-delimited words instringwith n padcharacters between each word. If you specifyn, it
must be a positive whole number or zero. If it is0, all blanks are removed. Leading and trailing blanks
are always removed. The default forn is 1, and the defaultpadcharacter is a blank.

Here are some examples:

SPACE("abc def ") -> "abc def"

SPACE(" abc def",3) -> "abc def"

SPACE("abc def ",1) -> "abc def"

SPACE("abc def ",0) -> "abcdef"

SPACE("abc def ",2,"+") -> "abc++def"

8.4.58. STREAM

>>-STREAM(name--+-----------------------------------+--)-------><

| +-State----------------------+ |

+-,--+----------------------------+-+

+-Command--,--stream_command-+

+-Description----------------+

Returns a string describing the state of, or the result of an operation upon, the character streamname.
The result may depend on characteristics of the stream that you have specified in other uses of the
STREAM function. (To understand the input and output functions, seeInput and Output Streams.) This
function requests information on the state of an input or output stream or carries out some specific
operation on the stream.

330

Chapter 8. Functions

The first argument,name, specifies the stream to be accessed. The second argument can be one of the
following strings that describe the action to be carried out. (Only the capitalized letter is needed; all
characters following it are ignored.)

Command

an operation (specified by thestream_commandgiven as the third argument) is applied to the
selected input or output stream. The string that is returned depends on the command performed and
can be a null string. The possible input strings for thestream_commandargument are described
later.

Description

returns any descriptive string associated with the current state of the specified stream. It is identical
to the State operation, except that the returned string is followed by a colon and, if available,
additional information about the ERROR or NOTREADY states.

State

returns a string that indicates the current state of the specified stream. This is the default operation.

The returned strings are as described inSTATE.

Note: The state (and operation) of an input or output stream is global to a Rexx program; it is not
saved and restored across internal function and subroutine calls (including those calls that a CALL
ON condition trap causes).

8.4.58.1. Stream Commands

The following stream commands are used to:

• Open a stream for reading, writing, or both.

• Close a stream at the end of an operation.

• Position the read or write position within a persistent stream (for example, a file).

• Get information about a stream (its existence, size, and last edit date).

Thestreamcommandargument must be used when--and only when--you select the operation C
(command). The syntax is:

>>-STREAM(name,"C",streamcommand)------------------------------><

In this form, the STREAM function itself returns a string corresponding to the givenstreamcommandif
the command is successful. If the command is unsuccessful, STREAM returns an error message string in
the same form as theD (Description) operation supplies.

For most error conditions, the additional information is in the form of a numeric return code. This return
code is the value ofERRNOthat is set whenever one of the file system primitives returns with a -1.

331

Chapter 8. Functions

8.4.58.1.1. Command Strings

The argumentstreamcommandcan be any expression that the language processor evaluates to a
command string that corresponds to the following diagram:

+-BOTH--| Write Options |--+

>>-+-OPEN--+--------------------------+--+-------------+-+-----><

| +-READ---------------------+ +-| Options |-+ |

| +-WRITE--| Write Options |-+ |

+-CLOSE---+

+-FLUSH---+

| +- = -+ +-CHAR-+ |

+-+-SEEK-----+--+-----+-offset--+-------+--+------+---+

| +-POSITION-+ +- < -+ +-READ--+ +-LINE-+ |

| +- + -+ +-WRITE-+ |

| +- ; -+ |

+-QUERY--+-DATETIME--------------------------+--------+

+-EXISTS----------------------------+

+-HANDLE----------------------------+

| +-CHAR-+ |

+-+-SEEK-----+--+-READ--+------+--+-+

| +-POSITION-+ | +-LINE-+ | |

| | +-CHAR-+ | |

| +-WRITE--+------+-+ |

| | +-LINE-+ | |

| +-SYS-------------+ |

+-SIZE------------------------------+

+-STREAMTYPE------------------------+

+-TIMESTAMP-------------------------+

Write Options:

|--+---------+--|

+-APPEND--+

+-REPLACE-+

Options:

+-----------------------------------+

V |

|--+------------+----+-NOBUFFER----------------------+-+--------|

+-SHARED-----+ +-BINARY--+-------------------+-+

+-SHAREREAD--+ +-RECLENGTH--length-+

+-SHAREWRITE-+

OPEN

opens the named stream. The default for OPEN is to open the stream for both reading and writing
data, for example,"OPEN BOTH".

The STREAM function itself returns a description string similar to the one that theD option
provides, for example, "READY:" if the named stream is successfully opened, or "ERROR:2" if the
named stream is not found.

332

Chapter 8. Functions

The following is a description of the options for OPEN:

READ

opens the stream for reading only.

WRITE

opens the stream for writing only.

BOTH

opens the stream for both reading and writing. (This is the default.) Separate read and write
pointers are maintained.

APPEND

positions the write pointer at the end of the stream. The write pointer cannot be moved
anywhere within the extent of the file as it existed when the file was opened.

REPLACE

sets the write pointer to the beginning of the stream and truncates the file. In other words, this
option deletes all data that was in the stream when opened.

SHARED

Enables another process to work with the stream in a shared mode. This mode must be
compatible with the shared mode (SHARED, SHAREREAD, or SHAREWRITE) used by the
process that opened the stream.

SHAREREAD

Enables another process to read the stream in a shared mode.

SHAREWRITE

Enables another process to write the stream in a shared mode.

NOBUFFER

turns off buffering of the stream. Thus, all data written to the stream is flushed immediately to
the operating system for writing. This option can severely affect output performance.
Therefore, use it only when data integrity is a concern, or to force interleaved output to a
stream to appear in the exact order in which it was written.

BINARY

causes the stream to be opened in binary mode. This means that line end characters are ignored
and treated as another byte of data. This is intended to force file operations that are compatible
with other Rexx language processors that run on record-based systems, or to process binary
data using the line operations.

Note: Specifying the BINARY option for a stream that does not exist but is opened for writing
also requires the RECLENGTH option to be specified. Omitting the RECLENGTH option in
this case raises an error condition.

333

Chapter 8. Functions

RECLENGTHlength

allows the specification of an exact length for each line in a stream. This allows line operations
on binary-mode streams to operate on individual fixed-length records. Without this option, line
operations on binary-mode files operate on the entire file (for example, as if theRECLENGTH

option were specified with a length equal to that of the file).lengthmust be 1 or greater.

Examples:

stream(strout,"c","open")

stream(strout,"c","open write")

stream(strinp,"c","open read")

stream(strinp,"c","open read shared")

CLOSE

closes the named stream. The STREAM function itself returnsREADY: if the named stream is
successfully closed, or an appropriate error message. If an attempt is made to close an unopened
file, STREAM returns a null string ("").

Example:

stream("STRM.TXT","c","close")

FLUSH

forces any data currently buffered for writing to be written to this stream.

SEEKoffset

sets the read or write position within a persistent stream. If the stream is opened for both reading
and writing and no SEEK option is specified, both the read and write positions are set.

Note: See Input and Output Streams for a discussion of read and write positions in a persistent
stream.

To use this command, the named stream must first be opened with the OPEN stream command or
implicitly with an input or output operation. One of the following characters can precede theoffset
number:

=

explicitly specifies theoffsetfrom the beginning of the stream. This is the default if no prefix is
supplied.Line Offset=1 means the beginning of stream.

<

specifiesoffsetfrom the end of the stream.

334

Chapter 8. Functions

+

specifiesoffsetforward from the current read or write position.

-

specifiesoffsetbackward from the current read or write position.

The STREAM function itself returns the new position in the stream if the read or write position is
successfully located or an appropriate error message otherwise.

The following is a description of the options for SEEK:

READ

specifies that the read position is to be set by this command.

WRITE

specifies that the write position is to be set by this command.

CHAR

specifies that the positioning is to be done in terms of characters. This is the default.

LINE

specifies that the positioning is to be done in terms of lines. For non-binary streams, this is an
operation that can take a long time to complete, because, in most cases, the file must be
scanned from the top to count line-end characters. However, for binary streams with a specified
record length, this results in a simple multiplication of the new resulting line number by the
record length, and then a simple character positioning. SeeLine versus Character Positioning
for a detailed discussion of this issue.

Note: If you do line positioning in a file open only for writing, you receive an error message.

Examples:

stream(name,"c","seek =2 read")

stream(name,"c","seek +15 read")

stream(name,"c","seek -7 write line")

fromend = 125

stream(name,"c","seek <"fromend read)

POSITION

is a synonym for SEEK.

8.4.58.1.2. QUERY Stream Commands

Used with these stream commands, the STREAM function returns specific information about a stream.
Except for QUERY HANDLE and QUERY POSITION, the language processor returns the query

335

Chapter 8. Functions

information even if the stream is not open. The language processor returns the null string for nonexistent
streams.

QUERY DATETIME

returns the date and time stamps of a stream in US format. This is included for compatibility with
OS/2®.

stream("..\file.txt","c","query datetime")

A sample output might be:

11-12-98 03:29:12

QUERY EXISTS

returns the full path specification of the named stream, if it exists, or a null string.

stream("..\file.txt","c","query exists")

A sample output might be:

c:\data\file.txt

QUERY HANDLE

returns the handle associated with the open stream.

stream("..\file.txt","c","query handle")

A sample output might be:

3

QUERY POSITION

returns the current read or write position for the stream, as qualified by the following options:

READ

returns the current read position.

WRITE

returns the current write position.

Note: If the stream is open for both reading and writing, the default is to return the read
position. Otherwise, it returns the appropriate position by default.

CHAR

returns the position in terms of characters. This is the default.

336

Chapter 8. Functions

LINE

returns the position in terms of lines. For non-binary streams, this operation can take a long
time to complete, because the language processor starts tracking the current line number if not
already doing so. Thus, it might require a scan of the stream from the top to count line-end
characters. SeeLine versus Character Positioningfor a detailed discussion of this issue.

stream("myfile","c","query position write")

A sample output might be:

247

SYS

returns the operating-system stream position in terms of characters.

QUERY SIZE

returns the size, in bytes, of a persistent stream.

stream("..\file.txt","c","query size")

A sample output might be:

1305

QUERY STREAMTYPE

returns a string indicating whether the stream isPERSISTENT, TRANSIENT, or UNKNOWN.

QUERY TIMESTAMP

returns the date and time stamps of a stream in an international format. This is the preferred method
of getting the date and time because it provides the full 4-digit year.

stream("..\file.txt","c","query timestamp")

A sample output might be:

1998-11-12 03:29:12

8.4.59. STRIP

>>-STRIP(string--+--------------------------+--)---------------><

+-,--+--------+--+-------+-+

+-option-+ +-,char-+

Returnsstringwith leading characters, trailing characters, or both, removed, based on theoptionyou
specify. The following are validoptions. (Only the capitalized letter is needed; all characters following it
are ignored.)

337

Chapter 8. Functions

Both

removes both leading and trailing characters fromstring. This is the default.

Leading

removes leading characters fromstring.

Trailing

removes trailing characters fromstring.

The third argument,char, specifies the character to be removed, and the default is a blank. If you specify
char, it must be exactly one character long.

Here are some examples:

STRIP(" ab c ") -> "ab c"

STRIP(" ab c ","L") -> "ab c "

STRIP(" ab c ","t") -> " ab c"

STRIP("12.7000", ,0) -> "12.7"

STRIP("0012.700", ,0) -> "12.7"

8.4.60. SUBSTR (Substring)

>>-SUBSTR(string,n--+-------------------------+--)-------------><

+-,--+--------+--+------+-+

+-length-+ +-,pad-+

Returns the substring ofstring that begins at thenth character and is of lengthlength, padded withpad if
necessary.n must be a positive whole number. Ifn is greater thanLENGTH(string), only pad characters
are returned.

If you omit length, the rest of the string is returned. The defaultpadcharacter is a blank.

Here are some examples:

SUBSTR("abc",2) -> "bc"

SUBSTR("abc",2,4) -> "bc "

SUBSTR("abc",2,6,".") -> "bc...."

Note: In some situations the positional (numeric) patterns of parsing templates are more convenient
for selecting substrings, especially if more than one substring is to be extracted from a string. See
also LEFT and RIGHT.

8.4.61. SUBWORD

>>-SUBWORD(string,n--+---------+--)----------------------------><

+-,length-+

338

Chapter 8. Functions

Returns the substring ofstring that starts at thenth word, and is up tolengthblank-delimited words.n
must be a positive whole number. If you omitlength, it defaults to the number of remaining words in
string. The returned string never has leading or trailing blanks, but includes all blanks between the
selected words.

Here are some examples:

SUBWORD("Now is the time",2,2) -> "is the"

SUBWORD("Now is the time",3) -> "the time"

SUBWORD("Now is the time",5) -> ""

8.4.62. SYMBOL

>>-SYMBOL(name)--><

Returns the state of the symbol named byname. It returnsBAD if nameis not a valid Rexx symbol. It
returnsVAR if it is the name of a variable, that is, a symbol that has been assigned a value. Otherwise, it
returnsLIT, indicating that it is either a constant symbol or a symbol that has not yet been assigned a
value, that is, a literal.

As with symbols in Rexx expressions, lowercase characters innameare translated to uppercase and
substitution in a compound name occurs if possible.

Note: You should specify name as a literal string, or it should be derived from an expression, to
prevent substitution before it is passed to the function.

Here are some examples:

/* following: Drop A.3; J=3 */

SYMBOL("J") -> "VAR"

SYMBOL(J) -> "LIT" /* has tested "3" */

SYMBOL("a.j") -> "LIT" /* has tested A.3 */

SYMBOL(2) -> "LIT" /* a constant symbol */

SYMBOL("*") -> "BAD" /* not a valid symbol */

8.4.63. TIME

>>-TIME(--+-----------------------------------+--)-------------><

+-option--+-----------------------+-+

+-,string--+----------+-+

+-,option2-+

Returns the local time in the 24-hour clock format hh:mm:ss (hours, minutes, and seconds) by default,
for example,04:41:37.

You can use the followingoptions to obtain alternative formats, or to gain access to the elapsed-time
clock. (Only the capitalized letter is needed; all characters following it are ignored.)

339

Chapter 8. Functions

Civil

returns the time in Civil format hh:mmxx. The hours can take the values1 through12, and the
minutes the values00 through59. The minutes are followed immediately by the lettersam or pm.
This distinguishes times in the morning (12 midnight through 11:59 a.m.--appearing as12:00am

through11:59am) from noon and afternoon (12 noon through 11:59 p.m.--appearing as12:00pm

through11:59pm). The hour has no leading zero. The minute field shows the current minute (rather
than the nearest minute) for consistency with other TIME results.

Elapsed

returns sssssssss.uuuuuu, the number of seconds and microseconds since the elapsed-time clock
(described later) was started or reset. The returned number has no leading zeros or blanks, and the
setting of NUMERIC DIGITS does not affect it. The number has always four trailing zeros in the
decimal portion.

The language processor calculates elapsed time by subtracting the time at which the elapsed-time
clock was started or reset from the current time. It is possible to change the system time clock while
the system is running. This means that the calculated elapsed time value might not be a true elapsed
time. If the time is changed so that the system time is earlier than when the Rexx elapsed-time clock
was started (so that the elapsed time would appear negative), the language processor raises an error
and disables the elapsed-time clock. To restart the elapsed-time clock, trap the error through
SIGNAL ON SYNTAX.

The clock can also be changed by programs on the system. Many LAN-attached programs
synchronize the system time clock with the system time clock of the server during startup. This
causes the Rexx elapsed time function to be unreliable during LAN initialization.

Hours

returns up to two characters giving the number of hours since midnight in the format hh (no leading
zeros or blanks, except for a result of0).

Long

returns time in the format hh:mm:ss.uuuuuu (where uuuuuu are microseconds).

Minutes

returns up to four characters giving the number of minutes since midnight in the format mmmm (no
leading zeros or blanks, except for a result of0).

Normal

returns the time in the default format hh:mm:ss. The hours can have the values00 through23, and
minutes and seconds,00 through59. There are always two digits. Any fractions of seconds are
ignored (times are never rounded). This is the default.

Reset

returns sssssssss.uuuuuu, the number of seconds and microseconds since the elapsed-time clock
(described later) was started or reset and also resets the elapsed-time clock to zero. The returned

340

Chapter 8. Functions

number has no leading zeros or blanks, and the setting of NUMERIC DIGITS does not affect it. The
number always has four trailing zeros in the decimal portion.

See the Elapsed option for more information on resetting the system time clock.

Seconds

returns up to five characters giving the number of seconds since midnight in the format sssss (no
leading zeros or blanks, except for a result of0).

Here are some examples, assuming that the time is 4:54 p.m.:

TIME() -> "16:54:22"

TIME("C") -> "4:54pm"

TIME("H") -> "16"

TIME("L") -> "16:54:22.120000" /* Perhaps */

TIME("M") -> "1014" /* 54 + 60*16 */

TIME("N") -> "16:54:22"

TIME("S") -> "60862" /* 22 + 60*(54+60*16) */

The elapsed-time clock:

You can use the TIME function to measure real (elapsed) time intervals. On the first call in a program to
TIME("E") or TIME("R"), the elapsed-time clock is started, and either call returns0. From then on, calls to
TIME("E") andTIME("R") return the elapsed time since that first call or since the last call toTIME("R").

The clock is saved across internal routine calls, which means that an internal routine inherits the time
clock that its caller started. Any timing the caller is doing is not affected, even if an internal routine resets
the clock. An example of the elapsed-time clock:

time("E") -> 0 /* The first call */

/* pause of one second here */

time("E") -> 1.020000 /* or thereabouts */

/* pause of one second here */

time("R") -> 2.030000 /* or thereabouts */

/* pause of one second here */

time("R") -> 1.050000 /* or thereabouts */

Note: The elapsed-time clock is synchronized with the other calls to TIME and DATE, so several
calls to the elapsed-time clock in a single clause always return the same result. For this reason, the
interval between two usual TIME/DATE results can be calculated exactly using the elapsed-time
clock.

If you specifystring, TIME returns the time corresponding tostring in the formatoption. Thestring
must be supplied in the formatoption2. The default foroption2is "N". So you need to specifyoption2
only if string is not in the Normal format.option2must specify the current time, for example, not "E" or
"R". Here are some examples:

time("C","11:27:21") -> 11:27am

time("N","11:27am","C") -> 11:27:00

341

Chapter 8. Functions

You can determine the difference between two times; for example:

If TIME("M","5:00pm","C")-TIME("M")<=0

then say "Time to go home"

else say "Keep working"

The TIME returned is the earliest time consistent withstring. For example, if the result requires
components that are not specified in the source format, then those components of the result are zero. If
the source has components that the result does not need, then those components of the source are ignored.

Implementation maximum: If the number of seconds in the elapsed time exceeds nine digits
(equivalent to over 31.6 years), an error results.

8.4.64. TRACE

>>-TRACE(--+--------+--)---------------------------------------><

+-option-+

Returns trace actions currently in effect and, optionally, alters the setting.

If you specifyoption, it selects the trace setting. It must be the valid prefix?, one of the alphabetic
character options associated with the TRACE instruction (that is, starting withA, C, E, F, I, L, N, O, or R),
or both. (See the TRACE instruction inAlphabetic Character (Word) Optionsfor full details.)

Unlike the TRACE instruction, the TRACE function alters the trace action even if interactive debugging
is active. Also unlike the TRACE instruction,optioncannot be a number.

Here are some examples:

TRACE() -> "?R" /* maybe */

TRACE("O") -> "?R" /* also sets tracing off */

TRACE("?I") -> "O" /* now in interactive debugging */

8.4.65. TRANSLATE

>>-TRANSLATE(string--->

>--+--+--)-----------><

+-,--+--------+--+-------------------------+-+

+-tableo-+ +-,--+--------+--+------+-+

+-tablei-+ +-,pad-+

Returnsstringwith each character translated to another character or unchanged. You can also use this
function to reorder the characters instring.

The output table istableoand the input translation table istablei. TRANSLATE searchestablei for each
character instring. If the character is found, the corresponding character intableois used in the result
string; if there are duplicates intablei, the first (leftmost) occurrence is used. If the character is not
found, the original character instring is used. The result string is always the same length asstring.

342

Chapter 8. Functions

The tables can be of any length. If you specify neither table and omitpad, string is simply translated to
uppercase (that is, lowercasea-z to uppercaseA-Z), but, if you includepad, the language processor
translates the entire string topadcharacters.tableidefaults toXRANGE("00"x,"FF"x), andtableodefaults
to the null string and is padded withpador truncated as necessary. The defaultpad is a blank.

Here are some examples:

TRANSLATE("abcdef") -> "ABCDEF"

TRANSLATE("abcdef","12","ec") -> "ab2d1f"

TRANSLATE("abcdef","12","abcd",".") -> "12..ef"

TRANSLATE("APQRV", ,"PR") -> "A Q V"

TRANSLATE("APQRV",XRANGE("00"X,"Q")) -> "APQ "

TRANSLATE("4123","abcd","1234") -> "dabc"

Note: The last example shows how to use the TRANSLATE function to reorder the characters in a
string. The last character of any four-character string specified as the second argument is moved to
the beginning of the string.

8.4.66. TRUNC (Truncate)

>>-TRUNC(number--+----+--)-------------------------------------><

+-,n-+

Returns the integer part ofnumberandn decimal places. The defaultn is 0 and returns an integer with no
decimal point. If you specifyn, it must be a positive whole number or zero. Thenumberis rounded
according to standard Rexx rules, as though the operationnumber+0 had been carried out. Then it is
truncated ton decimal places or trailing zeros are added to reach the specified length. The result is never
in exponential form. If there are no nonzero digits in the result, any minus sign is removed.

Here are some examples:

TRUNC(12.3) -> 12

TRUNC(127.09782,3) -> 127.097

TRUNC(127.1,3) -> 127.100

TRUNC(127,2) -> 127.00

Note: The number is rounded according to the current setting of NUMERIC DIGITS, if necessary,
before the function processes it.

8.4.67. USERID

>>-USERID()--><

The return value is the active user identification.

343

Chapter 8. Functions

8.4.68. VALUE

>>-VALUE(name--+--------------------------------+--)-----------><

+-,--+----------+--+-----------+-+

+-newvalue-+ +-,selector-+

Returns the value of the symbol thatname(often constructed dynamically) represents and optionally
assigns a new value to it. By default, VALUE refers to the current Rexx-variables environment, but other,
external collections of variables can be selected. If you use the function to refer to Rexx variables,name
must be a valid Rexx symbol. (You can confirm this by using the SYMBOL function.) Lowercase
characters innameare translated to uppercase for the local environment. For the global environment
lowercase characters are not translated because the global environment supports mixed-case identifiers.
Substitution in a compound name (seeCompound Symbols) occurs if possible.

If you specifynewvalue, the named variable is assigned this new value. This does not affect the result
returned; that is, the function returns the value ofnameas it was before the new assignment.

Here are some examples:

/* After: Drop A3; A33=7; K=3; fred="K"; list.5="Hi" */

VALUE("a"k) -> "A3" /* looks up A3 */

VALUE("a"k||k) -> "7"

VALUE("fred") -> "K" /* looks up FRED */

VALUE(fred) -> "3" /* looks up K */

VALUE(fred,5) -> "3" /* looks up K and */

/* then sets K=5 */

VALUE(fred) -> "5" /* looks up K */

VALUE("LIST."k) -> "Hi" /* looks up LIST.5 */

To use VALUE to manipulate environment variables,selectormust be the string "ENVIRONMENT" or
an expression that evaluates to "ENVIRONMENT". In this case, the variablenameneed not be a valid
Rexx symbol. Environment variables set by VALUE are not kept after program termination.

Restriction: The values assigned to the variables must not contain any character that is a hexadecimal
zero ("00"X). For example:

Call VALUE "MYVAR", "FIRST" || "00"X || "SECOND", "ENVIRONMENT"

sets MYVAR to "FIRST", truncating "00"x and "SECOND".

Here are some more examples:

/* Given that an external variable FRED has a value of 4 */

share = "ENVIRONMENT"

say VALUE("fred",7,share) /* says "4" and assigns */

/* FRED a new value of 7 */

say VALUE("fred", ,share) /* says "7" */

/* Accessing and changing Windows environment entries given that */

/* PATH=C:\EDIT\DOCS; */

env = "ENVIRONMENT"

new = "C:\EDIT\DOCS;"

say value("PATH",new,env) /* says "C:\WINDOWS" (perhaps) */

344

Chapter 8. Functions

/* and sets PATH = "C:\EDIT\DOCS;" */

say value("PATH", ,env) /* says "C:\EDIT\DOCS;" */

To delete an environment variable use the .NIL object as thenewvalue. To delete the environment
variable "MYVAR" specify: value("MYVAR", .NIL, "ENVIRONMENT"). If you specify an empty
string as thenewvaluelike in value("MYVAR", ", "ENVIRONMENT") the value of the external environment
variable is set to an empty string which on Windows and *nix is not the same as deleting the environment
variable.

A selector called "WSHENGINE" is also available to the VALUE function when a Rexx script is run in a
Windows Script Host scripting context (running via cscript, wscript or as embedded code in HTML for
the Microsoft Internet Explorer). The only currently supported value is "NAMEDITEMS". Calling
VALUE with these parameters returns an array with the names of the named items that were added at
script start.

Example:

myArray = VALUE("NAMEDITEMS", ,"WSHENGINE")

The value NAMEDITEMS is read-only, writing to it is prohibited.

Object Rexx scripts running via the scripting engine (in WSH context) can now call the default method
of an object as a function call with the object name.

Example:

The SESSION object of ASP (Active Server Pages) has the default method VALUE. The usual (and
recommended) way of using the SESSION object would be to use

SESSION~VALUE("key","value").

Because VALUE is the default method, a function call

SESSION("key","value")

SESSION~VALUE("key","value").

causes an invocation of VALUE with the given arguments. For objects that have the name of a Rexx
function, an explicit call to the default method must be made, because Rexx functions have priority over
this implicit method invocation mechanism.

Note: In contrast to OS/2, the Windows and *nix environments are unchanged after program
termination.

You can use the VALUE function to return a value to the global environment directory. To do so, omit
newvalueand specifyselectoras the null string. The language processor sends the messagename
(without arguments) to the current environment object. The environment returns the object identified by
name. If there is no such object, it returns, by default, the stringnamewith an added initial period (an
environment symbol--seeEnvironment Symbols).

Here are some examples:

/* Assume the environment name MYNAME identifies the string "Simon" */

345

Chapter 8. Functions

name = value("MYNAME", ,"") /* Sends MYNAME message to the environment */

name = .myname /* Same as previous instruction */

say "Hello," name /* Produces: "Hello, Simon" */

/* Assume the environment name NONAME does not exist. */

name = value("NONAME", ,"") /* Sends NONAME message to the environment */

say "Hello," name /* Produces: "Hello, .NONAME" */

You can use the VALUE function to change a value in the Rexx environment directory. Include a
newvalueand specifyselectoras the null string. The language processor sends the messagename(with =

appended) and the single argumentnewvalueto the current environment object. After receiving this
message, the environment identifies the objectnewvalueby the namename.

Here is an example:

name = value("MYNAME","David","") /* Sends "MYNAME=("David") message */

/* to the environment. */

/* You could also use: */

/* call value "MYNAME","David","" */

say "Hello," .myname /* Produces: "Hello, David" */

Notes:

1. If the VALUE function refers to an uninitialized Rexx variable, the default value of the variable is
always returned. The NOVALUE condition is not raised because a reference to an external
collection of variables never raises NOVALUE.

2. The VALUE function is used when a variable contains the name of another variable, or when a name
is constructed dynamically. If you specifynameas a single literal string and omitnewvalueand
selector, the symbol is a constant and the string between the quotation marks can usually replace the
whole function call. For example,fred=VALUE("k"); is identical with the assignmentfred=k;,
unless the NOVALUE condition is trapped. SeeConditions and Condition Traps.

8.4.69. VAR

>>-VAR(name)---><

Returns1 if nameis the name of a variable, that is, a symbol that has been assigned a value), or0.

Here are some examples:

/* Following: DROP A.3; J=3 */

VAR("J") -> 1

VAR(J) -> 0 /* has tested "3" */

VAR("a.j") -> 0 /* has tested "A.3" */

VAR(2) -> 0 /* a constant symbol */

VAR("*") -> 0 /* an invalid symbol */

346

Chapter 8. Functions

8.4.70. VERIFY

>>-VERIFY(string,reference--+---------------------------+--)---><

+-,--+--------+--+--------+-+

+-option-+ +-,start-+

Returns a number that, by default, indicates whetherstring is composed only of characters from
reference. It returns0 if all characters instringare inreference, or returns the position of the first
character instring that is not inreference.

Theoptioncan be eitherNomatch (the default) orMatch. (Only the capitalized and highlighted letter is
needed. All characters following it are ignored, and it can be in uppercase or lowercase characters.) If
you specifyMatch, the function returns the position of the first character in thestring that is inreference,
or returns0 if none of the characters are found.

The default forstart is 1; thus, the search starts at the first character ofstring. You can override this by
specifying a differentstart point, which must be a positive whole number.

If string is null, the function returns0, regardless of the value of the third argument. Similarly, ifstart is
greater thanLENGTH(string), the function returns0. If referenceis null, the function returns0 if you
specifyMatch; otherwise, the function returns thestart value.

Here are some examples:

VERIFY("123","1234567890") -> 0

VERIFY("1Z3","1234567890") -> 2

VERIFY("AB4T","1234567890") -> 1

VERIFY("AB4T","1234567890","M") -> 3

VERIFY("AB4T","1234567890","N") -> 1

VERIFY("1P3Q4","1234567890", ,3) -> 4

VERIFY("123","",N,2) -> 2

VERIFY("ABCDE","", ,3) -> 3

VERIFY("AB3CD5","1234567890","M",4) -> 6

8.4.71. WORD

>>-WORD(string,n)--><

Returns thenth blank-delimited word instringor returns the null string if less thann words are instring.
n must be a positive whole number. This function is equal to SUBWORD(string, n,1).

Here are some examples:

WORD("Now is the time",3) -> "the"

WORD("Now is the time",5) -> ""

8.4.72. WORDINDEX

>>-WORDINDEX(string,n)---><

347

Chapter 8. Functions

Returns the position of the first character in thenth blank-delimited word instringor returns0 if less
thann words are instring. n must be a positive whole number.

Here are some examples:

WORDINDEX("Now is the time",3) -> 8

WORDINDEX("Now is the time",6) -> 0

8.4.73. WORDLENGTH

>>-WORDLENGTH(string,n)--><

Returns the length of thenth blank-delimited word in thestringor returns0 if less thann words are in the
string. n must be a positive whole number.

Here are some examples:

WORDLENGTH("Now is the time",2) -> 2

WORDLENGTH("Now comes the time",2) -> 5

WORDLENGTH("Now is the time",6) -> 0

8.4.74. WORDPOS (Word Position)

>>-WORDPOS(phrase,string--+--------+--)------------------------><

+-,start-+

Returns the word number of the first word ofphrasefound instringor returns0 if phrasecontains no
words or ifphraseis not found. Several blanks between words in eitherphraseor stringare treated as a
single blank for the comparison, but otherwise the words must match exactly.

By default, the search starts at the first word instring. You can override this by specifyingstart (which
must be positive), the word at which to start the search.

Here are some examples:

WORDPOS("the","now is the time") -> 3

WORDPOS("The","now is the time") -> 0

WORDPOS("is the","now is the time") -> 2

WORDPOS("is the","now is the time") -> 2

WORDPOS("is time ","now is the time") -> 0

WORDPOS("be","To be or not to be") -> 2

WORDPOS("be","To be or not to be",3) -> 6

8.4.75. WORDS

>>-WORDS(string)---><

Returns the number of blank-delimited words instring.

348

Chapter 8. Functions

Here are some examples:

WORDS("Now is the time") -> 4

WORDS(" ") -> 0

8.4.76. X2B (Hexadecimal to Binary)

>>-X2B(hexstring)--><

Returns a string, in character format, that representshexstringconverted to binary. Thehexstringis a
string of hexadecimal characters. It can be of any length. Each hexadecimal character is converted to a
string of 4 binary digits. You can optionally include blanks inhexstring(at byte boundaries only, not
leading or trailing) to improve readability; they are ignored.

The returned string has a length that is a multiple of 4, and does not include any blanks.

If hexstringis null, the function returns a null string.

Here are some examples:

X2B("C3") -> "11000011"

X2B("7") -> "0111"

X2B("1 C1") -> "000111000001"

You can combine X2B with the functions D2X and C2X to convert numbers or character strings into
binary form.

Here are some examples:

X2B(C2X("C3"x)) -> "11000011"

X2B(D2X("129")) -> "10000001"

X2B(D2X("12")) -> "1100"

8.4.77. X2C (Hexadecimal to Character)

>>-X2C(hexstring)--><

Returns a string, in character format, that representshexstringconverted to character. The returned string
has half as many bytes as the originalhexstring. hexstringcan be of any length. If necessary, it is padded
with a leading zero to make an even number of hexadecimal digits.

You can optionally include blanks inhexstring(at byte boundaries only, not leading or trailing) to
improve readability; they are ignored.

If hexstringis null, the function returns a null string.

Here are some examples:

X2C("4865 6c6c 6f") -> "Hello" /* ASCII */

X2C("3732 73") -> "72s" /* ASCII */

349

Chapter 8. Functions

8.4.78. X2D (Hexadecimal to Decimal)

>>-X2D(hexstring--+----+--)------------------------------------><

+-,n-+

Returns the decimal representation ofhexstring. Thehexstringis a string of hexadecimal characters. If
the result cannot be expressed as a whole number, an error occurs. That is, the result must not have more
digits than the current setting of NUMERIC DIGITS.

You can optionally include blanks inhexstring(at byte boundaries only, not leading or trailing) to aid
readability; they are ignored.

If hexstringis null, the function returns0.

If you do not specifyn, thehexstringis processed as an unsigned binary number.

Here are some examples:

X2D("0E") -> 14

X2D("81") -> 129

X2D("F81") -> 3969

X2D("FF81") -> 65409

X2D("46 30"X) -> 240 /* ASCII */

X2D("66 30"X) -> 240 /* ASCII */

If you specifyn, the string is taken as a signed number expressed inn hexadecimal digits. If the leftmost
bit is off, then the number is positive; otherwise, it is a negative number. In both cases it is converted to a
whole number, which can be negative. Ifn is 0, the function returns0.

If necessary,hexstringis padded on the left with0 characters (not "sign-extended"), or truncated on the
left to n characters.

Here are some examples:

X2D("81",2) -> -127

X2D("81",4) -> 129

X2D("F081",4) -> -3967

X2D("F081",3) -> 129

X2D("F081",2) -> -127

X2D("F081",1) -> 1

X2D("0031",0) -> 0

8.4.79. XRANGE (Hexadecimal Range)

>>-XRANGE(--+-------+--+------+--)-----------------------------><

+-start-+ +-,end-+

Returns a string of all valid 1-byte encodings (in ascending order) between and including the valuesstart
andend. The default value forstart is "00"x, and the default value forendis "FF"x. If start is greater
thanend, the values wrap from"FF"x to "00"x. If specified,start andendmust be single characters.

Here are some examples:

350

Chapter 8. Functions

XRANGE("a","f") -> "abcdef"

XRANGE("03"x,"07"x) -> "0304050607"x

XRANGE(,"04"x) -> "0001020304"x

XRANGE("FE"x,"02"x) -> "FEFF000102"x

XRANGE("i","j") -> "ij" /* ASCII */

351

Chapter 8. Functions

352

Chapter 9. Rexx Utilities (RexxUtil)
RexxUtil is a Dynamic Link Library (DLL) package for Windows and *nix platforms; the package
contains external Rexx functions. These functions:

• Manipulate operating system files and directories

• Manipulate Windows classes and objects

• Perform text screen input and output

All of the RexxUtil functions are registered by the ooRexx interpreter on startup so there is no need to
register the functions either individually or via the SysLoadFuncs function.

9.1. List of Rexx Utility Functions
The following table lists all of the REXXUTIL functions and the platforms on which they are available.

Table 9-1. Rexx Utility Library Functions

Function Name Exists on Platform Remarks

Windows Unix

SysAddFileHandle YES NO

SysAddRexxMacro YES YES

SysBootDrive YES NO

SysClearRexxMacroSpace YES YES

SysCloseEventSem YES YES

SysCloseMutexSem YES YES

SysCls YES YES

SysCopyObject YES NO

SysCreateEventSem YES YES

SysCreateMutexSem YES YES

SysCreateObject YES NO

SysCreatePipe YES YES AIX only

SysCurPos YES NO

SysCurState YES NO

SysDriveInfo YES NO

SysDriveMap YES NO

SysDropFuncs YES YES

SysDropLibrary YES NO

SysDumpVariables YES YES

SysFileCopy YES NO

353

Chapter 9. Rexx Utilities (RexxUtil)

Function Name Exists on Platform Remarks

Windows Unix

SysFileDelete YES YES

SysFileMove YES NO

SysFileSearch YES YES

SysFileSystemType YES NO

SysFileTree YES YES Works differently

SysFork NO YES Linux, AIX,
Solaris only

SysFromUnicode YES NO

SysGetErrortext YES YES

SysGetCollate YES NO

SysGetFileDateTime YES YES

SysGetKey YES YES

SysGetMessage YES YES

SysGetMessageX NO YES

SysIni YES NO

SysIsFile YES YES

SysIsFileCompressed YES NO

SysIsFileDirectory YES YES

SysIsFileEncrypted YES NO

SysIsFileLink YES YES

SysIsFileNotContentIndexed YES NO

SysIsFileOffline YES NO

SysIsFileSparse YES NO

SysIsFileTemporary YES NO

SysLoadFuncs YES YES

SysLoadLibrary YES NO

SysLoadRexxMacroSpace YES YES

SysMapCase YES NO

SysMkDir YES YES

SysNationalLanguageCompare YES NO

SysOpenEventSem YES YES

SysOpenMutexSem YES YES

SysPostEventSem YES YES

SysProcessType YES NO

SysPulseEventSem YES NO

SysQueryProcess YES YES Works differently

SysQueryProcessCodePage YES NO

354

Chapter 9. Rexx Utilities (RexxUtil)

Function Name Exists on Platform Remarks

Windows Unix

SysQueryRexxMacro YES YES

SysReleaseMutexSem YES YES

SysReorderRexxMacro YES YES

RequestMutexSem YES YES

SysResetEventSem YES YES

SysRmDir YES YES

SysSearchPath YES YES

SysSetFileDateTime YES YES

SysSetPriority YES NO

SysSetProcessCodePage YES NO

SysShutdownSystem YES NO

SysSleep YES YES

SysStemCopy YES YES

SysStemDelete YES YES

SysStemInsert YES YES

SysStemSort YES YES

SysSwitchSession YES NO

SysTempFileName YES YES

SysTextScreenRead YES NO

SysTextScreenSize YES NO

SysToUnicode YES NO

SysUtilVersion YES YES

SysVersion YES YES

SysVolumeLable YES NO

SysWait YES YES AIX only

SysWaitEventSem YES YES

SysWaitNamedPipe YES NO

SysWinDecryptFile YES NO

SysWinEncryptFile YES NO

SysWinVer YES NO

SysWinGetPrinters YES NO

SysWinGetDefaultPrinter YES NO

SysWinSetDefaultPrinter YES NO

355

Chapter 9. Rexx Utilities (RexxUtil)

9.2. RxMessageBox (Windows only)
>>-RxMessageBox(text-->

>--+--+--)-----------><

+-,--+-------+--+--------------------------+-+

+-title-+ +-,--+--------+--+-------+-+

+-button-+ +-,icon-+

Displays a Windows message box.

RxMessageBox returns the selected message box push button. Possible values are:

1

The OK push button was pressed

2

The CANCEL push button was pressed

3

The ABORT push button was pressed

4

The RETRY push button was pressed

5

The IGNORE push button was pressed

6

The YES push button was pressed

7

The NO push button was pressed

If a message box has a "CANCEL" button, the function returns the 2 value if either the ESC key is
pressed or the "CANCEL" button is selected. If the message box has no "CANCEL" button, pressing
ESC has no effect.

text

The message box text.

title

The message box title. The default title is "Error!".

356

Chapter 9. Rexx Utilities (RexxUtil)

button

The message box push button style. The allowed styles are:

"NONE"

No icon is displayed.

"OK"

A single OK push button.

"OKCANCEL"

An OK push button and a CANCEL push button.

"RETRYCANCEL"

A RETRY push button and a CANCEL push button.

"ABORTRETRYIGNORE"

An ABORT push button, a RETRY push button and an IGNORE push button.

"YESNO"

A YES push button and a NO push button.

"YESNOCANCEL"

A YES push button, a NO push button and a CANCEL push button.

The default push button style is OK.

icon

The message box icon style. The allowed styles are:

"HAND"

A hand icon is displayed.

"QUESTION"

A question mark icon is displayed.

"EXCLAMATION"

An exclamation point icon is displayed.

"ASTERISK"

An asterisk icon is displayed.

"INFORMATION"

An information icon is displayed.

357

Chapter 9. Rexx Utilities (RexxUtil)

"STOP"

A stop icon is displayed.

"QUERY"

A query icon is displayed.

"WARNING"

A warning icon is displayed.

"ERROR"

An error icon is displayed.

Example:

/* Give option to quit */

if RxMessageBox("Shall we continue", , "YesNo", "Question") = 7

Then Exit /* quit option given, exit */

9.3. RxWinExec (Windows only)
>>-RxWinExec(-cmdline--+------------+--)-----------------------><

+-,--cmdshow-+

Runs the application as specified incmdline.

Parameters:

cmdline

A string containing a file name and optional parameters for the application to be executed. If the
name of the executable file incmdlinedoes not contain a directory path, RxWinExec searches for
the executable file in this sequence:

1

The directory from which Object Rexx was loaded.

2

The current directory.

3

The Windows system directory.

4

The Windows directory.

358

Chapter 9. Rexx Utilities (RexxUtil)

5

The directories listed in the PATH environment variable.

cmdshow

Specifies how a Windows-based application window is to be shown. For a non-Windows-based
application, the PIF file, if any, for the application determines the window state.

SHOWNORMAL

Activates and displays a window.

SHOWNOACTIVATE

Displays the window while the current active window remains active.

SHOWMINNOACTIVE

Displays the window as a minimized window, the current active window remains active.

SHOWMINIMIZED

Activates the window and displays it as a minimized window.

SHOWMAXIMIZED

Activates the window and displays it as a maximized window.

HIDE

Hides the window and activates another window.

MINIMIZE

Minimizes the specified window and activates the next top-level window in the Z order.

Return codes:

If the function succeeds, the return value is greater than 31; otherwise, it is one of the following:

0

The system is out of memory or resources.

2

The specified file was not found.

3

The specified path was not found.

11

The EXE file is invalid.

359

Chapter 9. Rexx Utilities (RexxUtil)

9.4. SysAddFileHandle (Windows only)
>>-SysAddFileHandle(number)------------------------------------><

Increases the number of available file handles for the process bynumber.

Parameters:

number

The number of additional file handles to add to the currently available number.

Return codes:

The number of Allocated File Handles (total number after adding what was requested or maximum
number able to allocate).

9.5. SysAddRexxMacro
>>-SysAddRexxMacro(name,file-+--------+-)----------------------><

+-,order-+

Adds a routine to the Rexx macrospace. SysAddRexxMacro returns the RexxAddMacro return code.

Parameters:

name

The name of the function added to the macrospace.

file

The file containing the Rexx program.

order

The macrospace search order. The order can be "B" (Before) or "A" (After).

9.6. SysBootDrive (Windows only)
>>-SysBootDrive--(--)--><

Returns the drive used to boot Windows, for example, "C:".

9.7. SysClearRexxMacroSpace
>>-SysClearRexxMacroSpace()------------------------------------><

Clears the Rexx macrospace. SysClearRexxMacroSpace returns the RexxClearMacroSpace return code.

360

Chapter 9. Rexx Utilities (RexxUtil)

9.8. SysCloseEventSem
>>-SysCloseEventSem(handle)------------------------------------><

Closes an event semaphore.

Parameter:

handle

A handle returned from a previous SysCreateEventSem or SysOpenEventSem call.

Return codes:

0

No errors.

6

Invalid handle.

102

Error semaphore busy.

9.9. SysCloseMutexSem
>>-SysCloseMutexSem(handle)------------------------------------><

Closes a mutex semaphore.

Parameter:

handle

A handle returned from a previous SysCreateMutexSem call.

Return codes:

0

No errors.

6

Invalid handle.

102

Error semaphore busy.

361

Chapter 9. Rexx Utilities (RexxUtil)

9.10. SysCls
>>-SysCls()--><

Clears the screen.

Example:

/* Code */

call SysCls

9.11. SysCreateEventSem
>>-SysCreateEventSem(-+------+--+--------------+-)-------------><

+-name-+ +-manual_reset-+

Creates or opens an event semaphore. It returns an event semaphore handle that can be used with
SysCloseEventSem, SysOpenEventSem, SysResetEventSem, SysPostEventSem, and SysWaitEventSem.
SysCreateEventSem returns a null string ("") if the semaphore cannot be created or opened.

Parameters:

name

The optional event semaphore name. If you omitname, SysCreateEventSem creates an unnamed,
shared event semaphore. If you specifyname, SysCreateEventSem opens the semaphore if the
semaphore has already been created. A semaphore name can be MAX_PATH long, and can contain
any character except the backslash (\) path-separator character. Semaphore names are case-sensitive.

manual_reset

A flag to indicate that the event semaphore must be reset manually by SysResetEventSem. If this
parameter is omitted, the event semaphore is reset automatically by SysWaitEventSem.

9.12. SysCreateMutexSem
>>-SysCreateMutexSem(-+------+-)-------------------------------><

+-name-+

Creates or opens a mutex semaphore. Returns a mutex semaphore handle that can be used with
SysCloseMutexSem, SysRequestMutexSem, and SysReleaseMutexSem. SysCreateMutexSem returns a
null string ("") if the semaphore cannot be created or opened.

Parameter:

name

The optional mutex semaphore name. If you omitname, SysCreateMutexSem creates an unnamed,
shared mutex semaphore. If you specifyname, SysCreateMutexSem opens the semaphore if the

362

Chapter 9. Rexx Utilities (RexxUtil)

mutex has already been created. The semaphore names cannot be longer than 63 characters.
Semaphore names are case-sensitive.

9.13. SysCreatePipe (AIX only)
>>-SysCreatePipe()---><

Creates an unnamed pipe.

Returns:

Returns a string like"handle handle" where the first handle is for read and the second handle for write.

9.14. SysCurPos (Windows only)
>>-SysCurPos(-+------------+-)---------------------------------><

+-row,column-+

Returns the cursor position in the formrow col and optionally moves the cursor to a new location.

Parameters:

row

The row to move to.

col

The column to move to.

Note: Position (0,0) is the upper left corner.

You can call SysCurPos without a column and row position to obtain the cursor position without moving
the cursor.

Example:

/* Code */

call SysCls

parse value SysCurPos() with row col

say "Cursor position is "row", "col

/* Output */

Cursor position is 0, 0

363

Chapter 9. Rexx Utilities (RexxUtil)

9.15. SysCurState (Windows only)
>>-SysCurState(state)--><

Hides or displays the cursor.

Parameter:

state

The new cursor state. Allowed states are:

"ON"

Display the cursor

"OFF"

Hide the cursor

9.16. SysDriveInfo (Windows only)
>>-SysDriveInfo(drive)---><

Returns drive information in the form:drive: free total label.

drive:

is the drive letter identifier.

free

is the drive unused space.

total

is the total size of the drive.

label

is the drive label.

If the drive is not accessible, then SysDriveInfo returns "".

Parameter:

drive

The drive of interest, "C:".

Example:

/* Code */

say "Disk="SysDriveInfo("C:")

/* Output */

364

Chapter 9. Rexx Utilities (RexxUtil)

Disk=C: 33392640 83687424 TRIGGER_C

9.17. SysDriveMap (Windows only)
>>-SysDriveMap(-+-------+-+------+-)---------------------------><

+-drive-+ +-,opt-+

Returns a string listing accessible drives (separated by blanks) in the form:C: D:

Parameters:

drive

The first drive letter of the drive map. The default is "C:".

opt

The drivemap option. This can be:

"USED"

returns the drives that are accessible or in use, including all local and remote drives. This is the
default.

"FREE"

returns drives that are free or not in use.

"LOCAL"

returns only local drives.

"REMOTE"

returns only remote drives, such as redirected LAN resources or installable file system (IFS)
attached drives.

"REMOVABLE"

returns removable drives.

"CDROM"

returns CD-ROM drives.

"RAMDISK"

returns drives assigned from RAM.

Example:

/* Code */

say "Used drives include:"

say SysDriveMap("C:", "USED")

365

Chapter 9. Rexx Utilities (RexxUtil)

/* Output */

Used drives include:

C: D: E: F: W:

9.18. SysDropFuncs
>>-SysDropFuncs--><

Drops all RexxUtil functions. After a Rexx program calls SysDropFuncs, the RexxUtil functions are not
available in any operating system sessions.

9.19. SysDropLibrary (Windows only)
>>-SysDropLibrary(dll--+-----------+---)-----------------------><

+--routine--+

Unloads a routine from a DLL library.

Parameter:

dll

The name of the dll containing the function package..

routine

Optional routine containing the drop routine. if not specified, ordinal routine 1 will be used.

Returns:

0

the routine dropper worked correctly

1

the loader routine failed

9.20. SysDropRexxMacro
>>-SysDropRexxMacro(name)--------------------------------------><

Removes a routine from the Rexx macrospace. SysDropRexxMacro returns the RexxDropMacro return
code.

Parameter:

366

Chapter 9. Rexx Utilities (RexxUtil)

name

The name of the function removed from the macrospace.

9.21. SysDumpVariables
>>-SysDumpVariables-+------------+-----------------------------><

+-(--name--)-+

Dumps all variables in the current scope either to the specified filefilename(new data is appended) or to
STDOUT if you omitfilename. The format of the data is, with one variable per line:

Name=MYVAR, Value="This is the content of MYVAR"

Parameter:

filename

The name of the file to which variables are appended. The dump is written to STDOUT if you omit
this parameter.

Return codes:

0

Dump completed successfully.

-1

Dump failed.

Example:

Call SysDumpVariables "MyVars.Lst" /* append vars to file */

Call SysDumpVariables /* list vars on STDOUT */

9.22. SysFileCopy (Windows only)
>>-SysFileCopy(source, target)---------------------------------><

Copies a file from one location to another. Wildcard file specifications are not allowed.

Parameter:

source

The path/name of the file to be copied.

target

The path/name of the target location where the file is to be copied.

Return codes:

367

Chapter 9. Rexx Utilities (RexxUtil)

0

File copied successfully.

2

A Windows error code.

Example:

/* Code */

call SysFileCopy "c:\temp\myfile.txt", "d:\myfolder"

9.23. SysFileDelete
>>-SysFileDelete(file)---><

Deletes a file. SysFileDelete does not support wildcard file specifications.

Parameter:

file

The name of the file to be deleted.

Return codes:

0

File deleted successfully.

2

File not found.

3

Path not found.

5

Access denied or busy.

26

Not DOS disk.

32

Sharing violation.

36

Sharing buffer exceeded.

368

Chapter 9. Rexx Utilities (RexxUtil)

87

Does not exist.

206

File name exceeds range error.

Example:

/* Code */

parse arg InputFile OutputFile

call SysFileDelete OutputFile /* unconditionally erase output file */

9.24. SysFileMove (Windows only)
>>-SysFileMove(source, target)---------------------------------><

Moves a file from one location to another. Wildcard file specifications are not allowed.

Parameter:

source

The path/name of the file to be moved.

target

The path of the target location where the file is to be moved.

Return codes:

0

File copied successfully.

2

A Windows error code.

Example:

/* Code */

call SysFileMove "c:\temp\myfile.txt", "d:\myfolder"

9.25. SysFileSearch
>>-SysFileSearch(target,file,stem--+----------+--)-------------><

+-,options-+

Finds all file lines containing the target string and returns the file lines in a Rexx stem variable collection.

Parameters:

369

Chapter 9. Rexx Utilities (RexxUtil)

target

The target search string.

file

The searched file.

stem

The result stem variable name. SysFileSearch sets Rexx variablestem.0to the number of lines
returned and stores the individual lines in variablesstem.1to stem.n.

options

Any combination of the following one-character options:

"C"

Conducts a case-sensitive search.

"N"

Returns the file line numbers.

The default is a case-insensitive search without line numbers.

Return codes:

0

Successful.

2

Not enough memory.

3

Error opening file.

Example:

/* Find DEVICE statements in CONFIG.SYS */

call SysFileSearch "DEVICE", "C:\CONFIG.SYS", "file."

do i=1 to file.0

say file.i

end

/* Output */

DEVICE=C:\SB16\DRV\CTSB16.SYS /UNIT=0 /BLASTER=A:240 I:5 D:1 H:5

DEVICE=C:\SB16\DRV\CTMMSYS.SYS

rem **** DOS SCSI CDROM device drivers ***

DEVICE=C:\SCSI\ASPI8DOS.SYS /D

DEVICE=C:\SCSI\ASPICD.SYS /D:ASPICD0

rem **** IDE CDROM device drivers

DEVICE=C:\DOS\HIMEM.SYS

DEVICE=C:\SBCD\DRV\SBIDE.SYS /V /D:MSCD001 /P:1f0,14

370

Chapter 9. Rexx Utilities (RexxUtil)

DEVICE=C:\DOS\SETVER.EXE

DEVICE=C:\WINDOWS\SMARTDRV.EXE /DOUBLE_BUFFER

DEVICE=C:\WINDOWS\IFSHLP.SYS

/* Find DEVICE statements in CONFIG.SYS (along with */

/* line numbers) */

call SysFileSearch "DEVICE", "C:\CONFIG.SYS", "file.", "N"

do i=1 to file.0

say file.i

end

/* Output */

1 DEVICE=C:\SB16\DRV\CTSB16.SYS /UNIT=0 /BLASTER=A:240 I:5 D:1

H:5

2 DEVICE=C:\SB16\DRV\CTMMSYS.SYS

4 rem **** DOS SCSI CDROM device drivers ***

5 DEVICE=C:\SCSI\ASPI8DOS.SYS /D

6 DEVICE=C:\SCSI\ASPICD.SYS /D:ASPICD0

8 rem **** IDE CDROM device drivers

9 DEVICE=C:\DOS\HIMEM.SYS

10 DEVICE=C:\SBCD\DRV\SBIDE.SYS /V /D:MSCD001 /P:1f0,14

13 DEVICE=C:\DOS\SETVER.EXE

16 DEVICE=C:\WINDOWS\SMARTDRV.EXE /DOUBLE_BUFFER

17 DEVICE=C:\WINDOWS\IFSHLP.SYS

9.26. SysFileSystemType (Windows only)
>>-SysFileSystemType(drive)------------------------------------><

Returns the name of the file system used for a drive. If the drive is not accessible, it returns a null string
("").

Parameter:

drive

The drive of interest, for example "C:".

Example:

/* Code */

say "File System="SysFileSystemType("C:")

/* Output */

File System=NTFS

371

Chapter 9. Rexx Utilities (RexxUtil)

9.27. SysFileTree
>>-SysFileTree(filespec,stem------------------------------------>

>--+---+---->

+-,--+---------+--+-----------------------------------+-+

+-options-+ +-,--+---------+--+---------------+-+

+-tattrib-+ +-,-+---------+-+

+-nattrib-+

>--)---><

Finds all files that match a file specification. SysFileTree returns the file descriptions (date, time, size,
attributes, and file specification) in a Rexx stem variable collection.

Parameters:

filespec

The search file specification.

stem

The name of a stem variable to be used for storing results. SysFileTree sets Rexx variablestem.0to
the number of files and directories found and stores individual file descriptions into variablesstem.1
to stem.n.

options

A string with any combination of the following:

"F"

Search only for files.

"D"

Search only for directories.

"B"

Search for both files and directories. This is the default.

"S"

Search subdirectories recursively.

"T"

Return the time and date in the form YY/MM/DD/HH/MM.

"L"

Return the time and date in the form YYYY-MM-DD HH:MM:SS.

372

Chapter 9. Rexx Utilities (RexxUtil)

"O"

Return only the fully-qualified file name. The default is to return the date, time, size, attributes,
and fully-qualified name for each file found.

If both the "L" and "T" options are given then the "T" option will be ignored.

tattrib

The target attribute mask for file specification matches. Only files that match the target mask are
returned. The default mask is "*****". This returns all files regardless of the settings (clear or set)
of the Archive, Directory, Hidden, Read-Only, and System attributes. The target mask attributes
must appear in the order "ADHRS".

Target Mask Options

*

The file attribute may be any state.

+

The file attribute must be set.

-

The file attribute must be cleared.

Target Mask Examples

"***+*"

Find all files with the Read-Only attribute set.

"+**+*"

Find all files with the Read-Only and Archive attributes set.

"*++**"

Find all hidden subdirectories.

"---+-"

Find all files with only the Read-Only attribute set.

nattrib

The new attribute mask for setting the attributes of each matching file. The default mask is "*****".
This means not to change the Archive, Directory, Hidden, Read-Only, and System attributes. The
target mask attributes must appear in the order "ADHRS".

New Attribute Mask Options

373

Chapter 9. Rexx Utilities (RexxUtil)

*

Do not change the file attribute.

+

Set the file attribute.

-

Clear the file attribute.

New Attribute Mask Examples

"***+*"

Set the Read-Only attribute on all files.

"-**+*"

Set the Read-Only attribute and clear the Archive attribute of each file.

"+*+++"

Set all file attributes, except the directory attribute.

"-----"

Clear all attributes on all files.

Note: You cannot set the directory attribute on non-directory files. SysFileTree returns the file
attribute settings after the new attribute mask has been applied.

Return codes:

0

Successful.

2

Not enough memory.

Examples:

/* Find all subdirectories on C: */

call SysFileTree "c:*.*", "file", "SD"

/* Find all Read-Only files */

call SysFileTree "c:*.*", "file", "S", "***+*"

/* Clear Archive and Read-Only attributes of files that have them set */

call SysFileTree "c:*.*", "file", "S", "+**+*", "-**-*"

374

Chapter 9. Rexx Utilities (RexxUtil)

/****<< Sample Code and Output Example.>>********/

/* Code */

call SysFileTree "c:\win*.", "file", "B"

do i=1 to file.0

say file.i

end

/* Actual Output */

5:24:95 4:59p 0 -D--- C:\WINDOWS

9.28. SysFork (Linux, AIX, Solaris only)
>>-SysFork()---><

Returns

Returns the process id to the parent process.

Returns0 to the spawned process.

9.29. SysFromUnicode (Windows only)
>>-SysFromUnicode--(--string, codepage, mappingflags,----------->

>--, defaultchar, outstem--)-----------------------------------><

Maps a UNICODE character string to an ASCII character string. The new character string and additional
information is returned in the outstem.

Parameters:

string

A string containing the UNICODE characters to be mapped.

codepage

Specifies the code page used to perform the conversion. This parameter can be the value of any code
page that is installed or available in the system. The default is the current original equipment
manufacturer (OEM) code-page identifier for the system.

You can also specify one of the following values:

ACP

ANSI code page.

OEMCP

OEM code page.

375

Chapter 9. Rexx Utilities (RexxUtil)

SYMBOL

Windows 2000: symbol code page.

THREAD_ACP

Windows 2000: current thread’s ANSI code page.

UTF7

Windows NT 4.0 and Windows 2000: translate using UTF-7.

UTF8

Windows NT 4.0 and Windows 2000: translate using UTF-8. When this is set,mappingflags

must be set.

mappingflags

Specifies the handling of unmapped characters. The function performs more quickly when none of
these flags is set.

The following flags can be used:

COMPOSITECHECK

Converts composite characters to precomposed characters.

SEPCHARS

Generates separate characters during conversion. This is the default conversion behavior.

DISCARDNS

Discards nonspacing characters during conversion.

DEFAULTCHAR

Replaces non-convertible characters with the default character during conversion.

Whencompositecheck is specified, the function converts composite characters to precomposed
characters. A composite character consists of a base character and a nonspacing character, each
having different character values. A precomposed character has a single character value for a
combination of a base and a nonspacing character. In the character è, the "e" is the base character,
and the "grave" accent mark is the nonspacing character.

Whencompositecheck is specified, it can use the last three flags in this list (discardns, sepchars,
anddefaultchar) to customize the conversion to precomposed characters. These flags determine
the function’s behavior when there is no precomposed mapping for a combination of a base and a
nonspace character in a Unicode character string. These last three flags can be used only if the
compositecheck flag is set. The function’s default behavior is to generate separate characters
(sepchars) for unmapped composite characters.

376

Chapter 9. Rexx Utilities (RexxUtil)

defaultchar

Character to be used if a Unicode character cannot be represented in the specified code page. If this
parameter is NULL, a system default value is used. The function is faster whendefaultchar is not
used.

outstem

The name of the stem variable that will contain the converted result. If the conversion was
successful the stem will be composed of the following value(s):

outstem.!USEDDEFAULTchar

This variable will be set to "1" if thedefaultcharwas used during the conversion and "0" if it
was not.

outstem.!TEXT

This variable will contain the converted string.

Return codes:

0

No errors.

87

Incorrect code page orcodepage value.

1004

Invalid mapping flags.

9.30. SysGetCollate (Windows only)
>>-SysGetCollate(--+--------------------------+---)------------><

+--,country---+------------+

+--,codepage--+

Get the country/code page collating sequence.

Parameters:

country

Requested country. Default is the current country.

codepage

Requested code page. Default is the current codepage.

Returns:

377

Chapter 9. Rexx Utilities (RexxUtil)

Returns a 256 byte string contaning the collating sequence for the specifiedcountryandcodepage.

9.31. SysGetErrortext
>>-SysGetErrortext(errornumber)--------------------------------><

Obtains a string describing the system error identified by the error number.

Returns a string with the description of the error, or an empty string if no description is available.

Windows Example:

err=SysMkDir("c:\temp")

if err \= 0 then

say "Error" err":"SysGetErrortext(err)

Unix Example:

err=SysMkDir("/home/NotKnown/temp")

if err \= 0 then

say "Error" err":"SysGetErrortext(err)

9.32. SysGetFileDateTime
>>-SysGetFileDateTime(filename-+------------+-)----------------><

+-,--timesel-+

Returns the selected data and time attribute of the filefilenameprovided that this is supported by the
operating and file system. FAT, for example, does not support Create/Access. The selector for the time to
be returned can be abbreviated to the first character.

Thefilenamecan also be a directory name.

The file that you want to query must not be opened by another process or must at least allow shared
writes to query the time stamp.

Parameters:

filename

The name of the file to be queried.

timesel

The file time to be queried, namely CREATE, ACCESS, WRITE.

Return codes:

The date and time in the format YYYY-MM-DD HH:MM:SS, or -1 to indicate that the file date and time
query failed

Example:

378

Chapter 9. Rexx Utilities (RexxUtil)

Say "File creation time:" SysGetFileDateTime("MyFile.Log", "C")

Say "File last access time:" SysGetFileDateTime("MyFile.Log", "A")

Say "File last update time:" SysGetFileDateTime("MyFile.Log", "W")

Say "Directory creation time:" SysGetFileDateTime("C:\MyDir", "C")

/* in Windows NT */

9.33. SysGetKey
>>-SysGetKey(-+-----+-)--><

+-opt-+

Reads and returns the next key from the keyboard buffer. If the keyboard buffer is empty, SysGetKey
waits until a key is pressed. Unlike the CHARIN built-in function, SysGetKey does not wait until the
Enter key is pressed.

Parameter:

opt

An option controlling screen echoing. Allowed values are:

"ECHO"

Echo the pressed key to the screen. This is the default.

"NOECHO"

Do not echo the pressed key.

9.34. SysGetMessage
>>-SysGetMessage(num--+-------------------------------+--)-----><

+--,--filename--+---------------+

| | +---------+ |

| | V | |

| +----,--str--+--+

| +---------+ |

| V | |

+-----,--str--+-----------------+

Retrieves a message from a catalog file and replaces the placeholder%s with the text you specify.
SysGetMessage can replace up to 9 placeholders.

To create catalog files, consult your system documentation.

Parameters:

379

Chapter 9. Rexx Utilities (RexxUtil)

num

The message number.

filename

The name of the catalog file containing the message. The default message catalog isrexx.cat.
SysGetMessage searches along the NLSPATH or uses the absolute path name.

str

The test for a placeholder (%) in the message. The message can contain up to 9 placeholders. You
must specify as many strings as there are placeholders in the message.

Example:

/* sample code segment using SysGetMessage */

msg = SysGetMessage(485, "rexx.cat", foo)

say msg

/*** Output ***/

Class "foo" not found.

9.35. SysGetMessageX (Unix only)
>>-SysGetMessageX(set,num--+-------------------------------+--)-><

+--,--filename--+---------------+

| | +---------+ |

| | V | |

| +----,--str--+--+

| +---------+ |

| V | |

+-----,--str--+-----------------+

Retrieves a message from a specific set of Unix catalog file and replaces the placeholder%s with the text
you specify. SysGetMessageX can replace up to 9 placeholders.

This utility is implemented for Unix only. Do not use it for platform-independent programs.

To create catalog files, consult your system documentation.

Parameters:

set

The message set.

num

The message number.

filename

The name of the catalog file containing the message. The default message catalog isrexx.cat.
SysGetMessageX searches along the NLSPATH or uses the absolute path name.

380

Chapter 9. Rexx Utilities (RexxUtil)

str

The test for a placeholder (%) in the message. The message can contain up to 9 placeholders. You
must specify as many strings as there are placeholders in the message.

Example:

/* sample code segment using SysGetMessage */

msg = SysGetMessageX(1, 485, "rexx.cat", foo)

say msg

/*** Output ***/

Class "foo" not found.

9.36. SysIni (Windows only)
>>-SysIni(-+---------+-,app,key,val,stem-)---------------------><

+-inifile-+

Allows limited access to INI file variables. Variables are stored in the INI file under Application Names
and their associated key names or keywords. You can use SysIni to share variables between applications
or as a way of implementing GLOBALV in the Windows operating system. Be careful when changing
application profile information.

Note: SysIni works on all types of data stored in an INI file (text, numeric, or binary).

When SysIni successfully sets or deletes key values, it returns "". For a successful query, it returns the
value of the specified application keyword.

SysIni may return the stringERROR: when an error occurs. Possible error conditions include:

• An attempt was made to query or delete an application/key pair that does not exist.

• An error opening the profile file occurred. You may have specified the current user or system INI file
with a relative file specification. Make sure to use the full file specification (specify drive, path, and
file name).

Parameters:

inifile

The name of the INI file with which you would like to work. The default is WIN.INI.

app

The application name or some other meaningful value with which you want to store keywords
(some sort of data).

key

The name of a keyword to hold data.

381

Chapter 9. Rexx Utilities (RexxUtil)

val

The value to associate with the keyword of the specified application. This can be"DELETE:" or
"ALL:".

stem

The name of a Rexx stem variable collection in which to store the resultant information. SysIni sets
Rexx variablestem.0to the number of elements returned and stores these elements instem.1to
stem.n.

Sysini has six modes. The modes and the syntax variations are as follows:

>>-SysIni(-+---------+-,app,key,val)---------------------------><

+-inifile-+

Sets a single key value.

>>-SysIni(-+---------+-,app,key)-------------------------------><

+-inifile-+

Queries a single key value.

>>-SysIni(-+---------+-,app,key--,"DELETE:"-)------------------><

+-inifile-+

Deletes a single key.

>>-SysIni(-+---------+-,app-+------------+-)-------------------><

+-inifile-+ +-,"DELETE:"-+

Deletes an application and all associated keys.

>>-SysIni(-+---------+-,app--,"ALL:"--,"stem"-)----------------><

+-inifile-+

Queries names of all keys associated with a certain application.

>>-SysIni(-+---------+-,"ALL:"--,"stem"-)----------------------><

+-inifile-+

Queries the names of all applications.

Examples:

/* Sample code segments */

/*** Save the user entered name under the key "NAME" of *****

**** the application "MYAPP". ****/

pull name .

call SysIni , "MYAPP", "NAME", name /* Save the value */

say SysIni(, "MYAPP", "NAME") /* Query the value */

call SysIni , "MYAPP" /* Delete all MYAPP info */

exit

382

Chapter 9. Rexx Utilities (RexxUtil)

/**** Type all WIN.INI file information to the screen *****/

call rxfuncadd sysloadfuncs, rexxutil, sysloadfuncs

call sysloadfuncs

call SysIni "WIN.INI", "All:", "Apps."

if Result \= "ERROR:" then

do i = 1 to Apps.0

call SysIni "WIN.INI", Apps.i, "All:", "Keys"

if Result \= "ERROR:" then

do j=1 to Keys.0

val = SysIni("WIN.INI", Apps.i, Keys.j)

say left(Apps.i, 20) left(Keys.j, 20),

"Len=x"Left(d2x(length(val)),4) left(val, 20)

end

end

exit

9.37. SysIsFile
>>-SysIsFile(filename)---><

Checks for the existence of a file. This function does not support wildcard specifications.

On Linux/Unix block devices are also considered to be regular files by this function.

Parameters:

filename

The name of the file to check for the existence of.

Returns:

0

The file does not exist.

1

The file exists.

Example:

if SysIsFile(InputFile) then say "File Exists!"

else say "File does not exist."

9.38. SysIsFileCompressed (Windows only)
>>-SysIsFileCompressed(filename)-------------------------------><

Checks if a file is compressed. This function does not support wildcard specifications.

383

Chapter 9. Rexx Utilities (RexxUtil)

Parameters:

filename

The name of the file to check.

Returns:

0

The file is not compressed or does not exist.

1

The file is compressed.

Example:

if SysIsFileCompressed(InputFile) then say "File is compressed!"

else say "File is not compressed or does not exist."

9.39. SysIsFileDirectory
>>-SysIsFileDirectory(dirname)---------------------------------><

Checks for the existence of a subdirectory. This function does not support wildcard specifications.

Parameters:

dirname

The name of the subdirectory to check for the existence of.

Returns:

0

The subdirectory does not exist.

1

The subdirectory exists.

Example:

if SysIsFileDirectory(InputFile) then say "Subdirectory Exists!"

else say "Subdirectory does not exist."

9.40. SysIsFileEncrypted (Windows only)
>>-SysIsFileEncrypted(filename)--------------------------------><

384

Chapter 9. Rexx Utilities (RexxUtil)

Checks if a file is encrypted. This function does not support wildcard specifications.

Parameters:

filename

The name of the file to check.

Returns:

0

The file is not encrypted or does not exist.

1

The file is encrypted.

Example:

if SysIsFileEncrypted(InputFile) then say "File is encrypted!"

else say "File is not encrypted or does not exist."

9.41. SysIsFileLink
>>-SysIsFileLink(linkname)-------------------------------------><

Checks for the existence of a link. This function does not support wildcard specifications.

Parameters:

linkname

The name of the link to check for the existence of.

Returns:

0

The link does not exist or it is not a link.

1

The link exists.

Example:

if SysIsFileLink(InputFile) then say "Link Exists!"

else say "Link does not exist."

385

Chapter 9. Rexx Utilities (RexxUtil)

9.42. SysIsFileNotContentIndexed (Windows only)
>>-SysIsFileNotContentIndexed(filename)------------------------><

Checks if a file is flagged to be indexed by the Index Service. This function does not support wildcard
specifications.

Parameters:

filename

The name of the file to check.

Returns:

0

The file is not flagged to be Indexed or does not exist.

1

The file is flagged to be Indexed.

Example:

if SysIsFileNotContentIndexed(InputFile) then say "File is flagged to be Indexed!"

else say "File is not flagged to be Indexed."

9.43. SysIsFileOffline (Windows only)
>>-SysIsFileOffline(filename)----------------------------------><

Checks if a file is flagged as Offline. This function does not support wildcard specifications.

Parameters:

filename

The name of the file to check.

Returns:

0

The file is not flagged as Offline or does not exist.

1

The file is flagged as Offline.

Example:

if SysIsFileOffline(InputFile) then say "File is flagged as Offline!"

else say "File is not flagged as Offline."

386

Chapter 9. Rexx Utilities (RexxUtil)

9.44. SysIsFileSparse (Windows only)
>>-SysIsFileSparse(filename)-----------------------------------><

Checks if a file is flagged as Sparse. This function does not support wildcard specifications.

Parameters:

filename

The name of the file, subdirectory or link to check.

Returns:

0

The file is not flagged as Sparse or does not exist.

1

The file is flagged as Sparse.

Example:

if SysIsFileSparse(InputFile) then say "File is Sparse!"

else say "File is not Sparse."

9.45. SysIsFileTemporary (Windows only)
>>-SysIsFileTemporary(filename)--------------------------------><

Checks if a file is flagged as Temporary. This function does not support wildcard specifications.

Parameters:

filename

The name of the file, subdirectory or link to check.

Returns:

0

The file is not flagged as Temporary or does not exist.

1

The file is flagged as Temporary.

Example:

if SysIsFileTemporary(InputFile) then say "File is Temporary!"

else say "File is not Temporary."

387

Chapter 9. Rexx Utilities (RexxUtil)

9.46. SysLoadFuncs
>>-SysLoadFuncs--><

Loads all RexxUtil functions. After a Rexx program calls SysLoadFuncs, the RexxUtil functions are
available in all operating system sessions.

9.47. SysLoadRexxMacroSpace
>>-SysLoadRexxMacroSpace(file)---------------------------------><

Loads functions from a saved macrospace file. SysLoadRexxMacroSpace returns the
RexxLoadMacroSpace return code.

Parameter:

file

The file used to load functions into the Rexx macrospace. SysSaveRexxMacroSpace must have
created the file.

9.48. SysMapCase (Windows only)
>>-SysMapCase(string--+--------------------------+---)---------><

+--,country---+------------+

+--,codepage--+

Parameter:

string

String to uppercase.

country

requested country code. Default is the current country code.

codepage

requested codepage. Default is the current codepage.

Returns:

The string uppercased according to the specified country and codepage or the null string is returned for
errors.

9.49. SysMkDir
>>-SysMkDir(dirspec)---><

388

Chapter 9. Rexx Utilities (RexxUtil)

Creates a specified directory.

Parameter:

dirspec

The directory to be created.

Return codes:

0

Directory creation was successful.

2

File not found.

3

Path not found.

5

Access denied.

26

Not a DOS disk.

87

Invalid parameter.

108

Drive locked.

183

Directory already exists.

206

File name exceeds range.

Example:

/* Code */

call SysMkDir "rexx"

9.50. SysNationalLanguageCompare (Windows only)
>>-SysNationalLanguageCompare(string1, string2------------------>

>---+------------------------+---------------------------------><

389

Chapter 9. Rexx Utilities (RexxUtil)

+--country--+------------+

+--codepage--+

Compares two strings using the specifiedcountryandcodepage.

Parameter:

string1

First string to compare.

string2

Second string to compare.

country

requested country code. Default is the current country code.

codepage

requested codepage. Default is the current codepage.

Returns:

Returen 1 if first string is greater, 0 if strings are equal, -1 if second string is greater. Comparisons are
done using strict comparison rules. Returns the null string for any errors

9.51. SysOpenEventSem
>>-SysOpenEventSem(name)---------------------------------------><

Opens an event semaphore. SysOpenEventSem returns a handle to the semaphore, or zero if an error
occurred.

Parameter:

name

The name of the event semaphore created by SysCreateEventSem.

9.52. SysOpenMutexSem
>>-SysOpenMutexSem(name)---------------------------------------><

Opens a mutex semaphore. SysOpenMutexSem returns a handle to the semaphore, or zero if an error
occurred.

Parameter:

390

Chapter 9. Rexx Utilities (RexxUtil)

name

The name of the mutex semaphore created by SysCreateMutexSem.

9.53. SysPostEventSem
>>-SysPostEventSem(handle)-------------------------------------><

Posts an event semaphore. SysPostEventSem returns the GetLastError return code of SetEvent.

Parameter:

handle

A handle returned from a previous SysCreateEventSem call.

Return codes:

0

No errors.

6

Invalid handle.

9.54. SysProcessType (Windows only)
>>-SysProcessType()--><

Returns the current process type.

Returns:

0

Full screen protect mode session.

1

Requires real mode.

2

VIO windowable protect mode session.

3

Presentation Manager protect mode session.

391

Chapter 9. Rexx Utilities (RexxUtil)

4

Detached protect mode process.

9.55. SysPulseEventSem (Windows only)
>>-SysPulseEventSem(handle)------------------------------------><

Posts and immediately resets an event semaphore. It sets the state of the event to signaled (available),
releases any waiting threads, and resets it to nonsignaled (unavailable) automatically. If the event is
manual, all waiting threads are released, the event is set to nonsignaled, and PulseEvent returns. If the
event is automatic, a single thread is released, the event is set to nonsignaled, and PulseEvent returns. If
no threads are waiting, or no threads can be released immediately, PulseEvent sets the state of the event
to nonsignaled and returns.

SysPulseEventSem returns GetLastError of PulseEvent.

Parameter:

handle

The handle of an event semaphore previously created by SysCreateEventSem.

9.56. SysQueryProcess
Windows

+-PID---+

>>-SysQueryProcess(" -+-TID---+- ")----------------------------><

+-PPRIO-+

+-TPRIO-+

+-PTIME-+

+-TTIME-+

Unix

+-PID------+

>>-SysQueryProcess(" -+----------+- ")-------------------------><

+-PPID-----+

+-PPRIO----+

+-PTIME----+

+-PMEM-----+

+-PSWAPS---+

+-PRCVDSIG-+

Retrieves information about the current process or Windows thread.

Parameter:

392

Chapter 9. Rexx Utilities (RexxUtil)

info

The kind of information requested:

PID

Returns the process ID of the current process.

PPID

Returns the parent process ID of the current process.

TID

Returns the thread ID of the current thread.

PPRIO

Returns the priority class of the current process.

TPRIO

Returns the relative priority of the current thread.

PTIME

Returns time information on the current process.

TTIME

Returns time information on the current thread.

PMEM

Returns the maximum memory (RSS) used by the the current process.

PRCVDSIG

Returns the number of signals that have been recieved by the process.

Return codes:

• For PID, PPID or TID: an ID

• For Windows PPRIO: "IDLE", "NORMAL", "HIGH", "REALTIME", or "UNKNOWN"

• For Unix PPRIO: a number from -20 to +20.

• For TPRIO: "IDLE", "LOWEST", "BELOW_NORMAL", "NORMAL", "ABOVE_NORMAL",
"HIGHEST", "TIME_CRITICAL", or "UNKNOWN"

• For Windows PTIME or TTIME: the creation date and time, the amount of time that the process
executed in kernel mode, and the amount of time that the process executed in user mode

• For Unix PTIME: the summary and the duration that the process executed in kernel mode, and the
duration that the process executed in user mode

393

Chapter 9. Rexx Utilities (RexxUtil)

9.57. SysQueryProcessCodePage
>>-SysQueryProcessCodePage()-----------------------------------><

Returns the current code page for the process.

Returns:

Returns the current code page for the process.

9.58. SysQueryRexxMacro
>>-SysQueryRexxMacro(name)-------------------------------------><

Queries the existence of a macrospace function. SysQueryRexxMacro returns the placement order of the
macrospace function or a null string ("") if the function does not exist in the macrospace.

Parameter:

name

The name of a function in the Rexx macrospace.

9.59. SysReleaseMutexSem
>>-SysReleaseMutexSem(handle)----------------------------------><

Releases a mutex semaphore. SysReleaseMutexSem returns the GetLastError return code of
ReleaseMutex.

Parameter:

handle

A handle returned from a previous SysCreateMutexSem call.

Return codes:

0

No errors.

6

Invalid handle.

105

Owner died.

394

Chapter 9. Rexx Utilities (RexxUtil)

288

Not owner.

9.60. SysReorderRexxMacro
>>-SysReorderRexxMacro(name,order)-----------------------------><

Reorders a routine loaded in the Rexx macrospace. SysReorderRexxMacro returns the
RexxReorderMacro return code.

Parameters:

name

The name of a function in the macrospace.

order

The new macro search order. The order can be "B" (Before) or "A" (After).

9.61. SysRequestMutexSem
>>-SysRequestMutexSem(handle-+----------+-)--------------------><

+-,timeout-+

Requests a mutex semaphore. SysRequestMutexSem returns the WaitForSingleObject return code.

Parameters:

handle

A handle returned from a previous SysCreateMutexSem call.

timeout

The time, in milliseconds, to wait on the semaphore. The defaulttimeoutis an infinite wait.

Return codes:

0

No errors.

6

Invalid handle.

103

Too many requests.

395

Chapter 9. Rexx Utilities (RexxUtil)

121

Error timeout.

9.62. SysResetEventSem
>>-SysResetEventSem(handle)------------------------------------><

Resets an event semaphore. SysResetEventSem returns the GetLastError return code of ResetEvent.

Parameter:

handle

A handle returned from a previous SysCreateEventSem call.

Return codes:

0

No errors.

6

Invalid handle.

9.63. SysRmDir
>>-SysRmDir(dirspec)---><

Deletes a specified file directory without your confirmation.

Parameter:

dirspec

The directory that should be deleted.

Return codes:

0

Directory removal was successful.

2

File not found.

3

Path not found.

396

Chapter 9. Rexx Utilities (RexxUtil)

5

Access denied or busy.

16

Current directory.

26

Not a DOS disk.

32

Sharing violation.

108

Drive locked.

123

Invalid name.

145

Directory not empty.

146

Is Subst Path.

147

Is Join Path.

206

File name exceeds range.

Example:

/* Code */

call SysRmDir "c:\rexx"

9.64. SysSaveRexxMacroSpace
>>-SysSaveRexxMacroSpace(file)---------------------------------><

Saves the Rexx macrospace. SysSaveRexxMacroSpace returns the RexxSaveMacroSpace return code.

Parameter:

397

Chapter 9. Rexx Utilities (RexxUtil)

file

The file used to save the functions in the Rexx macrospace.

9.65. SysSearchPath
>>-SysSearchPath(path,filename-+-----------+-)-----------------><

+-,--option-+

Searches the specified file path for the specified file. If the file is found, the search returns the full file
specification of the first file found within the path, and then stops searching. If the file is not found, the
search returns a null string.

Parameters:

path

An environment variable name. The environment variable must contain a list of file directories.
Examples are "PATH" or "DPATH".

filename

The file for which the path is to be searched.

option

Specifies where the search starts.

"C"

Starts the search at the current directory and then along the specified path. This is the default.

"N"

Starts the search at the path, not at the current directory.

Example:

/* Code */

fspec = SysSearchPath("PATH", "CMD.EXE")

say "CMD.EXE is located at" fspec

/* Output */

CMD.EXE is located at C:\WIN\CMD.EXE

9.66. SysSetFileDateTime
>>-SysSetFileDateTime(filename-+--------------------------------+-)-><

+-,--+---------+--+------------+-+

+-newdate-+ +-,--newtime-+

398

Chapter 9. Rexx Utilities (RexxUtil)

Modifies the "Last Modified" date and time of filefilename. If no new date or time is specified the file
date or time is set to the current time (TOUCH). If only the date is omitted, the "Last Modified" date
remains unchanged. If only the time is omitted, the "Last Modified" time remains unchanged.

Thefilenamecan also be a directory name.

The file that you want to change must not be opened by another process or must at least allow shared
writes to update the time stamp.

Parameters:

filename

The name of the file to be updated.

newdate

The new date for the file, to be specified in the format YYYY-MM-DD, where YYYY > 1800.

newtime

The new time for the file, to be specified in the format HH:MM:SS (24-hour format).

Return codes:

0

The file date and time were updated correctly.

-1

The update of the file date or time failed.

Example:

Call SysSetFileDateTime "MyFile.Log" /* touch file */

Call SysSetFileDateTime "MyFile.Log", "1998-12-17"

Call SysSetFileDateTime "MyFile.Log", , "16:37:21"

Call SysSetFileDateTime "MyFile.Log", "1998-12-17", "16:37:21"

Call SysSetFileDateTime "C:\MyDir" /* touch dir on Windows NT */

9.67. SysSetPriority
>>-SysSetPriority(class,delta)---------------------------------><

Changes the priority of the current process. A return code of 0 indicates no error.

Parameters:

399

Chapter 9. Rexx Utilities (RexxUtil)

class

The new process priority class. The allowed classes are:

0 or "IDLE"

Idle time priority

1 or "NORMAL"

Regular priority

2 or "HIGH"

High or time-critical priority

3 or "REALTIME"

Real-time priority

delta

The change applied to the process priority level.deltamust be in the range -15 to +15. It can also be
a symbolic name:

• "IDLE" for -15

• "LOWEST" for -2

• "BELOW_NORMAL" for -1

• "NORMAL" for 0

• "ABOVE_NORMAL" for 1

• "HIGHEST" for 2

• "TIME_CRITICAL" for 15

0

No errors.

307

Invalid priority class.

9.68. SysSetProcessCodePage (Windows only)
>>-SysSetProcessCodePage(codepage)-----------------------------><

Sets the current code page for the process.

Parameters:

400

Chapter 9. Rexx Utilities (RexxUtil)

codepage

requested codepage

Returns:

The return code from the operting system function.

9.69. SysShutdownSystem (Windows only)
>>-SysShutdownSystem(--->

>--+--+-)--><

*-computer-+---+

+-,message-+--------------------------------+

+-,timeout-+---------------------+

+-,appclose-+---------+

+-,reboot-+

Shuts down the system.

Parameters:

computer

Name of the remote machine. "" = local.

message

message for dialog.

timeout

Time to display message.

appclose

No dialog "save unsaved data".

reboot

1 to reboote the system.

Returns:

Returens1 for success or0 for failure.

9.70. SysSleep
>>-SysSleep(secs)--><

Pauses a Rexx program for a specified time interval.

Parameter:

401

Chapter 9. Rexx Utilities (RexxUtil)

secs

The number of seconds for which the program is to be paused. You can specify up to seven decimal
places in the number.

Example:

Say "Now paused for 2 seconds ..."

Call SysSleep 2

Say "Now paused for 0.1234567 seconds ..."

Call SysSleep 0.1234567

Call SysSleep 0.12345678 -- Error 40: Incorrect call to routine

9.71. SysStemCopy
>>-SysStemCopy--(--fromstem--,--tostem-------------------------->

>--+--+--)-><

+-,--+------+--+---+-+

+-from-+ +-,--+----+--+----------------------------------+-+

+-to-+ +-,--+-------+--+----------------+-+

+-count-+ +-,--"--+-I-+--"-+

+-O-+

Copies items from the source stem to the target stem. Items in the source stem are copied starting at the
from index (default is 1) into the target stem beginning at theto index (default is 1). The number of items
to be copied to the target stem can be specified with the count. The default is to copy all items in the
source stem.

You can also specify that the items are to be inserted into the target stem at the position and the existing
items are shifted to the end.

This function operates only on stem arrays that specify the number of items in stem.0 and all items must
be numbered from 1 to n without omitting an index.

Parameters:

fromstem

The name of the source stem.

tostem

The name of the target stem.

from

The first index in the source stem to be copied.

to

The position at which the items are to be inserted in the target stem.

402

Chapter 9. Rexx Utilities (RexxUtil)

count

The number of items to be copied or inserted.

insert

Either of the following values:

I

Insert items.

O

Overwrite items.

Return codes:

0

The stem was copied successfully.

-1

Copying the stem failed.

Example:

Source.0 = 3

Source.1 = "Hello"

Source.2 = "from"

Source.3 = "Rexx"

Call SysStemCopy "Source.", "Target."

Call SysStemCopy "Source.", "Target.", 1, 5, 2, "I"

9.72. SysStemDelete
>>-SysStemDelete(stem,startitem-+--------------+-)-------------><

+-,--itemcount-+

Deletes the specified item at the indexstartitemin the stem. If more than one item is to be deleted the
itemcountmust be specified. After deleting the requested items the stem is compacted, which means that
items following the deleted items are moved to the vacant positions.

This function operates only on stem arrays that specify the number of items in stem.0 and all items must
be numbered from 1 to n without omitting an index.

Parameters:

stem

The name of the stem from which the item is to be deleted.

403

Chapter 9. Rexx Utilities (RexxUtil)

startitem

The index of the item to be deleted.

itemcount

The number of items to be deleted if more than one.

Return codes:

0

Deleting was successful.

-1

Deleting failed.

Example:

Call SysStemDelete "MyStem.", 5

Call SysStemDelete "MyStem.", 5, 4

9.73. SysStemInsert
>>-SysStemInsert(stem,position,value)--------------------------><

Inserts a new item atpositionin the stem. All items in the stem following this position are shifted down
by one position.

This function operates only on stem arrays that specify the number of items in stem.0 and all items must
be numbered from 1 to n without omitting an index.

Parameters:

stem

The name of the stem in which an item is to be inserted.

position

The index at which the new item is to be inserted.

value

The value of the new item.

Return codes:

0

Inserting was successful.

404

Chapter 9. Rexx Utilities (RexxUtil)

-1

Inserting failed.

Example:

Call SysStemInsert "MyStem.", 5, "New value for item 5"

9.74. SysStemSort
+-A-+ +-C-+ +-1-----+

>>-SysStemSort--(--stem--,--"--+-D-+--"--,--"--+-I-+--"--,--+-start-+-->

+-1--------+

>--,--end--,--+-firstcol-+--,--lastcol--)-----------------------------><

Sorts all or the specified items in the stem. The items can be sorted in ascending or descending order and
the case of the strings being compared can be respected or ignored. Sorting can be further narrowed by
specifying the first and last item to be sorted or the columns used as sort keys. Because the sort uses a
quick-sort algorithm, the order of sorted items according to the sort key is undetermined.

This function operates only on stems that specify the number of items in stem.0 and all items must be
numbered from 1 to n without omitting an index. A value of 0 in stem.0 is also valid but no sort will be
performed.

Parameters:

stem

The name of the stem to be sorted.

order

Either "A" for ascending or "D" for descending. The default is "A".

type

The type of comparison: either "C" for case or "I" for ignore. The default is "C".

start

The index at which the sort is to start. The default is 1.

end

The index at which the sort is to end. The default is the last item.

firstcol

The first column to be used as sort key. The default is 1.

lastcol

The last column to be used as sort key. The default is the last column.

405

Chapter 9. Rexx Utilities (RexxUtil)

Return codes:

0

The sort was successful.

-1

The sort failed.

Example:

/* sort all elements descending, use cols 5 to 10 as key */

Call SysStemSort "MyStem.", "D", , , ,5, 10

/* sort all elements ascending, ignore the case */

Call SysStemSort "MyStem.", "A", "I"

/* sort elements 10 to 20 ascending, use cols 1 to 10 as key */

Call SysStemSort "MyStem.", , ,10, 20, 1, 10

9.75. SysSwitchSession (Windows only)
>>-SysSwitchSession(name)--------------------------------------><

Makes the named application the foreground application. SysSwitchSession returns GetLastError of
SetForegroundWindow.

Parameter:

name

The name of the application you want to be the foreground application.

9.76. SysSystemDirectory (Windows only)
>>-SysSystemDirectory()--><

Returns the Windows system directory.

9.77. SysTempFileName
>>-SysTempFileName(template-+---------+-)----------------------><

+-,filter-+

Returns a unique name for a file or directory that does not currently exist. If an error occurs or
SysTempFileName cannot create a unique name from the template, it returns a null string ("").
SysTempFileName is useful when a program requires a temporary file.

406

Chapter 9. Rexx Utilities (RexxUtil)

Parameters:

template

The location and base form of the temporary file or directory name. Thetemplateis a valid file or
directory specification with up to five filter characters.

filter

The filter character used intemplate. SysTempFileName replaces each filter character intemplate
with a numeric value. The resulting string represents a file or directory that does not exist. The
default filter character is ?.

Examples:

/* Code */

say SysTempFileName("C:\TEMP\MYEXEC.???")

say SysTempFileName("C:\TEMP\??MYEXEC.???")

say SysTempFileName("C:\MYEXEC@.@@@", "@")

/* Output */

C:\TEMP\MYEXEC.251

C:\TEMP\10MYEXEC.392

C:\MYEXEC6.019

SysTempFileName generates the filter character replacements with a random number algorithm. If the
resulting file or directory already exists, SysTempFileName increments the replacement value until all
possibilities have been exhausted.

Note on Unix/Linux behaviour: On Unix/Linux the returned path/filename will be longer than the
original input template. Additional characters are appended to the end of the filename and a path
may be prepended to the beginning of the returned string.

9.78. SysTextScreenRead (Windows only)
>>-SysTextScreenRead(-row,column--+------+--)------------------><

+-,len-+

Reads characters from a specified screen location. These include any carriage return and linefeed
characters if the number of character reads spans multiple lines.

Parameters:

row

The row from which to start reading.

col

The column from which to start reading.

407

Chapter 9. Rexx Utilities (RexxUtil)

len

The number of characters to read. The default is to read to the end of the screen.

Limitations: This function reads in only screen characters and does not consider the color attributes of
each character read. When restoring a character string to the screen with SAY or the CHAROUT built-in
function, the previous color settings are lost.

Examples:

/* Reading the entire screen */

screen = SysTextScreenRead(0, 0)

/* Reading one line */

line = SysTextScreenRead(2, 0, 80)

9.79. SysTextScreenSize (Windows only)
>>-SysTextScreenSize()---><

Returns the size of the screen in the format:row col.

Example:

/* Code */

call RxFuncAdd "SysTextScreenSize", "RexxUtil", "SysTextScreenSize"

parse value SysTextScreenSize() with row col

say "Rows="row", Columns="col

9.80. SysToUnicode (Windows only)
>>-SysToUnicode--(--string, codepage, translateflags, outstem--)-><

Maps a character string to a UNICODE string.

Parameters:

string

A string containing the UNICODE characters to be mapped.

codepage

Specifies the code page used to perform the conversion. This parameter can be the value of any code
page that is installed or available in the system. The default is the current original equipment
manufacturer (OEM) code-page identifier for the system.

You can also specify one of the following values:

408

Chapter 9. Rexx Utilities (RexxUtil)

ACP

ANSI code page.

OEMCP

OEM code page.

SYMBOL

Windows 2000: symbol code page.

THREAD_ACP

Windows 2000: current thread’s ANSI code page.

UTF7

Windows NT 4.0 and Windows 2000: translate using UTF-7.

UTF8

Windows NT 4.0 and Windows 2000: translate using UTF-8. When this is set,translateflags

must be set.

translateflags

Indicates whether to translate to precomposed or composite-wide characters (if a composite form
exists), whether to use glyph characters in place of control characters, and how to deal with invalid
characters.

You can specify a combination of the following flags:

PRECOMPOSED

Always use precomposed characters, that is, characters in which a base character and a
nonspacing character have a single character value. This is the default translation option.
Cannot be used with COMPOSITE.

COMPOSITE

Always use composite characters, that is, characters in which a base character and a
nonspacing character have different character values. Cannot be used with PRECOMPOSED.

ERR_INVALID_CHARS

If the function encounters an invalid input character, it fails and returns "1113".

USEGLYPHCHARS

Use glyph characters instead of control characters.

A composite character consists of a base character and a nonspacing character, each having different
character values. A precomposed character has a single character value for a base-nonspacing
character combination. In the character è, the "e" is the base character and the "grave" accent mark

409

Chapter 9. Rexx Utilities (RexxUtil)

is the nonspacing character. The function’s default behavior is to translate to the precomposed form.
If a precomposed form does not exist, the function attempts to translate to a composite form.

The flags PRECOMPOSED and COMPOSITE are mutually exclusive. The USEGLYPHCHARS
flag and the ERR_INVALID_CHARS can be set regardless of the state of the other flags.

outstem

The name of the stem variable that will contain the converted result. If the conversion was
successful the stem will be composed of the following value(s):

outstem.!TEXT

This variable will contain the converted string.

Return codes:

0

No errors.

87

Incorrect code page orcodepage value.

1004

Invalid translate flags.

1113

No mapping for the Unicode character exists in the target code page.

9.81. SysUtilVersion
>>-SysUtilVersion()--><

Returns a version number that identifies the current level of the Rexx Utilities package. It can be used to
verify the availability of certain functions.

Return code: The REXXUTIL version number in the formatn.mm.

Examples:

Because this function was not part of the original packaging, a sample logic to check for a certain level
of RexxUTIL can look as follows:

If RxFuncQuery("SysUtilVersion") = 1 |,

SysUtilVersion() < "2.00" Then

Say "Your RexxUTIL.DLL is not at the current level"

410

Chapter 9. Rexx Utilities (RexxUtil)

If a specific function should be used that was added at a later REXXUTIL level a similar check can be
performed by querying this function as follows:

If RxFuncQuery("SysSetFileDateTime") = 1 Then

Say "Your REXXUTIL.DLL is not at the current level"

9.82. SysVersion
>>-SysVersion()--><

Returns a string to identify the operating system and version. The first word of the returned string
contains the identifier for the operating system and the second word the version:WindowsNT x.xx or
Windows95 x.xx.

Return code: The operating system and version. Possible output for operating systems supported by
Object Rexx are:

Say SysVersion() -> "WindowsNT 4.00"

Say SysVersion() -> "WindowsNT 5.00"

Note: This function can be used to replace the operating-system-specific functions SysOS2Ver(),
SysWinVer(), and SysLinVer().

9.83. SysVolumeLabel (Windows only)
>>-SysVolumeLabel("drive")-------------------------------------><

Returns the label of the specified or the current drive.

Parameter:

drive

The drive letter in the formD:. If omitted, the letter of the current drive is assumed.

9.84. SysWait (AIX only)
>>-SysWait()---><

Waits for all child processes to end.

Returns:

The exit code from the child process.

411

Chapter 9. Rexx Utilities (RexxUtil)

9.85. SysWaitEventSem
>>-SysWaitEventSem(handle-+----------+-)-----------------------><

+-,timeout-+

Waits on an event semaphore. SysWaitEventSem returns the WaitForSingleObject return code.

Parameters:

handle

A handle returned from a previous SysCreateEventSem call.

timeout

The time, in milliseconds, to wait on the semaphore. The defaulttimeoutis an infinite wait.

Return codes:

0

No errors.

6

Invalid handle.

121

Timeout.

9.86. SysWaitNamedPipe (Windows only)
>>-SysWaitNamedPipe(name-+----------+-)------------------------><

+-,timeout-+

Performs a timed wait on a named pipe and returns the WaitNamedPipe return code.

Parameters:

name

The name of the pipe in the form "\\servername\pipe\pipename."

timeout

The number of microseconds to be waited. If you omittimeoutor specify 0, SysWaitNamedPipe
uses the default timeout value. To wait until the pipe is no longer busy, you can use a value of -1.

9.87. SysWinDecryptFile (Windows only)
>>-SysWinDecryptFile(filename)---------------------------------><

412

Chapter 9. Rexx Utilities (RexxUtil)

Decrypts a given file (Windows 2000 only).

Parameter:

filename

The file to be decrypted.

Return codes:

0

Decryption was successful.

2

File not found.

4

Cannot open file.

5

Access denied.

82

Cannot decrypt.

9.88. SysWinEncryptFile (Windows only)
>>-SysWinEncryptFile(filename)---------------------------------><

Encrypts a given file (Windows 2000 only).

Parameter:

filename

The file to be encrypted.

Return codes:

0

Encryption was successful.

2

File not found.

4

Cannot open file.

413

Chapter 9. Rexx Utilities (RexxUtil)

5

Access denied.

82

Cannot encrypt.

9.89. SysWinGetDefaultPrinter (Windows only)
>>-SysWinGetDefaultPrinter-------------------------------------><

Returns the current default printer in the form "Printername,Drivername,Portname".

9.90. SysWinGetPrinters (Windows only)
>>-SysWinGetPrinters(stem.)------------------------------------><

Fills a stem with the available printer descriptions.

Parameters:

stem.0

The number of entries

stem.i

Entry

Each entry is of the form "Printername,Drivername,Portname".

Return codes:

0

Success

1

Failure

9.91. SysWinSetDefaultPrinter (Windows only)
>>-SysWinSetDefaultPrinter(description)------------------------><

Sets the default printer.

Parameter:

414

Chapter 9. Rexx Utilities (RexxUtil)

description

Must have the form "Printername,Drivername,Portname".

Return codes:

0

Success

non-zero

System error codes (use SysGetErrortext() to get a description of the error)

Example:

/* set default printer */

default = SysWinGetDefaultPrinter()

parse var default default",".

if SysWinGetPrinters(list.) == 0 then do

say "List of available printers (* = default):"

do i=1 to list.0

parse var list.i pname",".

if pname == default then

say i list.i "*"

else

say i list.i

end

say

say "Please enter number of new default printer (0 = keep default)"

pull i

if i > 0 then call SysWinSetDefaultPrinter(list.i)

end

exit

9.92. SysWinVer Windows only)
>>-SysWinVer()---><

Returns a string specifying the Windows operating system version information in the formx.xx.

415

Chapter 9. Rexx Utilities (RexxUtil)

416

Chapter 10. Parsing
The parsing instructions are ARG, PARSE, and PULL (seeARG, PARSE, andPULL).

The data to be parsed is a source string. Parsing splits the data in a source string and assigns pieces of it
to the variables named in a template. A template is a model specifying how to split the source string. The
simplest kind of template consists of a list of variable names. Here is an example:

variable1 variable2 variable3

This kind of template parses the source string into blank-delimited words. More complicated templates
contain patterns in addition to variable names:

String patterns

Match the characters in the source string to specify where it is to be split. (SeeTemplates
Containing String Patternsfor details.)

Positional patterns

Indicate the character positions at which the source string is to be split. (SeeTemplates Containing
Positional (Numeric) Patternsfor details.)

Parsing is essentially a two-step process:

1. Parse the source string into appropriate substrings using patterns.

2. Parse each substring into words.

10.1. Simple Templates for Parsing into Words
Here is a parsing instruction:

parse value "time and tide" with var1 var2 var3

The template in this instruction is:var1 var2 var3. The data to be parsed is between the keywords
PARSE VALUE and the keywordWITH, the source stringtime and tide. Parsing divides the source string
into blank-delimited words and assigns them to the variables named in the template as follows:

var1="time"

var2="and"

var3="tide"

In this example, the source string to be parsed is a literal string,time and tide. In the next example, the
source string is a variable.

/* PARSE VALUE using a variable as the source string to parse */

string="time and tide"

parse value string with var1 var2 var3 /* same results */

417

Chapter 10. Parsing

PARSE VALUE does not convert lowercasea-z in the source string to uppercaseA-Z. If you want to
convert characters to uppercase, use PARSE UPPER VALUE. SeeUsing UPPER, LOWER, and
CASELESSfor a summary of the effect of parsing instructions on the case.

Note that if you specify the CASELESS option on a PARSE instruction, the string comparisons during
the scanning operation are made independently of the alphabetic case. That is, a letter in uppercase is
equal to the same letter in lowercase.

All of the parsing instructions assign the parts of a source string to the variables named in a template.
There are various parsing instructions because of the differences in the nature or origin of source strings.
For a summary of all the parsing instructions, seeParsing Instructions Summary.

The PARSE VAR instruction is similar to PARSE VALUE except that the source string to be parsed is
always a variable. In PARSE VAR, the name of the variable containing the source string follows the
keywordsPARSE VAR. In the next example, the variablestars contains the source string. The template is
star1 star2 star3.

/* PARSE VAR example */

stars="Sirius Polaris Rigil"

parse var stars star1 star2 star3 /* star1="Sirius" */

/* star2="Polaris" */

/* star3="Rigil" */

All variables in a template receive new values. If there are more variables in the template than words in
the source string, the leftover variables receive null (empty) values. This is true for the entire parsing: for
parsing into words with simple templates and for parsing with templates containing patterns. Here is an
example of parsing into words:

/* More variables in template than (words in) the source string */

satellite="moon"

parse var satellite Earth Mercury /* Earth="moon" */

/* Mercury="" */

If there are more words in the source string than variables in the template, the last variable in the
template receives all leftover data. Here is an example:

/* More (words in the) source string than variables in template */

satellites="moon Io Europa Callisto..."

parse var satellites Earth Jupiter /* Earth="moon" */

/* Jupiter="Io Europa Callisto..."*/

Parsing into words removes leading and trailing blanks from each word before it is assigned to a
variable. The exception to this is the word or group of words assigned to the last variable. The last
variable in a template receives leftover data, preserving extra leading and trailing blanks. Here is an
example:

/* Preserving extra blanks */

solar5="Mercury Venus Earth Mars Jupiter "

parse var solar5 var1 var2 var3 var4

/* var1 ="Mercury" */

/* var2 ="Venus" */

/* var3 ="Earth" */

/* var4 =" Mars Jupiter " */

418

Chapter 10. Parsing

In the source string,Earth has two leading blanks. Parsing removes both of them (the word-separator
blank and the extra blank) before assigningvar3="Earth". Mars has three leading blanks. Parsing
removes one word-separator blank and keeps the other two leading blanks. It also keeps all five blanks
betweenMars andJupiter and both trailing blanks afterJupiter.

Parsing removes no blanks if the template contains only one variable. For example:

parse value " Pluto " with var1 /* var1=" Pluto "*/

10.1.1. The Period as a Placeholder
A period in a template is a placeholder. It is used instead of a variable name, but it receives no data. It is
useful as a "dummy variable" in a list of variables or to collect unwanted information at the end of a
string. And it saves the overhead of unneeded variables.

The period in the first example is a placeholder. Be sure to separate adjacent periods with spaces;
otherwise, an error results.

/* Period as a placeholder */

stars="Arcturus Betelgeuse Sirius Rigil"

parse var stars . . brightest . /* brightest="Sirius" */

/* Alternative to period as placeholder */

stars="Arcturus Betelgeuse Sirius Rigil"

parse var stars drop junk brightest rest /* brightest="Sirius" */

10.2. Templates Containing String Patterns
A string pattern matches characters in the source string to indicate where to split it. A string pattern can
be either of the following:

Literal string pattern

One or more characters within quotation marks.

Variable string pattern

A variable within parentheses with no plus (+), minus (-), or equal sign (=) before the left
parenthesis. (SeeParsing with Variable Patternsfor details.)

Here are two templates, a simple template and a template containing a literal string pattern:

var1 var2 /* simple template */

var1 ", " var2 /* template with literal string pattern */

The literal string pattern is:", ". This template puts characters:

• From the start of the source string up to (but not including) the first character of the match (the
comma) intovar1

419

Chapter 10. Parsing

• Starting with the character after the last character of the match (the character after the blank that
follows the comma) and ending with the end of the string intovar2

A template with a string pattern can omit some of the data in a source string when assigning data to
variables. The next two examples contrast simple templates with templates containing literal string
patterns.

/* Simple template */

name="Smith, John"

parse var name ln fn /* Assigns: ln="Smith," */

/* fn="John" */

Notice that the comma remains (the variableln contains"Smith,"). In the next example the template is
ln ", " fn. This removes the comma.

/* Template with literal string pattern */

name="Smith, John"

parse var name ln ", " fn /* Assigns: ln="Smith" */

/* fn="John" */

First, the language processor scans the source string for ", ". It splits the source string at that point. The
variableln receives data starting with the first character of the source string and ending with the last
character before the match. The variablefn receives data starting with the first character after the match
and ending with the end of string.

A template with a string pattern omits data in the source string that matches the pattern. (There is a
special case (seeCombining String and Positional Patterns) in which a template with a string pattern
does not omit matching data in the source string.) The pattern", " (with a blank) is used instead of","
(no blank) because, without the blank in the pattern, the variablefn receives " John" (including a blank).

If the source string does not contain a match for a string pattern, any variables preceding the unmatched
string pattern get all the data in question. Any variables after that pattern receive the null string.

A null string is never found. It always matches the end of the source string.

10.3. Templates Containing Positional (Numeric) Patterns
A positional pattern is a number that identifies the character position at which the data in the source
string is to be split. The number must be a whole number.

An absolute positional pattern is:

• A number with no plus (+) or minus (-) sign preceding it or with an equal sign (=) preceding it.

• A variable in parentheses with an equal sign before the left parenthesis. (SeeParsing with Variable
Patternsfor details on variable positional patterns.)

The number specifies the absolute character position at which the source string is to be split.

Here is a template with absolute positional patterns:

variable1 11 variable2 21 variable3

420

Chapter 10. Parsing

The numbers11 and21 are absolute positional patterns. The number11 refers to the 11th position in the
input string,21 to the 21st position. This template puts characters:

• 1 through 10 of the source string intovariable1

• 11 through 20 intovariable2

• 21 to the end intovariable3

Positional patterns are probably most useful for working with a file of records, such as:

The following example uses this record structure:

/* Parsing with absolute positional patterns in template */

record.1="Clemens Samuel Mark Twain "

record.2="Evans Mary Ann George Eliot "

record.3="Munro H.H. Saki "

do n=1 to 3

parse var record.n lastname 11 firstname 21 pseudonym

If lastname="Evans" & firstname="Mary Ann" then say "By George!"

end /* Says "By George!" after record 2 */

The source string is split at character position 11 and at position 21. The language processor assigns
characters 1 to 10 tolastname, characters 11 to 20 tofirstname, and characters 21 to 40 topseudonym.

The template could have been:

1 lastname 11 firstname 21 pseudonym

instead of

lastname 11 firstname 21 pseudonym

Specifying1 is optional.

Optionally, you can put an equal sign before a number in a template. An equal sign is the same as no
sign before a number in a template. The number refers to a particular character position in the source
string. These two templates are equal:

lastname 11 first 21 pseudonym

lastname =11 first =21 pseudonym

A relative positional pattern is a number with a plus (+) or minus (-) sign preceding it. It can also be a
variable within parentheses, with a plus (+) or minus (-) sign preceding the left parenthesis; for details
seeParsing with Variable Patterns.

The number specifies the relative character position at which the source string is to be split. The plus or
minus indicates movement right or left, respectively, from the start of the string (for the first pattern) or

421

Chapter 10. Parsing

from the position of the last match. The position of the last match is the first character of the last match.
Here is the same example as for absolute positional patterns done with relative positional patterns:

/* Parsing with relative positional patterns in template */

record.1="Clemens Samuel Mark Twain "

record.2="Evans Mary Ann George Eliot "

record.3="Munro H.H. Saki "

do n=1 to 3

parse var record.n lastname +10 firstname + 10 pseudonym

If lastname="Evans" & firstname="Mary Ann" then say "By George!"

end /* same results */

Blanks between the sign and the number are insignificant. Therefore,+10 and+ 10 have the same
meaning. Note that +0 is a valid relative positional pattern.

Absolute and relative positional patterns are interchangeable except in the special case (Combining
String and Positional Patterns) when a string pattern precedes a variable name and a positional pattern
follows the variable name. The templates from the examples of absolute and relative positional patterns
give the same results.

With positional patterns, a matching operation can back up to an earlier position in the source string.
Here is an example using absolute positional patterns:

/* Backing up to an earlier position (with absolute positional) */

string="astronomers"

parse var string 2 var1 4 1 var2 2 4 var3 5 11 var4

say string "study" var1||var2||var3||var4

/* Displays: "astronomers study stars" */

The absolute positional pattern1 backs up to the first character in the source string.

With relative positional patterns, a number preceded by a minus sign backs up to an earlier position. Here
is the same example using relative positional patterns:

/* Backing up to an earlier position (with relative positional) */

string="astronomers"

parse var string 2 var1 +2 -3 var2 +1 +2 var3 +1 +6 var4

say string "study" var1||var2||var3||var4 /* same results */

In the previous example, the relative positional pattern-3 backs up to the first character in the source
string.

422

Chapter 10. Parsing

The templates in the previous two examples are equivalent.

You can use templates with positional patterns to make several assignments:

/* Making several assignments */

books="Silas Marner, Felix Holt, Daniel Deronda, Middlemarch"

parse var books 1 Eliot 1 Evans

/* Assigns the (entire) value of books to Eliot and to Evans. */

10.3.1. Combining Patterns and Parsing into Words
If a template contains patterns that divide the source string into sections containing several words, string
and positional patterns divide the source string into substrings. The language processor then applies a
section of the template to each substring, following the rules for parsing into words.

/* Combining string pattern and parsing into words */

name=" John Q. Public"

parse var name fn init "." ln /* Assigns: fn="John" */

/* init=" Q" */

/* ln=" Public" */

The pattern divides the template into two sections:

• fn init

• ln

The matching pattern splits the source string into two substrings:

•

" John Q"

•

" Public"

The language processor parses these substrings into words based on the appropriate template section.

John has three leading blanks. All are removed because parsing into words removes leading and trailing
blanks except from the last variable.

Q has six leading blanks. Parsing removes one word-separator blank and keeps the rest becauseinit is
the last variable in that section of the template.

423

Chapter 10. Parsing

For the substring" Public", parsing assigns the entire string intoln without removing any blanks. This
is becauseln is the only variable in this section of the template. (For details about treatment of blanks,
seeSimple Templates for Parsing into Words.)

/* Combining positional patterns with parsing into words */

string="R E X X"

parse var string var1 var2 4 var3 6 var4 /* Assigns: var1="R" */

/* var2="E" */

/* var3=" X" */

/* var4=" X" */

The pattern divides the template into three sections:

• var1 var2

• var3

• var4

The matching patterns split the source string into three substrings that are individually parsed into words:

• "R E"

• " X"

• " X"

The variablevar1 receives"R"; var2 receives"E". Bothvar3 andvar4 receive" X" (with a blank before
theX) because each is the only variable in its section of the template. (For details on treatment of blanks,
seeSimple Templates for Parsing into Words.)

10.4. Parsing with Variable Patterns
You might want to specify a pattern by using the value of a variable instead of a fixed string or number.
You do this by placing the name of the variable in parentheses. This is a variable reference. Blanks are
not necessary inside or outside the parentheses, but you can add them if you wish.

The template in the next parsing instruction contains the following literal string pattern". ".

parse var name fn init ". " ln

Here is how to specify that pattern as a variable string pattern:

strngptrn=". "

parse var name fn init (strngptrn) ln

If no equal, plus, or minus sign precedes the parenthesis that is before the variable name, the character
string value of the variable is then treated as a string pattern. The variable can be one that has been set
earlier in the same template.

Example:

/* Using a variable as a string pattern */

424

Chapter 10. Parsing

/* The variable (delim) is set in the same template */

SAY "Enter a date (mm/dd/yy format). =====> " /* assume 11/15/98 */

pull date

parse var date month 3 delim +1 day +2 (delim) year

/* Sets: month="11"; delim="/"; day="15"; year="98" */

If an equal, a plus, or a minus sign precedes the left parenthesis, the value of the variable is treated as an
absolute or relative positional pattern. The value of the variable must be a positive whole number or zero.

The variable can be one that has been set earlier in the same template. In the following example, the first
two fields specify the starting-character positions of the last two fields.

Example:

/* Using a variable as a positional pattern */

dataline = "12 26Samuel ClemensMark Twain"

parse var dataline pos1 pos2 6 =(pos1) realname =(pos2) pseudonym

/* Assigns: realname="Samuel Clemens"; pseudonym="Mark Twain" */

The positional pattern6 is needed in the template for the following reason: Word parsing occurs after the
language processor divides the source string into substrings using patterns. Therefore, the positional
pattern=(pos1) cannot be correctly interpreted as=12 until after the language processor has split the
string at column 6 and assigned the blank-delimited words12 and26 to pos1 andpos2, respectively.

10.5. Using UPPER, LOWER, and CASELESS
Specifying UPPER on any of the PARSE instructions converts lowercasea-z to uppercaseA-Z before
parsing.

The ARG instruction is a short form of PARSE UPPER ARG. The PULL instruction is a short form of
PARSE UPPER PULL. If you do not desire uppercase translation, use PARSE ARG instead of ARG or
PARSE UPPER ARG, and PARSE PULL instead of PULL or PARSE UPPER PULL.

Specifying LOWER on any of the PARSE instructions converts uppercaseA-Z to lowercasea-z before
parsing.

Specifying CASELESS means the comparisons during parsing are independent of the case--that is, a
letter in uppercase is equal to the same letter in lowercase.

10.6. Parsing Instructions Summary
All parsing instructions assign parts of the source string to the variables named in the template. The
following table summarizes where the source string comes from.

Table 10-1. Parsing Source Strings

Instruction Where the source string comes from

ARG Arguments you list when you call the program or
arguments in the call to a subroutine or function.

425

Chapter 10. Parsing

Instruction Where the source string comes from

PARSE ARG Arguments you list when you call the program or
arguments in the call to a subroutine or function.

PARSE LINEIN Next line in the default input stream.

PULL The string at the head of the external data queue.
(If the queue is empty, it uses default input,
typically the terminal.)

PARSE PULL The string at the head of the external data queue.
(If the queue is empty, it uses default input,
typically the terminal.)

PARSE SOURCE System-supplied string giving information about
the executing program.

PARSE VALUE Expression between the keywords VALUE and
WITH in the instruction.

PARSE VARname Parses the value ofname.

PARSE VERSION System-supplied string specifying the language,
language level, and (three-word) date.

10.7. Parsing Instructions Examples
All examples in this section parse source strings into words.

ARG

/* ARG with source string named in Rexx program invocation */

/* Program name is PALETTE. Specify 2 primary colors (yellow, */

/* red, blue) on call. Assume call is: palette red blue */

arg var1 var2 /* Assigns: var1="RED"; var2="BLUE" */

If var1<>"RED" & var1<>"YELLOW" & var1<>"BLUE" then signal err

If var2<>"RED" & var2<>"YELLOW" & var2<>"BLUE" then signal err

total=length(var1)+length(var2)

SELECT;

When total=7 then new="purple"

When total=9 then new="orange"

When total=10 then new="green"

Otherwise new=var1 /* entered duplicates */

END

Say new; exit /* Displays: "purple" */

Err:

say 'Input error--color is not "red" or "blue" or "yellow"'; exit

ARG converts alphabetic characters to uppercase before parsing. An example of ARG with the
arguments in the CALL to a subroutine is inParsing Several Strings.

PARSE ARG is similar to ARG except that PARSE ARG does not convert alphabetic characters to
uppercase before parsing.

426

Chapter 10. Parsing

PARSE LINEIN

parse linein "a=" num1 "c=" num2 /* Assume: 8 and 9 */

sum=num1+num2 /* Enter: a=8 b=9 as input */

say sum /* Displays: "17" */

PARSE PULL

PUSH "80 7" /* Puts data on queue */

parse pull fourscore seven /* Assigns: fourscore="80"; seven="7" */

SAY fourscore+seven /* Displays: "87" */

PARSE SOURCE

parse source sysname .

Say sysname /* Possibly Displays: */

/* "Windows" */

PARSE VALUE.

PARSE VAR examples are throughout the chapter, starting withParsing.

PARSE VERSION

parse version . level .

say level /* Displays: "Oryx 3.00 Jun 9 1993" */

PULL is similar to PARSE PULL except that PULL converts alphabetic characters to uppercase before
parsing.

10.8. Advanced Topics in Parsing
This section includes parsing several strings and flow charts illustrating a conceptual view of parsing.

10.8.1. Parsing Several Strings
Only ARG and PARSE ARG can have more than one source string. To parse several strings, you can
specify several comma-separated templates. Here is an example:

parse arg template1, template2, template3

This instruction consists of the keywords PARSE ARG and three comma-separated templates. For an
ARG instruction, the source strings to be parsed come from arguments you specify when you call a
program or CALL a subroutine or function. Each comma is an instruction to the parser to move on to the
next string.

Example:

/* Parsing several strings in a subroutine */

num="3"

musketeers="Porthos Athos Aramis D'Artagnan"

CALL Sub num,musketeers /* Passes num and musketeers to sub */

427

Chapter 10. Parsing

SAY total; say fourth /* Displays: "4" and " D'Artagnan" */

EXIT

Sub:

parse arg subtotal, . . . fourth

total=subtotal+1

RETURN

Note that when a Rexx program is started as a command, only one argument string is recognized. You
can pass several argument strings for parsing if:

• One Rexx program calls another Rexx program with the CALL instruction or a function call

• Programs written in other languages start a Rexx program

If there are more templates than source strings, each variable in a leftover template receives a null string.
If there are more source strings than templates, the language processor ignores leftover source strings. If
a template is empty (two subsequent commas) or contains no variable names, parsing proceeds to the
next template and source string.

10.8.2. Combining String and Positional Patterns
There is a special case in which absolute and relative positional patterns do not work identically. Parsing
with a template containing a string pattern skips the data in the source string that matches the pattern (see
Templates Containing String Patterns). But a template containing the sequence string pattern, variable
name, and relative position pattern does not skip the matching data. A relative positional pattern moves
relative to the first character matching a string pattern. As a result, assignment includes the data in the
source string that matches the string pattern.

/* Template containing string pattern, then variable name, then */

/* relative positional pattern does not skip any data. */

string="REstructured eXtended eXecutor"

parse var string var1 3 junk "X" var2 +1 junk "X" var3 +1 junk

say var1||var2||var3 /* Concatenates variables; displays: "Rexx" */

Here is how this template works:

428

Chapter 10. Parsing

10.8.3. Conceptual Overview of Parsing
The following figures are to help you understand the concept of parsing.

The figures include the following terms:

string start

is the beginning of the source string (or substring).

string end

is the end of the source string (or substring).

length

is the length of the source string.

match start

is in the source string and is the first character of the match.

match end

is in the source string. For a string pattern, it is the first character after the end of the match. For a
positional pattern, it is the same as match start.

match position

is in the source string. For a string pattern, it is the first matching character. For a positional pattern,
it is the position of the matching character.

token

is a distinct syntactic element in a template, such as a variable, a period, a pattern, or a comma.

value

is the numeric value of a positional pattern. This can be either a constant or the resolved value of a
variable.

429

Chapter 10. Parsing

Figure 10-1. Conceptual Overview of Parsing

430

Chapter 10. Parsing

Figure 10-2. Conceptual View of Finding Next Pattern

431

Chapter 10. Parsing

Figure 10-3. Conceptual View of Word Parsing

Note: The figures do not include error cases.

432

Chapter 11. Numbers and Arithmetic
This chapter gives an overview of the arithmetic facilities of the Rexx language.

Numbers can be expressed flexibly. Leading and trailing blanks are permitted, and exponential notation
can be used. Valid numbers are, for example:

12 /* a whole number */

"-76" /* a signed whole number */

12.76 /* decimal places */

" + 0.003 " /* blanks around the sign and so forth */

17. /* same as 17 */

.5 /* same as 0.5 */

4E9 /* exponential notation */

0.73e-7 /* exponential notation */

A number in Rexx is defined as follows:

>>-+--------+--+------------------+--+-digits--------+---------->

+-blanks-+ +-sign--+--------+-+ +-digits.digits-+

+-blanks-+ +-.digits-------+

+-digits.-------+

>--+--------+--><

+-blanks-+

blanks

are one or more spaces.

sign

is either+ or -.

digits

are one or more of the decimal digits0-9.

Note that a single period alone is not a valid number.

The arithmetic operators include addition (+), subtraction (-), multiplication (*), power (**), division
(/), prefix plus (+), and prefix minus (-). In addition, it includes integer divide (%), which divides and
returns the integer part, and remainder (//), which divides and returns the remainder. For examples of the
arithmetic operators, seeOperator Examples.

The result of an arithmetic operation is formatted as a character string according to specific rules. The
most important rules are:

• Results are calculated up to a maximum number of significant digits. The default is9, but you can alter
it with the NUMERIC DIGITS instruction. Thus, if a result requires more than 9 digits, it is rounded
to 9 digits. For example, the division of 2 by 3 results in 0.666666667.

• Except for division and power, trailing zeros are preserved. For example:

2.40 + 2 -> 4.40

433

Chapter 11. Numbers and Arithmetic

2.40 - 2 -> 0.40

2.40 * 2 -> 4.80

2.40 / 2 -> 1.2

If necessary, you can remove trailing zeros with the STRIP method (seeSTRIP), the STRIP function
(seeSTRIP), or by division by 1.

• A zero result is always expressed as the single digit0.

• Exponential form is used for a result depending on its value and the setting of NUMERIC DIGITS
(the default is9). If the number of places needed before the decimal point exceeds the NUMERIC
DIGITS setting, or the number of places after the point exceeds twice the NUMERIC DIGITS setting,
the number is expressed in exponential notation:

1e6 * 1e6 -> 1E+12 /* not 1000000000000 */

1 / 3E10 -> 3.33333333E-11 /* not 0.0000000000333333333 */

11.1. Precision
Precision is the maximum number of significant digits that can result from an operation. This is
controlled by the instruction:

>>-NUMERIC DIGITS--+------------+--;---------------------------><

+-expression-+

Theexpressionis evaluated and must result in a positive whole number. This defines the precision
(number of significant digits) of a calculation. Results are rounded to that precision, if necessary.

If you do not specifyexpressionin this instruction, or if no NUMERIC DIGITS instruction has been
processed since the start of a program, the default precision is used. The Rexx standard for the default
precision is9.

NUMERIC DIGITS can set values smaller than nine. However, use small values with care because the
loss of precision and rounding affects all Rexx computations, including, for example, the computation of
new values for the control variable in DO loops.

11.2. Arithmetic Operators
Rexx arithmetic is performed by the operators+, -, *, /, %, //, and ** (add, subtract, multiply, divide,
integer divide, remainder, and power).

Before every arithmetic operation, the terms operated upon have leading zeros removed (noting the
position of any decimal point, and leaving only one zero if all the digits in the number are zeros). They
are then truncated, if necessary, to DIGITS + 1 significant digits before being used in the computation.
The extra digit improves accuracy because it is inspected at the end of an operation, when a number is
rounded to the required precision. When a number is truncated, the LOSTDIGITS condition is raised if a
SIGNAL ON LOSTDIGITS condition trap is active. The operation is then carried out under up to double
that precision. When the operation is completed, the result is rounded, if necessary, to the precision
specified by the NUMERIC DIGITS instruction.

The values are rounded as follows: 5 through 9 are rounded up, and 0 through 4 are rounded down.

434

Chapter 11. Numbers and Arithmetic

11.2.1. Power
The ** (power) operator raises a number to a power, which can be positive, negative, or0. The power
must be a whole number. The second term in the operation must be a whole number and is rounded to
DIGITS digits, if necessary, as described underLimits and Errors when Rexx Uses Numbers Directly. If
negative, the absolute value of the power is used, and the result is inverted (that is, the number 1 is
divided by the result). For calculating the power, the number is multiplied by itself for the number of
times expressed by the power. Trailing zeros are then removed as though the result were divided by 1.

11.2.2. Integer Division
The % (integer divide) operator divides two numbers and returns the integer part of the result. The result
is calculated by repeatedly subtracting the divisor from the dividend as long as the dividend is larger than
the divisor. During this subtraction, the absolute values of both the dividend and the divisor are used: the
sign of the final result is the same as that which would result from regular division.

If the result cannot be expressed as a whole number, the operation is in error and fails--that is, the result
must not have more digits than the current setting of NUMERIC DIGITS. For example,10000000000%3

requires 10 digits for the result (3333333333) and would, therefore, fail ifNUMERIC DIGITS 9 were in
effect.

11.2.3. Remainder
The // (remainder) operator returns the remainder from an integer division and is defined to be the
residue of the dividend after integer division. The sign of the remainder, if nonzero, is the same as that of
the original dividend.

This operation fails under the same conditions as integer division, that is, if integer division on the same
two terms fails, the remainder cannot be calculated.

11.2.4. Operator Examples

/* With: NUMERIC DIGITS 5 */

12+7.00 -> 19.00

1.3-1.07 -> 0.23

1.3-2.07 -> -0.77

1.20*3 -> 3.60

7*3 -> 21

0.9*0.8 -> 0.72

1/3 -> 0.33333

2/3 -> 0.66667

5/2 -> 2.5

1/10 -> 0.1

12/12 -> 1

8.0/2 -> 4

2**3 -> 8

2**-3 -> 0.125

435

Chapter 11. Numbers and Arithmetic

1.7**8 -> 69.758

2%3 -> 0

2.1//3 -> 2.1

10%3 -> 3

10//3 -> 1

-10//3 -> -1

10.2//1 -> 0.2

10//0.3 -> 0.1

3.6//1.3 -> 1.0

11.3. Exponential Notation
For both large and small numbers, an exponential notation can be useful. For example:

numeric digits 5

say 54321*54321

would display2950800000 in the long form. Because this is misleading, the result is expressed as
2.9508E+9 instead.

The definition of numbers is, therefore, extended as follows:

>>-+--------+--+------------------+--+-digits--------+---------->

+-blanks-+ +-sign--+--------+-+ +-digits.digits-+

+-blanks-+ +-.digits-------+

+-digits.-------+

>--+---------------------+--+--------+-------------------------><

+-E--+------+--digits-+ +-blanks-+

+-sign-+

The integer following theE represents a power of ten that is to be applied to the number. TheE can be in
uppercase or lowercase.

Certain character strings are numbers even though they do not appear to be numeric, such as0E123 (0
raised to the 123 power) and1E342 (1 raised to the 342 power). Also, a comparison such as0E123=0E567

gives a true result of1 (0 is equal to 0). To prevent problems when comparing nonnumeric strings, use
the strict comparison operators.

Here are some examples:

12E7 = 120000000 /* Displays "1" */

12E-5 = 0.00012 /* Displays "1" */

-12e4 = -120000 /* Displays "1" */

0e123 = 0e456 /* Displays "1" */

0e123 == 0e456 /* Displays "0" */

The results of calculations are returned in either conventional or exponential form, depending on the
setting of NUMERIC DIGITS. If the number of places needed before the decimal point exceeds
DIGITS, or the number of places after the point exceeds twice DIGITS, the exponential form is used.
The exponential form the language processor generates always has a sign following theE to improve

436

Chapter 11. Numbers and Arithmetic

readability. If the exponent is0, the exponential part is omitted--that is, an exponential part ofE+0 is not
generated.

You can explicitly convert numbers to exponential form, or force them to be displayed in the long form,
by using the FORMAT built-in function (seeFORMAT).

Scientific notation is a form of exponential notation that adjusts the power of ten so that the number
contains only one nonzero digit before the decimal point. Engineering notation is a form of exponential
notation in which up to three digits appear before the decimal point, and the power of ten is always a
multiple of three. The integer part can, therefore, range from1 through999. You can control whether
scientific or engineering notation is used with the following instruction:

+-SCIENTIFIC------------+

>>-NUMERIC FORM--+-----------------------+--;------------------><

+-ENGINEERING-----------+

+-+-------+--expression-+

+-VALUE-+

Scientific notation is the default.

/* after the instruction */

Numeric form scientific

123.45 * 1e11 -> 1.2345E+13

/* after the instruction */

Numeric form engineering

123.45 * 1e11 -> 12.345E+12

11.4. Numeric Comparisons
The comparison operators are listed inComparison. You can use any of them for comparing numeric
strings. However, you should not use==, \==, ¬==, >>, \>>, ¬>>, <<, \<<, and¬<< for comparing
numbers because leading and trailing blanks and leading zeros are significant with these operators.

Numeric values are compared by subtracting the two numbers (calculating the difference) and then
comparing the result with 0. That is, the operation:

A ? Z

where? is any numeric comparison operator, is identical with:

(A - Z) ? "0"

It is, therefore, the difference between two numbers, when subtracted under Rexx subtraction rules, that
determines their equality.

Fuzz affects the comparison of two numbers. It controls how much two numbers can differ and still be
considered equal in a comparison. The FUZZ value is set by the following instruction:

>>-NUMERIC FUZZ--+------------+--;-----------------------------><

437

Chapter 11. Numbers and Arithmetic

+-expression-+

expressionmust result in a positive whole number or zero. The default is0.

Fuzz is to temporarily reduce the value of DIGITS. That is, the numbers are subtracted with a precision
of DIGITS minus FUZZ digits during the comparison. The FUZZ setting must always be less than
DIGITS.

If, for example, DIGITS = 9 and FUZZ = 1, the comparison is carried out to 8 significant digits, just as
thoughNUMERIC DIGITS 8 had been put in effect for the duration of the operation.

Example:

Numeric digits 5

Numeric fuzz 0

say 4.9999 = 5 /* Displays "0" */

say 4.9999 < 5 /* Displays "1" */

Numeric fuzz 1

say 4.9999 = 5 /* Displays "1" */

say 4.9999 < 5 /* Displays "0" */

11.5. Limits and Errors when Rexx Uses Numbers
Directly

When Rexx uses numbers directly, that is, numbers that have not been involved in an arithmetic
operation, they are rounded, if necessary, according to the setting of NUMERIC DIGITS.

The following table shows which numbers must be whole numbers and what their limits are:

Table 11-1. Whole Number Limits

Power values (right-hand operand of the power
operator)

999999999

Values ofexprr andexprf in the DO instruction The current numeric precision (up to 999999999)

Values given for DIGITS or FUZZ in the
NUMERIC instruction

999999999 (Note: FUZZ must always be less than
DIGITS.)

Positional patterns in parsing templates 999999999

Number given foroption in the TRACE instruction999999999

When Rexx uses numbers directly, the following types of errors can occur:

• Overflow or underflow.

This error occurs if the exponential part of a result exceeds the range that the language processor can
handle, when the result is formatted according to the current settings of NUMERIC DIGITS and
NUMERIC FORM. The language defines a minimum capability for the exponential part, namely the
largest number that can be expressed as an exact integer in default precision. Because the default

438

Chapter 11. Numbers and Arithmetic

precision is9, you can use exponents in the range-999999999 through999999999.

Because this allows for (very) large exponents, overflow or underflow is treated as a syntax error.

• Insufficient storage.

Storage is needed for calculations and intermediate results, and if an arithmetic operation fails because
of lack of storage. This is considered as a terminating error.

439

Chapter 11. Numbers and Arithmetic

440

Chapter 12. Conditions and Condition Traps
A condition is an event or state that CALL ON or SIGNAL ON can trap. A condition trap can modify the
flow of execution in a Rexx program. Condition traps are turned on or off using the ON or OFF
subkeywords of the SIGNAL and CALL instructions (seeCALL andSIGNAL).

>>-+-CALL---+--->

+-SIGNAL-+

>--+-OFF--+-condition-----------+--------------------+--;------><

| +-USER--usercondition-+ |

+-ON--+-condition-----------+--+----------------+-+

+-USER--usercondition-+ +-NAME--trapname-+

condition, usercondition, andtrapnameare single symbols that are taken as constants. Following one of
these instructions, a condition trap is set to either ON (enabled) or OFF (disabled). The initial setting for
all condition traps is OFF.

If a condition trap is enabled and the specifiedconditionor userconditionoccurs, control passes to the
routine or labeltrapnameif you have specifiedtrapname. Otherwise, control passes to the routine or
labeluserconditionor condition. CALL or SIGNAL is used, depending on whether the most recent trap
for the condition was set using CALL ON or SIGNAL ON, respectively.

Note: If you use CALL, the trapname can be an internal label, a built-in function, or an external
routine. If you use SIGNAL, the trapname can only be an internal label.

The conditions and their corresponding events that can be trapped are:

ANY

traps any condition that a more specific condition trap does not trap. For example, if NOVALUE is
raised and there is no NOVALUE trap enabled, but there is a SIGNAL ON ANY trap, the ANY trap
is called for the NOVALUE condition. For example, a CALL ON ANY trap is ignored if
NOVALUE is raised because CALL ON NOVALUE is not allowed.

ERROR

raised if a command indicates an error condition upon return. It is also raised if any command
indicates failure and none of the following is active:

• CALL ON FAILURE

• SIGNAL ON FAILURE

• CALL ON ANY

• SIGNAL ON ANY

The condition is raised at the end of the clause that called the command but is ignored if the
ERROR condition trap is already in the delayed state. The delayed state is the state of a condition
trap when the condition has been raised but the trap has not yet been reset to the enabled (ON) or
disabled (OFF) state.

441

Chapter 12. Conditions and Condition Traps

FAILURE

raised if a command indicates a failure condition upon return. The condition is raised at the end of
the clause that called the command but is ignored if the FAILURE condition trap is already in the
delayed state.

An attempt to enter a command to an unknown subcommand environment also raises a FAILURE
condition.

HALT

raised if an external attempt is made to interrupt and end execution of the program. The condition is
usually raised at the end of the clause that was processed when the external interruption occurred.
When a Rexx program is running in a full-screen or command prompt session, the Ctrl+Break key
combination raises the halt condition. However, if Ctrl+Break is pressed while a command or
non-Rexx external function is processing, the command or function ends.

Notes:

1. Application programs that use the Rexx language processor might use the RXHALT exit or the
RexxStart programming interface to halt the execution of a Rexx macro. (See theOpen Object
Rexx: Programming Guidefor details about exits.)

2. Only SIGNAL ON HALT or CALL ON HALT can trap error 4, described inAppendix C. Error
Numbers and Messages.

LOSTDIGITS

raised if a number used in an arithmetic operation has more digits than the current setting of
NUMERIC DIGITS. Leading zeros are not counted in this comparison. You can specify the
LOSTDIGITS condition only for SIGNAL ON.

NOMETHOD

raised if an object receives a message for which it has no method defined, and the object does not
have an UNKNOWN method. You can specify the NOMETHOD condition only for SIGNAL ON.

NOSTRING

raised when the language processor requires a string value from an object and the object does not
directly provide a string value. SeeRequired String Valuesfor more information. You can specify
the NOSTRING condition only for SIGNAL ON.

NOTREADY

raised if an error occurs during an input or output operation. SeeErrors during Input and Output.
This condition is ignored if the NOTREADY condition trap is already in the delayed state.

NOVALUE

raised if an uninitialized variable is used as:

• A term in an expression

442

Chapter 12. Conditions and Condition Traps

• Thenamefollowing the VAR subkeyword of a PARSE instruction

• A variable reference in a parsing template, an EXPOSE instruction, a PROCEDURE instruction,
or a DROP instruction

• A method selection override specifier in a message term

Note: SIGNAL ON NOVALUE can trap any uninitialized variables except tails in compound variables.

/* The following does not raise NOVALUE. */

signal on novalue

a.=0

say a.z

say "NOVALUE is not raised."

exit

novalue:

say "NOVALUE is raised."

You can specify this condition only for SIGNAL ON.

SYNTAX

raised if any language-processing error is detected while the program is running. This includes all
kinds of processing errors:

• True syntax errors

• "Run-time" errors (such as attempting an arithmetic operation on nonnumeric terms)

• Syntax errors propagated from higher call or method invocation levels

• Untrapped HALT conditions

• Untrapped NOMETHOD conditions

You can specify this condition only for SIGNAL ON.

Notes:

1. SIGNAL ON SYNTAX cannot trap the errors 3 and 5.

2. SIGNAL ON SYNTAX can trap the errors 6 and 30 only if they occur during the execution of
an INTERPRET instruction.

For information on these errors, refer toError Numbers and Messages.

USER

raised if a condition specified on the USER option of CALL ON or SIGNAL ON occurs. USER
conditions are raised by a RAISE instruction that specifies a USER option with the same
userconditionname. The specifieduserconditioncan be any symbol, including those specified as
possible values forcondition.

Any ON or OFF reference to a condition trap replaces the previous state (ON, OFF, or DELAY, and any
trapname) of that condition trap. Thus, a CALL ON HALT replaces any current SIGNAL ON HALT

443

Chapter 12. Conditions and Condition Traps

(and a SIGNAL ON HALT replaces any current CALL ON HALT), a CALL ON or SIGNAL ON with a
new trap name replaces any previous trap name, and any OFF reference disables the trap for CALL or
SIGNAL.

12.1. Action Taken when a Condition Is Not Trapped
When a condition trap is currently disabled (OFF) and the specified condition occurs, the default action
depends on the condition:

• For HALT and NOMETHOD, a SYNTAX condition is raised with the appropriate Rexx error number.

• For SYNTAX conditions, the clause in error is terminated, and a SYNTAX condition is propagated to
each CALL instruction, INTERPRET instruction, message instruction, or clause with function or
message invocations active at the time of the error, terminating each instruction if a SYNTAX trap is
not active at the instruction level. If the SYNTAX condition is not trapped at any of the higher levels,
processing stops, and a message (seeError Numbers and Messages) describing the nature of the event
that occurred usually indicates the condition.

• For all other conditions, the condition is ignored and its state remains OFF.

12.2. Action Taken when a Condition Is Trapped
When a condition trap is currently enabled (ON) and the specified condition occurs, a CALLtrapname
or SIGNAL trapnameinstruction is processed automatically. You can specify thetrapnameafter the
NAME subkeyword of the CALL ON or SIGNAL ON instruction. If you do not specify atrapname, the
name of the condition itself (for example, ERROR or FAILURE) is used.

For example, the instructioncall on error enables the condition trap for the ERROR condition. If the
condition occurred, then a call to the routine identified by the name ERROR is made. The instruction
call on error name commanderror would enable the trap and call the routine COMMANDERROR if
the condition occurred, and the caller usually receives an indication of failure.

The sequence of events, after a condition has been trapped, varies depending on whether a SIGNAL or
CALL is processed:

• If the action taken is a SIGNAL, execution of the current instruction ceases immediately, the condition
is disabled (set to OFF), and SIGNAL proceeds as usually (seeSIGNAL).

If any new occurrence of the condition is to be trapped, a new CALL ON or SIGNAL ON instruction
for the condition is required to re-enable it when the label is reached. For example, if SIGNAL ON
SYNTAX is enabled when a SYNTAX condition occurs, a usual syntax error termination occurs if the
SIGNAL ON SYNTAX label name is not found.

• If the action taken is a CALL, theCALL trapnameproceeds in the usual way (seeCALL) when the
instruction completes. The call does not affect the special variable RESULT. If the routine should
RETURN any data, that data is ignored.

444

Chapter 12. Conditions and Condition Traps

When the condition is raised, and before the CALL is made, the condition trap is put into a delayed
state. This state persists until the RETURN from the CALL, or until an explicit CALL (or SIGNAL)
ON (or OFF) is made for the condition. This delayed state prevents a premature condition trap at the
start of the routine called to process a condition trap. When a condition trap is in the delayed state, it
remains enabled, but if the condition is raised again, it is either ignored (for ERROR and FAILURE)
or (for the other conditions) any action (including the updating of the condition information) is
delayed until one of the following events occurs:

1. A CALL ON or SIGNAL ON for the delayed condition is processed. In this case, a CALL or
SIGNAL takes place immediately after the new CALL ON or SIGNAL ON instruction has been
processed.

2. A CALL OFF or SIGNAL OFF for the delayed condition is processed. In this case, the condition
trap is disabled and the default action for the condition occurs at the end of the CALL OFF or
SIGNAL OFF instruction.

3. A RETURN is made from the subroutine. In this case, the condition trap is no longer delayed and
the subroutine is called again immediately.

On RETURN from the CALL, the original flow of execution is resumed, that is, the flow is not
affected by the CALL.

Notes:

1. In all cases, the condition is raised immediately upon detection. If SIGNAL ON traps the
condition, the current instruction is ended, if necessary. Therefore, the instruction during which an
event occurs can only be partly processed. For example, if SYNTAX is raised during the
evaluation of the expression in an assignment, the assignment does not take place. Note that the
CALL for traps for which CALL ON is enabled can only occur at clause boundaries. If these
conditions arise in the middle of an INTERPRET instruction, execution of INTERPRET can be
interrupted and resumed later. Similarly, other instructions, for example DO or SELECT, can be
temporarily interrupted by a CALL at a clause boundary.

2. The state (ON, OFF, or DELAY, and anytrapname) of each condition trap is saved on entry to a
subroutine and is then restored on RETURN. This means that CALL ON, CALL OFF, SIGNAL
ON, and SIGNAL OFF can be used in a subroutine without affecting the conditions set up by the
caller. SeeCALL for details of other information that is saved during a subroutine call.

3. The state of condition traps is not affected when an external routine is called by a CALL, even if
the external routine is a Rexx program. On entry to any Rexx program, all condition traps have an
initial setting of OFF.

4. While user input is processed during interactive tracing, all condition traps are temporarily set
OFF. This prevents any unexpected transfer of control--for example, should the user accidentally
use an uninitialized variable while SIGNAL ON NOVALUE is active. For the same reason, a
syntax error during interactive tracing does not cause the exit from the program but is trapped
specially and then ignored after a message is given.

5. The system interface detects certain execution errors either before the execution of the program
starts or after the program has ended. SIGNAL ON SYNTAX cannot trap these errors.

Note that a label is a clause consisting of a single symbol followed by a colon. Any number of
successive clauses can be labels; therefore, several labels are allowed before another type of clause.

445

Chapter 12. Conditions and Condition Traps

12.3. Condition Information
When a condition is trapped and causes a SIGNAL or CALL, this becomes the current trapped condition,
and certain condition information associated with it is recorded. You can inspect this information by
using the CONDITION built-in function (seeCONDITION).

The condition information includes:

• The name of the current trapped condition

• The name of the instruction processed as a result of the condition trap (CALL or SIGNAL)

• The status of the trapped condition

• A descriptive string (seeDescriptive Strings) associated with that condition

• Optional additional object information (seeAdditional Object Information)

The current condition information is replaced when control is passed to a label as the result of a
condition trap (CALL ON or SIGNAL ON). Condition information is saved and restored across
subroutine or function calls, including one because of a CALL ON trap and across method invocations.
Therefore, a routine called by CALL ON can access the appropriate condition information. Any previous
condition information is still available after the routine returns.

12.3.1. Descriptive Strings
The descriptive string varies, depending on the condition trapped:

ERROR

The string that was processed and resulted in the error condition.

FAILURE

The string that was processed and resulted in the failure condition.

HALT

Any string associated with the halt request. This can be the null string if no string was provided.

LOSTDIGITS

The number with excessive digits that caused the LOSTDIGITS condition.

NOMETHOD

The name of the method that could not be found.

NOSTRING

The readable string representation of the object causing the NOSTRING condition.

446

Chapter 12. Conditions and Condition Traps

NOTREADY

The name of the stream being manipulated when the error occurred and the NOTREADY condition
was raised. If the stream was a default stream with no defined name, then the null string might be
returned.

NOVALUE

The derived name of the variable whose attempted reference caused the NOVALUE condition.

SYNTAX

Any string the language processor associated with the error. This can be the null string if you did
not provide a specific string. Note that the special variables RC and SIGL provide information on
the nature and position of the processing error. You can enable the SYNTAX condition trap only by
using SIGNAL ON.

USER

Any string specified by the DESCRIPTION option of the RAISE instruction that raised the
condition. If a description string was not specified, a null string is used.

12.3.2. Additional Object Information
The language processor can provide additional information, depending on the condition trapped:

NOMETHOD

The object that raised the NOMETHOD condition.

NOSTRING

The object that caused the NOSTRING condition.

NOTREADY

The stream object that raised the NOTREADY condition.

SYNTAX

An array containing the objects substituted into the secondary error message (if any) for the syntax
error. If the message did not contain substitution values, a zero element array is used.

USER

Any object specified by an ADDITIONAL or ARRAY option of the RAISE instruction that raised
the condition.

12.3.3. The Special Variable RC
When an ERROR or FAILURE condition is trapped, the Rexx special variable RC is set to the command
return code before control is transferred to the target label (whether by CALL or by SIGNAL).

447

Chapter 12. Conditions and Condition Traps

Similarly, when SIGNAL ON SYNTAX traps a SYNTAX condition, the special variable RC is set to the
syntax error number before control is transferred to the target label.

12.3.4. The Special Variable SIGL
Following any transfer of control because of a CALL or SIGNAL, the program line number of the clause
causing the transfer of control is stored in the special variable SIGL. If the transfer of control is because
of a condition trap, the line number assigned to SIGL is that of the last clause processed (at the current
subroutine level) before the CALL or SIGNAL took place. The setting of SIGL is especially useful after
a SIGNAL ON SYNTAX trap when the number of the line in error can be used, for example, to control a
text editor. Typically, code following the SYNTAX label can PARSE SOURCE to find the source of the
data and then call an editor to edit the source file, positioned at the line in error. Note that in this case you
might have to run the program again before any changes made in the editor can take effect.

Alternatively, SIGL can help determine the cause of an error (such as the occasional failure of a function
call) as in the following example:

signal on syntax

a = a + 1 /* This is to create a syntax error */

say "SYNTAX error not raised"

exit

/* Standard handler for SIGNAL ON SYNTAX */

syntax:

say "Rexx error" rc "in line" sigl":" "ERRORTEXT"(rc)

say "SOURCELINE"(sigl)

trace ?r; nop

This code first displays the error code, line number, and error message. It then displays the line in error,
and finally drops into debug mode to let you inspect the values of the variables used at the line in error.

12.3.5. Condition Objects
A condition object is a directory returned by the Object option of the CONDITION built-in function.
This directory contains all information currently available on a trapped condition. The information varies
with the trapped condition. The NIL object is returned for any entry not available to the condition. The
following entries can be found in a condition object:

ADDITIONAL

The additional information object associated with the condition. This is the same object that the
Additional option of the CONDITION built-in function returns. The ADDITIONAL information
may be specified with the ADDITIONAL or ARRAY options of the RAISE instruction.

DESCRIPTION

The string describing the condition. The Description option of the CONDITION built-in function
also returns this value.

448

Chapter 12. Conditions and Condition Traps

INSTRUCTION

The keyword for the instruction executed when the condition was trapped, eitherCALL or SIGNAL.
The Instruction option of the CONDITION built-in function also returns this value.

CONDITION

The name of the trapped condition. The Condition name option of the CONDITION built-in
function also returns this value.

RESULT

Any result specified on the RETURN or EXIT options of a RAISE instruction.

RC

The major Rexx error number for a SYNTAX condition. This is the same error number assigned to
the special variable RC.

CODE

The detailed identification of the error that caused a SYNTAX condition. This number is a
nonnegative number in the formnn.nnn. The integer portion is the Rexx major error number (the
same value as the RC entry). The fractional portion is a subcode that gives a precise indication of
the error that occurred.

ERRORTEXT

The primary error message for a SYNTAX condition. This is the same message available from the
ERRORTEXT built-in function.

MESSAGE

The secondary error message for a SYNTAX condition. The message also contains the content of
the ADDITIONAL information.

POSITION

The line number in source code at which a SYNTAX condition was raised.

PROGRAM

The name of the program where a SYNTAX condition was raised.

TRACEBACK

A single-index list of formatted traceback lines.

PROPAGATED

The value0 (false) if the condition was raised at the same level as the condition trap or the value1

(true) if the condition was reraised with RAISE PROPAGATE.

449

Chapter 12. Conditions and Condition Traps

450

Chapter 13. Concurrency
Conceptually, each Rexx object is like a small computer with its own processor to run its methods, its
memory for object and method variables, and its communication links to other objects for sending and
receiving messages. This is object-based concurrency. It lets more than one method run at the same time.
Any number of objects can be active (running) at the same time, exchanging messages to communicate
with, and synchronize, each other.

13.1. Early Reply
Early reply provides concurrent processing. A running method returns control, and possibly a result, to
the point from which it was called; meanwhile it continues running. The following figure illustrates this
concept.

Figure 13-1. Early Reply

Method A includes a call to Method B. Method B contains a REPLY instruction. This returns control and
a result to method A, which continues processing with the line after the call to Method B. Meanwhile,
Method B also continues running.

The chains of execution represented by method A and method B are called activities. An activity is a
thread of execution that can run methods concurrently with methods on other activities.

An activity contains a stack of invocations that represent the Rexx programs running on the activity. An
invocation can be a main program invocation, an internal function or subroutine call, an external function
or subroutine call, an INTERPRET instruction, or a message invocation. An invocation is activated when
an executable unit is invoked and removed (popped) when execution completes. In theEarly Reply
figure, the programs begins with a single activity. The activity contains a single invocation, method A.
When method A invokes method B, a second invocation is added to the activity.

When method B issues a REPLY, a new activity is created (activity 2). Method B’s invocation is removed
from activity 1, and pushed on to activity 2. Because activities can execute concurrently, both method A
and method B continue processing. The following figures illustrate this concept.

451

Chapter 13. Concurrency

Figure 13-2. Before REPLY

Figure 13-3. After REPLY

Here is an example of using early reply to run methods concurrently.

/* Example of early reply */

object1 = .example~new

object2 = .example~new

say object1~repeat(10, "Object 1 running")

say object2~repeat(10, "Object 2 running")

say "Main ended."

452

Chapter 13. Concurrency

exit

::class example

::method repeat

use arg reps,msg

reply "Repeating" msg"," reps "times."

do reps

say msg

end

13.2. Message Objects
A message object (seeThe Message Class) is an intermediary between two objects that enables
concurrent processing. All objects inherit the START method (page***) from the object class. To obtain
a message object, an object sends a START message to the object to which the message object will
convey a message. The message is an argument to the START message as in the following example:

a=p~start("REVERSE")

This line of code creates a message object,A, and sends it a start message. The message object then sends
the REVERSE message to objectP. ObjectP receives the message, performs any needed processing, and
returns a result to message objectA. Meanwhile the object that obtained message objectA continues its
processing. When message objectA returns, it does not interrupt the object that obtained it. It waits until
this object requests the information. Here is an example of using a message object to run methods
concurrently.

/* Example of using a message object */

object1 = .example~new

object2 = .example~new

a = object1~start("REPEAT",10,"Object 1 running")

b = object2~start("REPEAT",10,"Object 2 running")

say a~result

say b~result

say "Main ended."

exit

::class example

::method repeat

use arg reps,msg

do reps

say msg

end

return "Repeated" msg"," reps "times."

453

Chapter 13. Concurrency

13.3. Default Concurrency
The instance methods of a class use the EXPOSE instruction to define a set of object variables. This
collection of variables belonging to an object is called its object variable pool. The methods a class
defines and the variables these methods can access is called a scope. Rexx’s default concurrency exploits
the idea of scope. The object variable pool is a set of object subpools, each representing the set of
variables at each scope of the inheritance chain of the class from which the object was created. Only
methods at the same scope can access object variables at any particular scope. This prevents any name
conflicts between classes and subclasses, because the object variables for each class are in different
scopes.

If you do not change the defaults, only one method of a given scope can run on a single object at a time.
Once a method is running on an object, the language processor blocks other methods on other activities
from running in the same object at the same scope until the method that is running completes. Thus, if
different activities send several messages within a single scope to an object the methods run sequentially.

The next example shows how the default concurrency works.

/* Example of default concurrency for methods of different scopes */

object1 = .subexample~new

say object1~repeat(8, "Object 1 running call 1") /* These calls run */

say object1~repeater(8, "Object 1 running call 2") /* concurrently */

say "Main ended."

exit

::class example

::method repeat

use arg reps,msg

reply "Repeating" msg"," reps "times."

do reps

say msg

end

::class subexample subclass example

::method repeater

use arg reps,msg

reply "Repeating" msg"," reps "times."

do reps

say msg

end

The preceding example produces output such as the following:

Repeating Object 1 running call 1, 8 times.

Object 1 running call 1

Repeating Object 1 running call 2, 8 times.

Object 1 running call 1

Object 1 running call 2

Main ended.

Object 1 running call 1

454

Chapter 13. Concurrency

Object 1 running call 2

Object 1 running call 1

Object 1 running call 2

Object 1 running call 1

Object 1 running call 2

Object 1 running call 1

Object 1 running call 2

Object 1 running call 1

Object 1 running call 2

Object 1 running call 1

Object 1 running call 2

Object 1 running call 2

The following example shows that methods of the same scope do not run concurrently by default.

/* Example of methods with the same scope not running concurrently*/

object1 = .example~new

say object1~repeat(10,"Object 1 running call 1") /* These calls */

say object1~repeat(10,"Object 1 running call 2") /* cannot run */

say "Main ended." /* concurrently. */

exit

::class example

::method repeat

use arg reps,msg

reply "Repeating" msg"," reps "times."

do reps

say msg

end

The REPEAT method includes a REPLY instruction, but the methods for the two REPEAT messages in
the example cannot run concurrently. This is because REPEAT is called twice at the same scope and
requires exclusive access to the object variable pool. The REPLY instruction causes the first REPEAT
message to transfer its exclusive access to the object variable pool to a new activity and continue
execution. The second REPLY message also requires exclusive access and waits until the first method
completes.

If the original activity has more than one method active (nested method calls) with exclusive variable
access, the first REPLY instruction is unable to transfer its exclusive access to the new activity and must
wait until the exclusive access is again available. This may allow another method on the same object to
run while the first method waits for exclusive access.

13.3.1. Sending Messages within an Activity
Whenever a message is invoked on an object, the activity acquires exclusive access (a lock) for the
object’s scope. Other activities that send messages to the same object that required the locked scope
waits until the first activity releases the lock.

Suppose object A is running method Y, which includes:

455

Chapter 13. Concurrency

self~z

Sequential processing does not allow method Z to begin until method Y has completed. However,
method Y cannot complete until method Z runs. A similar situation occurs when a subclass’s overriding
method does some processing and passes a message to its superclasses’ overriding method. Both cases
require a special provision: If an invocation running on an activity sends another message to the same
object, this method is allowed to run because the activity has already acquired the lock for the scope.
This allows nested, nonconcurrent method invocations on a single activity without causing a deadlock
situation. The language processor regards these additional messages as subroutine calls.

Here is an example showing the special treatment of single activity messages. The REPEATER and
REPEAT methods have the same scope. REPEAT runs on the same object at the same time as the
REPEATER method because a message to SELF runs the REPEAT method. The language processor
treats this as a subroutine call rather than as concurrently running two methods.

/* Example of sending message to SELF */

object1 = .example~new

object2 = .example~new

say object1~repeater(10, "Object 1 running")

say object2~repeater(10, "Object 2 running")

say "Main ended."

exit

::class example

::method repeater

use arg reps,msg

reply "Entered repeater."

say self~repeat(reps,msg)

::method repeat

use arg reps,msg

do reps

say msg

end

return "Repeated" msg"," reps "times."

The activity locking rules also allow indirect object recursion. The following figure illustrates indirect
object recursion.

456

Chapter 13. Concurrency

Figure 13-4. Indirect Object Recursion

Method M in object A sends object B a message to run method N. Method N sends a message to object
A, asking it to run method O. Meanwhile, method M is still running in object A and waiting for a result
from method N. A deadlock would result. Because the methods are all running on the same activity, no
deadlock occurs.

13.4. Using Additional Concurrency Mechanisms
Rexx has additional concurrency mechanisms that can add full concurrency so that more than one
method of a given scope can run in an object at a time:

• The SETUNGUARDED method of the Method class and the UNGUARDED option of the METHOD
directive provide unconditional concurrency

• GUARD OFF and GUARD ON control a method’s exclusive access to an object’s scope

13.4.1. SETUNGUARDED Method and UNGUARDED Option
The SETUNGUARDED method of the Method class and the UNGUARDED option of the ::METHOD
directive control locking of an object’s scope when a method is invoked. Both let a method run even if
another method is active on the same object.

Use the SETUNGUARDED method or UNGUARDED option only for methods that do not need
exclusive use of their object variable pool, that is, methods whose execution can interleave with another
method’s execution without affecting the object’s integrity. Otherwise, concurrent methods can produce
unexpected results.

To use the SETUNGUARDED method for a method you have created with the NEW method of the
Method class, you specify:

methodname ~SETUNGUARDED

(SeeSETUNGUARDEDfor details about SETUNGUARDED.)

457

Chapter 13. Concurrency

Alternately, you can define a method with the ::METHOD directive, specifying the UNGUARDED
option:

::METHOD methodname UNGUARDED

13.4.2. GUARD ON and GUARD OFF
You might not be able to use the SETUNGUARDED method or UNGUARDED option in all cases. A
method might need exclusive use of its object variables, then allow methods on other activities to run,
and perhaps later need exclusive use again. You can use GUARD ON and GUARD OFF to alternate
between exclusive use of an object’s scope and allowing other activities to use the scope.

By default, a method must wait until a currently running method is finished before it begins. GUARD
OFF lets another method (running on a different activity) that needs exclusive use of the same object
variables become active on the same object. SeeGUARD for more information.

13.4.3. Guarded Methods
Concurrency requires the activities of concurrently running methods to be synchronized. Critical data
must be safeguarded so diverse methods on other activities do not perform concurrent updates. Guarded
methods satisfy both these needs.

A guarded method combines the UNGUARDED option of the ::METHOD directive or the
SETUNGUARDED method of the Method class with the GUARD instruction.

The UNGUARDED option and the SETUNGUARDED method both provide unconditional concurrency.
Including a GUARD instruction in a method makes concurrency conditional:

GUARD ON WHEN expression

If the expressionon the GUARD instruction evaluates to1 (true), the method continues to run. If the
expressionon the GUARD instruction evaluates to0 (false), the method does not continue running.
GUARD reevaluates theexpressionwhenever the value of an exposed object variable changes. When the
expression evaluates to1, the method resumes running. You can use GUARD to block running any
method when proceeding is not safe. (SeeGUARD for details about GUARD.)

Note: It is important to ensure that you use an expression that can be fulfilled. If the condition
expression cannot be met, GUARD ON WHEN puts the program in a continuous wait condition. This
can occur in particular when several activities run concurrently. In this case, a second activity can
make the condition expression invalid before GUARD ON WHEN can use it.

To avoid this, ensure that the GUARD ON WHEN statement is executed before the condition is set to
true. Keep in mind that the sequence of running activities is not determined by the calling sequence, so it
is important to use a logic that is independent of the activity sequence.

458

Chapter 13. Concurrency

13.4.4. Additional Examples
The following example uses REPLY in a method for a write-back cache.

/* Method Write_Back */

use arg data /* Save data to be written */

reply 0 /* Tell the sender all was OK */

self~disk_write(data) /* Now write the data */

The REPLY instruction returns control to the point at which method Write_Back was called, returning
the result0. The caller of method Write_Back continues processing from this point; meanwhile, method
Write_Back also continues processing.

The following example uses a message object. It reads a line asynchronously into the variablenextline:

mymsg = infile~start("READLINE") /* Gets message object to carry */

/* message to INFILE */

/* do other work */

nextline=mymsg~result /* Gets result from message object */

This creates a message object that waits for the read to finish while the sender continues with other work.
When the line is read, themymsg message object obtains the result and holds it until the sender requests it.

Semaphores and monitors (bounded buffers) synchronize concurrency processes. Giving readers and
writers concurrent access is a typical concurrency problem. The following sections show how to use
guarded methods to code semaphore and monitor mechanisms and to provide concurrency for readers
and writers.

13.4.4.1. Semaphores

A semaphore is a mechanism that controls access to resources, for example, preventing simultaneous
access. Synchronization often uses semaphores. Here is an example of a semaphore class:

Figure 13-5. Example of a Rexx Semaphore Class

/***/

/* A Rexx Semaphore Class. */

/* */

/* This file implements a semaphore class in Rexx. The class is defined to */

/* the Global Rexx Environment. The following methods are defined for */

/* this class: */

/* init - Initializes a new semaphore. Accepts the following positional */

/* parameters: */

/* 'name' - global name for this semaphore */

/* if named default to set name in */

/* the class semDirectory */

/* noshare - do not define named semaphore */

/* in class semDirectory */

/* Initial state (0 or 1) */

/* setInitialState - Allow for subclass to have some post-initialization, */

/* and do setup based on initial state of semaphore */

/* Waiting - Is the number of objects waiting on this semaphore. */

/* Shared - Is this semaphore shared (Global). */

459

Chapter 13. Concurrency

/* Named - Is this semaphore named. */

/* Name - Is the name of a named semaphore. */

/* setSem - Sets the semaphore and returns previous state. */

/* resetSem - Sets state to unSet. */

/* querySem - Returns current state of semaphore. */

/* */

/* SemaphoreMeta - Is the metaclass for the semaphore classes. This class is */

/* set up so that when a namedSemaphore is shared, it maintains these */

/* named/shared semaphores as part of its state. These semaphores are */

/* maintained in a directory, and an UNKNOWN method is installed on the */

/* class to forward unknown messages to the directory. In this way the */

/* class can function as a class and "like" a directory, so [] syntax can */

/* be used to retrieve a semaphore from the class. */

/* */

/* */

/* The following are in the subclass EventSemaphore. */

/* */

/* Post - Posts this semaphore. */

/* Query - Queries the number of posts since the last reset. */

/* Reset - Resets the semaphore. */

/* Wait - Waits on this semaphore. */

/* */

/* */

/* The following are in the subclass MutexSemaphore */

/* */

/* requestMutex - Gets exclusive use of semaphore. */

/* releaseMutex - Releases to allow someone else to use semaphore. */

/* NOTE: Currently anyone can issue a release (need not be the owner). */

/***/

/* == */

/* === Start of Semaphore class. ===== */

/* == */

::class SemaphoreMeta subclass class

::method init

expose semDict

/* Be sure to initialize parent */

.message~new(self, .array~of("INIT", super), "a", arg(1,"a"))~send

semDict = .directory~new

::method unknown

expose semDict

use arg msgName, args

/* Forward all unknown messages */

/* to the semaphore dictionary */

.message~new(semDict, msgName, "a", args)~send

if var("RESULT") then

return result

else

return

::class Semaphore subclass object metaclass SemaphoreMeta

460

Chapter 13. Concurrency

::method init

expose sem waits shared name

use arg semname, shr, state

waits = 0 /* No one waiting */

name = "" /* Assume unnamed */

shared = 0 /* Assume not shared */

sem = 0 /* Default to not posted */

if state = 1 Then /* Should initial state be set? */

sem = 1

/* Was a name specified? */

if VAR("SEMNAME") & semname \= "" Then Do

name = semname /* Yes, so set the name */

if shr \= "NOSHARE" Then Do /* Do we want to share this sem? */

shared = 1 /* Yes, mark it shared */

/* Shared add to semDict */

self~class[name] = self

End

End

self~setInitialState(sem) /* Initialize initial state */

::method setInitialState

/* This method intended to be */

nop /* overridden by subclasses */

::method setSem

expose sem

oldState = sem

sem = 1 /* Set new state to 1 */

return oldState

::method resetSem

expose sem

sem = 0

return 0

::method querySem

expose sem

return sem

::method shared

expose shared

return shared /* Return true 1 or false 0 */

::method named

expose name

/* Does semaphore have a name? */

if name = "" Then return 0 /* No, not named */

Else return 1 /* Yes, it is named */

461

Chapter 13. Concurrency

::method name

expose name

return name /* Return name or "" */

::method incWaits

expose waits

waits = waits + 1 /* One more object waiting */

::method decWaits

expose Waits

waits = waits - 1 /* One object less waiting */

::method Waiting

expose Waits

return waits /* Return number of objects waiting */

/* == */

/* === Start of EventSemaphore class. === */

/* == */

::class EventSemaphore subclass Semaphore public

::method setInitialState

expose posted posts

use arg posted

if posted then posts = 1

else posts = 0

::method post

expose posts posted

self~setSem /* Set semaphore state */

posted = 1 /* Mark as posted */

reply

posts = posts + 1 /* Increase the number of posts */

::method wait

expose posted

self~incWaits /* Increment number waiting */

guard off

guard on when posted /* Now wait until posted */

reply /* Return to caller */

self~decWaits /* Cleanup, 1 less waiting */

::method reset

expose posts posted

posted = self~resetSem /* Reset semaphore */

reply /* Do an early reply */

posts = 0 /* Reset number of posts */

::method query

expose posts

462

Chapter 13. Concurrency

/* Return number of times */

return posts /* Semaphore has been posted */

/* == */

/* === Start of MutexSemaphore class. === */

/* == */

::class MutexSemaphore subclass Semaphore public

::method setInitialState

expose owned

use arg owned

::method requestMutex

expose Owned

Do forever /* Do until we get the semaphore */

owned = self~setSem

if Owned = 0 /* Was semaphore already set? */

Then leave /* Wasn't owned; we now have it */

else Do

self~incWaits

guard off /* Turn off guard status to let */

/* others come in */

guard on when \Owned /* Wait until not owned and get */

/* guard */

self~decWaits /* One less waiting for MUTEX */

End

/* Go up and see if we can get it */

End

::method releaseMutex

expose owned

owned = self~resetSem /* Reset semaphore */

Note: There are functions available that use system semaphores. See SysCreateEventSem, and
SysCreateMutexSem.

13.4.4.2. Monitors (Bounded Buffer)

A monitor object consists of a number of client methods, WAIT and SIGNAL methods for client
methods to use, and one or more condition variables. Guarded methods provide the functionality of
monitors. Do not confuse this with the Monitor class (seeThe Monitor Class).

::method init

/* Initialize the bounded buffer */

expose size in out n

use arg size

463

Chapter 13. Concurrency

in = 1

out = 1

n = 0

::method append unguarded

/* Add to the bounded buffer if not full */

expose n size b. in

guard on when n < size

use arg b.in

in = in//size+1

n = n+1

::method take

/* Remove from the bounded buffer if not empty */

expose n b. out size

guard on when n > 0

reply b.out

out = out//size+1

n = n-1

13.4.4.3. Readers and Writers

The concurrency problem of the readers and writers requires that writers exclude writers and readers,
whereas readers exclude only writers. The UNGUARDED option is required to allow several concurrent
readers.

::method init

expose readers writers

readers = 0

writers = 0

::method read unguarded

/* Read if no one is writing */

expose writers readers

guard on when writers = 0

readers = readers + 1

guard off

/* Read the data */

say "Reading (writers:" writers", readers:" readers")."

guard on

readers = readers - 1

::method write unguarded

/* Write if no-one is writing or reading */

expose writers readers

guard on when writers + readers = 0

writers = writers + 1

/* Write the data */

say "Writing (writers:" writers", readers:" readers")."

464

Chapter 13. Concurrency

writers = writers - 1

465

Chapter 13. Concurrency

466

Chapter 14. The Security Manager
The security manager provides a special environment that is safe even if agent programs try to perform
unexpected actions. The security manager is called if an agent program tries to:

• Call an external function

• Use a host command

• Use the ::REQUIRES directive

• Access the .LOCAL directory

• Access the .ENVIRONMENT directory

• Use a stream name in the input and output built-in functions (CHARIN, CHAROUT, CHARS,
LINEIN, LINEOUT, LINES, and STREAM)

14.1. Calls to the Security Manager
When the language processor reaches any of the defined security checkpoints, it sends a message to the
security manager for the particular checkpoint. The message has a single argument, a directory of
information that pertains to the checkpoint. If the security manager chooses to handle the action instead
of the language processor, the security manager uses the checkpoint information directory to pass
information back to the language processor.

Security manager methods must return a value of either0 or 1 to the language processor. A value of0

indicates that the program is authorized to perform the indicated action. In this case, processing
continues as usual. A value of1 indicates that the security manager performed the action itself. The
security manager sets entries in the information directory to pass results for the action back to the
language processor. The security manager can also use the RAISE instruction to raise a program error for
a prohibited access. Error message 98.948 indicates authorization failures.

The defined checkpoints, with their arguments and return values, are:

CALL

sent for all external function calls. The information directory contains the following entries:

NAME

The name of the invoked function.

ARGUMENTS

An array of the function arguments.

When the CALL method returns1, indicating that it handled the external call, the security
manager places the function result in the information directory as the entry RESULT.

467

Chapter 14. The Security Manager

COMMAND

sent for all host command instructions. The information directory contains the following entries:

COMMAND

The string that represents the host command.

ADDRESS

The name of the target ADDRESS environment for the command.

When the COMMAND method returns1, indicating that it handled the command, the security
manager uses the following information directory entries to return the command results:

RC

The command return code. If the entry is not set, a return code of0 is used.

FAILURE

If a FAILURE entry is added to the information directory, a Rexx FAILURE condition is
raised.

ERROR

If an ERROR entry is added to the information directory, a Rexx ERROR condition is
raised. The ERROR condition is raised only if the FAILURE entry is not set.

REQUIRES

sent whenever a ::REQUIRES directive in the file is processed. The information directory contains
the following entry:

NAME

The name of the file specified on the ::REQUIRES directive.

When the REQUIRES method returns1, indicating that it handled the request, the entry NAME in
the information directory is replaced with the name of the actual file to load for the request. The
REQUIRES method can also provide a security manager to be used for the program loaded by the
::REQUIRES directive by setting the information direction entry SECURITYMANAGER into the
desired security manager object.

LOCAL

sent whenever Rexx is going to access an entry in the .LOCAL directory as part of the resolution of
the environment symbol name. The information directory contains the following entry:

NAME

The name of the target directory entry.

468

Chapter 14. The Security Manager

When the LOCAL method returns1, indicating that it handled the request, the information directory
entry RESULT contains the directory entry. When RESULT is not set and the method returns1, this
is the same as a failure to find an entry in the .LOCAL directory. Rexx continues with the next step
in the name resolution.

ENVIRONMENT

sent whenever Rexx is going to access an entry in the .ENVIRONMENT directory as part of the
resolution of the environment symbol name. The information directory contains the following entry:

NAME

The name of the target directory entry.

When the ENVIRONMENT method returns1, indicating that it handled the request, the
information directory entry RESULT contains the directory entry. When RESULT is not set and the
method returns1, this is the same as a failure to find an entry in the .ENVIRONMENT directory.
Rexx continues with the next step in the name resolution.

STREAM

sent whenever one of the Rexx input and output built-in functions (CHARIN, CHAROUT, CHARS,
LINEIN, LINEOUT, LINES, or STREAM) needs to resolve a stream name. The information
directory contains the following entry:

NAME

The name of the target stream.

When the STREAM method returns1, the information directory STREAM must be set to an object
to be used as the stream target. This should be a stream object or another object that supports the
Stream class methods.

METHOD

sent whenever a secure program attempts to send a message for a protected method (see the
::METHOD directive::METHOD) to an object. The information directory contains the following
entries:

OBJECT

The object the protected method is issued against.

NAME

The name of the protected method.

ARGUMENTS

An array containing the method arguments.

When the METHOD method returns1, indicating that it handled the external call, the function
result can be placed in the information directory as the method RESULT.

469

Chapter 14. The Security Manager

14.1.1. Example
The following agent program includes all the actions for which the security manager defines checkpoints
(for example, by calling an external function).

Figure 14-1. Agent Program

/* Agent */

interpret "echo Hello There"

"dir foo.bar"

call rxfuncadd sysloadfuncs, rexxutil, sysloadfuncs

say result

say syssleep(1)

say linein("c:\profile")

say .array

.object~setmethod("SETMETHOD")

::requires agent2.cmd

The following server implements the security manager with three levels of security. For each action the
security manager must check (for example, by calling an external routine):

1. The audit manager (Dumper class) writes a record of the event but then permits the action.

2. The closed cell manager (noWay class) does not permit the action to take place and raises an error.

3. The replacement execution environment (Replacer class, a subclass of the noWay class) replaces the
prohibited action with a different action.

Figure 14-2. Example of Server Implementing Security Manager

/* Server implements security manager */

parse arg program

method = .method~newfile(program)

say "Calling program" program "with an audit manager:"

pull

method~setSecurityManager(.dumper~new(.output))

.go~new~~run(method)

say "Calling program" program "with a function replacement execution environment:"

pull

method~setSecurityManager(.replacer~new)

.go~new~~run(method)

say "Calling program" program "with a closed cell manager:"

pull

signal on syntax

method~setSecurityManager(.noWay~new)

.go~new~~run(method)

exit

syntax:

say "Agent program terminated with an authorization failure"

exit

::class go subclass object

470

Chapter 14. The Security Manager

::method run -- this is a NON-PRIVATE method!

use arg m

self~run:super(m) -- a PRIVATE method is called here!

::class dumper

::method init

expose stream /* target stream for output */

use arg stream /* hook up the output stream */

::method unknown /* generic unknown method */

expose stream /* need the global stream */

use arg name, args /* get the message and arguments */

/* write out the audit event */

stream~lineout(time() date() "Called for event" name)

stream~lineout("Arguments are:") /* write out the arguments */

info = args[1] /* info directory is the first arg */

do name over info /* dump the info directory */

stream~lineout("Item" name":" info[name])

end

return 0 /* allow this to proceed */

::class noWay

::method unknown /* everything trapped by unknown */

/* and everything is an error */

raise syntax 98.948 array("You didn't say the magic word!")

::class replacer subclass noWay /* inherit restrictive UNKNOWN method*/

::method command /* issuing commands */

use arg info /* access the directory */

info~rc = 1234 /* set the command return code */

info~failure = .true /* raise a FAILURE condition */

return 1 /* return "handled" return value */

::method call /* external function/routine call */

use arg info /* access the directory */

/* all results are the same */

info~setentry("RESULT","uh, uh, uh...you didn't say the magic word")

return 1 /* return "handled" return value */

::method stream /* I/O function stream lookup */

use arg info /* access the directory */

/* replace with a different stream */

info~stream = .stream~new("c:\sample.txt")

return 1

/* return "handled" return value */

::method local /* .LOCAL variable lookup */

/* no value returned at all */

return 1 /* return "handled" return value */

::method environment /* .ENVIRONMENT variable lookup */

/* no value returned at all */

return 1 /* return "handled" return value */

::method method /* protected method invocation */

use arg info /* access the directory */

/* all results are the same */

info~setentry("RESULT","uh, uh, uh...you didn't say the magic word")

return 1 /* return "handled" return value */

471

Chapter 14. The Security Manager

::method requires /* REQUIRES directive */

use arg info /* access the directory */

/* switch to load a different file */

info~name = "c:\samples\agent.cmd"

info~securitymanager = self /* load under this authority */

return 1 /* return "handled" return value */

472

Chapter 15. Input and Output Streams
Rexx defines Stream class methods to handle input and output and maintains the I/O functions for input
and output externals. Using a mixture of Rexx I/O methods and Rexx I/O functions can cause
unpredictable results. For example, using the LINEOUT method and the LINEOUT function on the same
persistent stream object can cause overlays.

When a Rexx I/O function creates a stream object, the language processor maintains the stream object.
When a Rexx I/O method creates a stream object, it is returned to the program to be maintained. Because
of this, when Rexx I/O methods and Rexx I/O functions referring to the same stream are in the same
program, there are two separate stream objects with different read and write pointers. The program needs
to synchronize the read and write pointers of both stream objects, or overlays occur.

To obtain a stream object (for example,MYFIL), you could use:

MyStream = .stream~new("MYFIL")

You can manipulate stream objects with character or line methods:

nextchar = MyStream~charin()

nextline = MyStream~linein()

In addition to stream objects, the language processor defines an external data queue object for
interprogram communication. This queue object understands line functions only.

A stream object can have a variety of sources or destinations including files, serial interfaces, displays, or
networks. It can be transient or dynamic, for example, data sent or received over a serial interface, or
persistent in a static form, for example, a disk file.

Housekeeping for stream objects (opening and closing files, for example) is not explicitly part of the
language definition. However, Rexx provides methods, such as CHARIN and LINEIN, that are
independent of the operating system and include housekeeping. The COMMAND method provides the
stream_commandargument for those situations that require more granular access to operating system
interfaces.

15.1. The Input and Output Model
The model of input and output for Rexx consists of the following logically distinct parts:

• One or more input stream objects

• One or more output stream objects

• One or more external data queue objects

The Rexx methods, instructions, and built-in routines manipulate these elements as follows.

473

Chapter 15. Input and Output Streams

15.1.1. Input Streams
Input to Rexx programs is in the form of a serial character stream generated by user interaction or has the
characteristics of one generated this way. You can add characters to the end of some stream objects
asynchronously; other stream objects might be static or synchronous.

The methods and instructions you can use on input stream objects are:

• CHARIN method--reads input stream objects as characters.

• LINEIN method--reads input stream objects as lines.

• PARSE PULL and PULL instructions--read the default input stream object (.INPUT), if the external
data queue is empty. PULL is the same as PARSE UPPER PULL except that uppercase translation
takes place for PULL.

• PARSE LINEIN instruction--reads lines from the default input stream object regardless of the state of
the external data queue. Usually, you can use PULL or PARSE PULL to read the default input stream
object.

In a persistent stream object, the Rexx language processor maintains a current read position. For a
persistent stream:

• The CHARS method returns the number of characters currently available in an input stream object
from the read position through the end of the stream (including any line-end characters).

• The LINES method determines if any data remains between the current read position and the end of
the input stream object.

• You can move the read position to an arbitrary point in the stream object with:

• The SEEK or POSITION method of the Stream class

• The COMMAND method’s SEEK or POSITION argument

• Thestart argument of the CHARIN method

• The line argument of the LINEIN method

When the stream object is opened, this position is the start of the stream.

In a transient stream, no read position is available. For a transient stream:

• The CHARS and LINES methods attempt to determine if data is present in the input stream object.
These methods return the value1 for a device if data is waiting to be read or a determination cannot be
made. Otherwise, these methods return0.

• The SEEK and POSITION methods of the Stream class and the COMMAND method’sSEEK and
POSITION arguments are not applicable to transient streams.

15.1.2. Output Streams
Output stream methods provide for output from a Rexx program. Output stream methods are:

• SAY instruction--writes to the default output stream object (.OUTPUT).

474

Chapter 15. Input and Output Streams

• CHAROUT method--writes in character form to either the default or a specified output stream object.

• LINEOUT method--writes in lines to either the default or a specified output stream object.

LINEOUT and SAY write the new-line character at the end of each line. Depending on the operating
system or hardware, other modifications or formatting can be applied; however, the output data remains a
single logical line.

The Rexx language processor maintains the current write position in a stream. It is separate from the
current read position. Write positioning is usually at the end of the stream (for example, when the stream
object is first opened), so that data can be appended to the end of the stream. For persistent stream
objects, you can set the write position to the beginning of the stream to overwrite existing data by giving
a value of1 for the CHAROUTstart argument or the LINEOUTline argument. You can also use the
CHAROUTstart argument, the LINEOUTline argument, the SEEK or POSITION method, or the
COMMAND method’sSEEK or POSITION stream_commandto direct sequential output to some arbitrary
point in the stream.

Note: Once data is in a transient output stream object (for example, a network or serial link), it is no
longer accessible to Rexx.

15.1.3. External Data Queue
Rexx provides queuing services entirely separate from interprocess communications queues.

The external data queue is a list of character strings that only line operations can access. It is external to
Rexx programs in that other Rexx programs can have access to the queue.

The external data queue forms a Rexx-defined channel of communication between programs. Data in the
queue is arbitrary; no characters have any special meaning or effect.

Apart from the explicit Rexx operations described here, no detectable change to the queue occurs while a
Rexx program is running, except when control leaves the program and is manipulated by external means
(such as when an external command or routine is called).

There are two kinds of queues in Rexx. Both kinds are accessed and processed by name.

15.1.3.1. Unnamed Queues

One unnamed queue is automatically provided for each Rexx program in operation. Its name is always
"QUEUE:", and the language processor creates it when Rexx is called and no queue is currently
available. All processes that are children of the process that created the queue can access it as long as the
process that created it is still running. However, other processes cannot share the same unnamed queue.
The queue is deleted when the process that created it ends.

15.1.3.2. Named Queues

Your program creates (and deletes) named queues. You can name the queue yourself or leave the naming
to the language processor. Your program must know the name of the queue to use a named queue. To
obtain the name of the queue, use the RXQUEUE function:

475

Chapter 15. Input and Output Streams

previous_queue=rxqueue("set",newqueuename)

This sets the new queue name and returns the name of the previous queue.

The following Rexx instructions manipulate the queue:

• PULL or PARSE PULL--reads a string from the head of the queue. If the queue is empty, these
instructions take input from .INPUT.

• PUSH--stacks a line on top of the queue (LIFO).

• QUEUE--adds a string to the tail of the queue (FIFO).

Rexx functions that manipulate QUEUE: as a device name are:

• LINEIN("QUEUE:")--reads a string from the head of the queue. If the queue is empty the program
waits for an entry to be placed on the queue.

• LINEOUT("QUEUE:","string")--adds a string to the tail of the queue (FIFO).

• QUEUED--returns the number of items remaining in the queue.

Here is an example of using a queue:

Figure 15-1. Sample Rexx Procedure Using a Queue

/* */

/* push/pull WITHOUT multiprogramming support */

/* */

push date() time() /* push date and time */

do 1000 /* let's pass some time */

nop /* doing nothing */

end /* end of loop */

pull a b /* pull them */

say "Pushed at " a b ", Pulled at " date() time() /* say now and then */

/* */

/* push/pull WITH multiprogramming support */

/* (no error recovery, or unsupported environment tests) */

/* */

newq = RXQUEUE("Create") /* create a unique queue */

oq = RXQUEUE("Set",newq) /* establish new queue */

push date() time() /* push date and time */

do 1000 /* let's spend some time */

nop /* doing nothing */

end /* end of loop */

pull a b /* get pushed information */

say "Pushed at " a b ", Pulled at " date() time() /* tell user */

call RXQUEUE "Delete",newq /* destroy unique queue created */

call RXQUEUE "Set",oq /* reset to default queue (not required) */

Special considerations:

• External programs that must communicate with a Rexx procedure through defined data queues can use
the Rexx-provided queue or the queue that QUEUE: references (if the external program runs in a child

476

Chapter 15. Input and Output Streams

process), or they can receive the data queue name through some interprocess communication
technique, including argument passing, placement on a prearranged logical queue, or the use of usual
interprocess communication mechanisms (for example, pipes, shared memory, or IPC queues).

• Named queues are available across the entire system. Therefore, the names of queues must be unique
within the system. If a queue namedanyque exists, using the following function:

newqueue = RXQUEUE("Create", "ANYQUE")

results in an error.

15.1.3.3. Multiprogramming Considerations

The top-level Rexx program in a process tree owns an unnamed queue. However, any child process can
modify the queue at any time. No specific process or user owns a named queue. The operations that
affect the queue are atomic--the subsystem serializes the resource so that no data integrity problems can
occur. However, you are responsible for the synchronization of requests so that two processes accessing
the same queue get the data in the order it was placed on the queue.

A specific process owns (creates) an unnamed queue. When that process ends, the language processor
deletes the queue. Conversely, the named queues created withRxQueue("Create", queuename) exist
until you explicitly delete them. The end of a program or procedure that created a named queue does not
force the deletion of the private queue. When the process that created a queue ends, any data on the
queue remains until the data is read or the queue is deleted. (The function call
RxQueue("Delete", queuename) deletes a queue.)

If a data queue is deleted by its creator, a procedure, or a program, the items in the queue are also deleted.

15.1.4. Default Stream Names
A stream name can be a file, a queue, a pipe, or any device that supports character-based input and
output. If the stream is a file or device, the name can be any valid file specification.

Windows and *nix define three default streams:

• stdin (file descriptor 0) - standard input

• stdout (file descriptor 1) - standard output

• stderr (file descriptor 2) - standard error (output)

Rexx provides .INPUT and .OUTPUT public objects. They default to the default input and output
streams of the operating system. The appropriate default stream object is used when the call to a Rexx
I/O function includes no stream name. The following Rexx statements write a line to the default output
stream of the operating system:

Lineout(,"Hello World")

.Output~lineout("Hello World")

477

Chapter 15. Input and Output Streams

Rexx reserves the namesSTDIN, STDOUT, andSTDERR to allow Rexx functions to refer to these stream
objects. The checks for these names are not case-sensitive; for example,STDIN, stdin, andsTdIn all refer
to the standard input stream object. If you need to access a file with one of these names, qualify the name
with a directory specification, for example,\stdin.

Rexx also provides access to arbitrary file descriptors that are already open when Rexx is called. The
stream name used to access the stream object isHANDLE:x. x is the number of the file descriptor you wish
to use. You can useHANDLE:x as any other stream name; it can be the receiver of a Stream class method.
If the value ofx is not a valid file descriptor, the first I/O operation to that object fails.

Notes:

1. Once you close aHANDLE:x stream object, you cannot reopen it.

2. HANDLE:x is reserved. If you wish to access a file or device with this name, include a directory
specification before the name. For example,\HANDLE:x accesses the file HANDLE:x in the current
directory.

3. Programs that use the .INPUT and .OUTPUT public objects are independent of the operating
environment.

15.1.5. Line versus Character Positioning
Rexx lets you move the read or write position of a persistent stream object to any location within the
stream. You can specify this location in terms of characters or lines.

Character positioning is based upon the view of a stream as a simple collection of bytes of data. No
special meaning is given to any single character. Character positioning alone can move the stream
pointer. For example:

MyStream~charin(10,0)

moves the stream pointer so that the tenth character in MyStream is the next character read. But this does
not return any data. If MyStream is opened for reading or writing, any output that was previously written
but is still buffered is eliminated. Moving the write position always causes any buffered output to be
written.

Line positioning views a stream as a collection of lines of data. There are two ways of positioning by
lines. If you open a stream in binary mode and specify a record length ofx on the open, a line break
occurs everyx characters. Line positioning in this case is an extension of character positioning. For
example, if you open a stream in binary mode with record length 80, then the following two lines are
exactly equivalent.

MyStream~command(position 5 read line)

MyStream~command(position 321 read char)

Remember that streams and other Rexx objects are indexed starting with one rather than zero.

The second way of positioning by lines is for non-binary streams. New-line characters separate lines in
non-binary streams. Because the line separator is contained within the stream, ensure accurate line
positioning. For example, it is possible to change the line number of the current read position by writing

478

Chapter 15. Input and Output Streams

extra new-line characters ahead of the read position or by overwriting existing new-line characters. Thus,
line positioning in a non-binary stream object has the following characteristics:

• To do line positioning, it is necessary to read the stream in circumstances such as switching from
character methods to line methods or positioning from the end of the stream.

• If you rewrite a stream at a point prior to the read position, the line number of the current read position
could become inaccurate.

Note that for both character and line positioning, the index starts with one rather than zero. Thus,
character position 1 and line position 1 are equivalent, and both point to the top of the persistent stream
object. The Rexx I/O processing uses certain optimizations for positioning. These require that no other
process is writing to the stream concurrently and no other program uses or manipulates the same
low-level drive, directory specification, and file name that the language processor uses to open the file. If
you need to work with a stream in these circumstances, use the system I/O functions.

15.2. Implementation
Usually, the dialog between a Rexx program and you as the user takes place on a line-by-line basis and
is, therefore, carried out with the SAY, PULL, or PARSE PULL instructions. This technique considerably
enhances the usability of many programs, because they can be converted to programmable dialogs by
using the external data queue to provide the input you generally type. Use the PARSE LINEIN
instruction only when it is necessary to bypass the external data queue.

When a dialog is not on a line-by-line basis, use the serial interfaces the CHARIN and CHAROUT
methods provide. These methods are important for input and output in transient stream objects, such as
keyboards, printers, or network environments.

Opening and closing of persistent stream objects, such as files, is largely automatic. Generally the first
CHARIN, CHAROUT, CHARS, LINEIN, LINEOUT, or LINES message sent to a stream object opens
that stream object. It remains open until you explicitly close it with a CHAROUT or LINEOUT or until
the program ends. Using the LINEOUT method with only the name of a stream object (and no output
stringor line) closes the named stream object. The Stream class also provides OPEN and CLOSE
methods and the COMMAND method, which can explicitly open or close a stream object.

If you open a stream with the CHARIN, CHAROUT, LINEIN, or LINEOUT methods, it is opened for
both reading and writing, if possible. You can use the OPEN method or the COMMAND method to open
a stream for read-only or write-only operations.

15.3. Operating System Specifics
The COMMAND method of the Stream class determines the state of an input or output stream object
and carries out specific operations (seeCOMMAND). It allows Rexx programs to open and close
selected stream objects for read-only, write-only, or read and write operations, to move the read and write
position within a stream object, to control the locking and buffering characteristics, and to obtain
information (such as the size and the date of the last update).

479

Chapter 15. Input and Output Streams

15.4. Examples of Input and Output
In most circumstances, communication with a user running a Rexx program uses the default input and
output stream objects. For a question and answer dialog, the recommended technique is to use the SAY
and PULL instructions on the .INPUT and .OUTPUT objects. (You can use PARSE PULL if
case-sensitive input is needed.)

It is generally necessary to write to, or read from, stream objects other than the default. For example, the
following program copies the contents of one stream to another.

/* FILECOPY.CMD */

/* This routine copies, as lines, the stream or */

/* file that the first argument names to the stream */

/* or file the second argument names. It is assumed */

/* that the name is not an object, as it could be */

/* if it is passed from another Rexx program. */

parse arg inputname, outputname

inputobject = .stream~new(inputname)

outputobject = .stream~new(outputname)

signal on notready

do forever

outputobject~lineout(inputobject~linein)

end

exit

notready:

return

As long as lines remain in the named input stream, a line is read and is then immediately written to the
named output stream. This program is easy to change so that it filters the lines before writing them.

The following example illustrates how character and line operations can be mixed in a communications
program. It converts a character stream into lines.

/* COLLECT.CMD */

/* This routine collects characters from the stream */

/* the first argument names until a line is */

/* complete, and then places the line on the */

/* external data queue. */

/* The second argument is a single character that */

/* identifies the end of a line. */

parse arg inputname, lineendchar

inputobject = .stream~new(inputname)

buffer="" /* zero-length character accumulator */

do forever

nextchar=inputobject~charin

if nextchar=lineendchar then leave

buffer=buffer||nextchar /* add to buffer */

480

Chapter 15. Input and Output Streams

end

queue buffer /* place it on the external data queue */

Here each line is built up in a variable calledBUFFER. When the line is complete (for example, when the
user presses the Enter key) the loop ends and the language processor places the contents ofBUFFER on the
external data queue. The program then ends.

15.5. Errors during Input and Output
The Rexx language offers considerable flexibility in handling errors during input or output. This is
provided in the form of a NOTREADY condition that the CALL ON and SIGNAL ON instructions can
trap. The STATE and DESCRIPTION methods can elicit further information.

When an error occurs during an input or output operation, the function or method called usually
continues without interruption (the output method returns a nonzero count). Depending on the nature of
the operation, a program has the option of raising the NOTREADY condition. The NOTREADY
condition is similar to the ERROR and FAILURE conditions associated with commands in that it does
not cause a terminating error if the condition is raised but is not trapped. After NOTREADY has been
raised, the following possibilities exist:

• If the NOTREADY condition is not trapped, processing continues without interruption. The
NOTREADY condition remains in the OFF state.

• If SIGNAL ON NOTREADY traps the NOTREADY condition, the NOTREADY condition is raised.
Processing of the current clause stops immediately, and the SIGNAL takes place as usual for condition
traps.

• If CALL ON NOTREADY traps the NOTREADY condition, the NOTREADY condition is raised, but
execution of the current clause is not halted. The NOTREADY condition is put into the delayed state,
and processing continues until the end of the current clause. While processing continues, input
methods that refer to the same stream can return the null string and output methods can return an
appropriate count, depending on the form and timing of the error. At the end of the current clause, the
CALL takes place as usual for condition traps.

• If the NOTREADY condition is in the DELAY state (CALL ON NOTREADY traps the NOTREADY
condition, which has already been raised), processing continues, and the NOTREADY condition
remains in the DELAY state.

After the NOTREADY condition has been raised and is in DELAY state, the"O" option of the
CONDITION function returns the stream object being processed when the stream error occurred.

The STATE method of the Stream class returns the stream object state asERROR, NOTREADY, or UNKNOWN.
You can obtain additional information by using the DESCRIPTION method of the Stream class.

Note: SAY .OUTPUT and PULL .INPUT never raise the NOTREADY condition. However, the STATE and
DESCRIPTION methods can return NOTREADY.

481

Chapter 15. Input and Output Streams

15.6. Summary of Rexx I/O Instructions and Methods
The following lists Rexx I/O instructions and methods:

• CHARIN (seeCHARIN)

• CHAROUT (seeCHAROUT)

• CHARS (seeCHARS)

• CLOSE (seeCLOSE)

• COMMAND (seeCOMMAND)

• DESCRIPTION (seeDESCRIPTION)

• FLUSH (seeFLUSH)

• INIT (seeINIT)

• LINEIN (seeLINEIN)

• LINEOUT (seeLINEOUT)

• LINES (seeLINES)

• MAKEARRAY (seeMAKEARRAY)

• OPEN (seeOPEN)

• PARSE LINEIN (seePARSE)

• PARSE PULL (seePARSE)

• POSITION (seePOSITION)

• PULL (seePULL)

• PUSH (seePUSH)

• QUALIFY (seeQUALIFY)

• QUERY (seeQUERY)

• QUEUE (seeQUEUE)

• QUEUED (seeQUEUED)

• SAY (seeSAY)

• SEEK (seeSEEK)

• STATE (seeSTATE)

482

Chapter 16. Debugging Aids
In addition to the TRACE instruction described inTRACE, there are the following debugging aids.

16.1. Interactive Debugging of Programs
The debug facility permits interactively controlled execution of a program. Adding the prefix character ?
to the TRACE instruction or the TRACE function (for example,TRACE ?I or TRACE(?I)) turns on
interactive debugging and indicates to the user that interactive debugging is active. Further TRACE
instructions in the program are ignored, and the language processor pauses after nearly all instructions
that are traced at the console (seeDebugging Aidsfor the exceptions). When the language processor
pauses, the following debug actions are available:

• Entering a null line causes the language processor to continue with the execution until the next pause
for debugging input. Repeatedly entering a null line, therefore, steps from pause point to pause point.
ForTRACE ?A, for example, this is equivalent to single-stepping through the program.

• Entering an equal sign (=) with no blanks causes the language processor to reexecute the clause last
traced. For example, if an IF clause is about to take the wrong branch, you can change the value of the
variables on which it depends, and then reexecute it.

Once the clause has been reexecuted, the language processor pauses again.

• Anything else entered is treated as a line of one or more clauses, and processed immediately (that is,
as though DO; line; END; had been inserted in the program). The same rules apply as for the
INTERPRET instruction (for example, DO-END constructs must be complete). If an instruction
contains a syntax error, a standard message is displayed and you are prompted for input again.
Similarly, all other SIGNAL conditions are disabled while the string is processed to prevent
unintentional transfer of control.

During interpretation of the string, no tracing takes place, except that nonzero return codes from
commands are displayed. The special variable RC and the environment symbol .RS are not set by
commands executed from the string. Once the string has been processed, the language processor
pauses again for further debugging input.

Interactive debug is turned off in either of the following cases:

• A TRACE instruction uses the ? prefix while interactive debug is in effect

• At any time, ifTRACE O or TRACE with no options is entered

16.2. Debugging Aids
The numeric form of the TRACE instruction can be used to allow sections of the program to be executed
without pause for debugging input.TRACE n (that is, a positive result) allows execution to continue,

483

Chapter 16. Debugging Aids

skipping the nextn pauses (when interactive debugging is or becomes active).TRACE -n (that is, a
negative result) allows execution to continue without pause and with tracing inhibited forn clauses that
would otherwise be traced. The trace action a TRACE instruction selects is saved and restored across
subroutine calls. This means that if you are stepping through a program (for example, after usingTRACE

?R to trace results) and then enter a subroutine in which you have no interest, you can enterTRACE O to
turn off tracing. No further instructions in the subroutine are traced, but on return to the caller, tracing is
restored.

Similarly, if you are interested only in a subroutine, you can put aTRACE ?R instruction at its start.
Having traced the routine, the original status of tracing is restored and, if tracing was off on entry to the
subroutine, tracing and interactive debugging are turned off until the next entry to the subroutine.

Because any instructions can be executed in interactive debugging you have considerable control over
the execution.

The following are some examples:

Say expr /* displays the result of evaluating the */

/* expression */

name=expr /* alters the value of a variable */

Trace O /* (or Trace with no options) turns off */

/* interactive debugging and all tracing */

Trace ?A /* turns off interactive debugging but */

/* continues tracing all clauses */

exit /* terminates execution of the program */

do i=1 to 10; say stem.i; end

/* displays ten elements of the array stem. */

Exceptions: Some clauses cannot safely be reexecuted, and therefore the language processor does not
pause after them, even if they are traced. These are:

• Any repetitive DO clause, on the second or subsequent time around the loop.

• All END clauses.

• All THEN, ELSE, OTHERWISE, or null clauses.

• All RETURN and EXIT clauses.

• All SIGNAL clauses (but the language processor pauses after the target label is traced).

• Any clause that causes a syntax error. They can be trapped by SIGNAL ON SYNTAX, but cannot be
reexecuted.

A pause occurs after a REPLY instruction, but the REPLY instruction cannot be reexecuted.

484

Chapter 16. Debugging Aids

16.3. RXTRACE Variable
When the interpreter starts the interpretation of a Rexx procedure it checks the setting of the special
environment variable,RXTRACE. If RXTRACEhas been set toON (not case-sensitive), the interpreter
starts in interactive debug mode as if the Rexx instructionTRACE '?R' had been the first interpretable
instruction. All other settings ofRXTRACEare ignored.RXTRACEis only checked when starting a new
Rexx procedure.

Use the SET command to set or query an environment variable or query all environment variables. To
delete an environment variable, use SETvariable=.

485

Chapter 16. Debugging Aids

486

Chapter 17. Reserved Keywords
Keywords can be used as ordinary symbols in many unambiguous situations. The precise rules are given
in this chapter.

The free syntax of Rexx implies that some symbols are reserved for use by the language processor in
certain contexts.

Within particular instructions, some symbols can be reserved to separate the parts of the instruction.
These symbols are referred to as keywords. Examples of Rexx keywords are the WHILE keyword in a
DO instruction and the THEN keyword, which acts as a clause terminator in this case, following an IF or
WHEN clause.

Apart from these cases, only simple symbols that are the first token in a clause and that are not followed
by an "=" or ":" are checked to see if they are instruction keywords. The symbols can be freely used
elsewhere in clauses without being understood as keywords.

Be careful with host commands or subcommands with the same name as Rexx keywords. To avoid
problems, enclose at least the command or subcommand in quotation marks. For example:

"DELETE" Fn"."Ext

You can then also use the SIGNAL ON NOVALUE condition to check the integrity of an executable.

Alternatively, you can precede such command strings with two adjacent quotation marks to concatenate
the null string to the beginning. For example:

""Erase Fn"."Ext

A third option is to enclose the entire expression, or the first symbol, in parentheses. For example:

(Erase Fn"."Ext)

487

Chapter 17. Reserved Keywords

488

Chapter 18. Special Variables
A special variable can be set automatically during processing of a Rexx program. There are five special
variables:

RC

is set to the return code from any executed command (including those submitted with the
ADDRESS instruction). After the trapping of ERROR or FAILURE conditions, it is also set to the
command return code. When the SYNTAX condition is trapped, RC is set to the syntax error
number (1-99). RC is unchanged when any other condition is trapped.

Note: Commands executed manually during interactive tracing do not change the value of RC.

RESULT

is set by a RETURN instruction in a subroutine that has been called, or a method that was activated
by a message instruction, if the RETURN instruction specifies an expression. (SeeEXIT, REPLY,
andRETURN.) If the RETURN instruction has no expression, RESULT is dropped (becomes
uninitialized). Note that an EXIT or REPLY instruction also sets RESULT.

SELF

is set when a method is activated. Its value is the object that forms the execution context for the
method (that is, the receiver object of the activating message). You can use SELF to:

• Run a method in an object in which a method is already running. For example, a Find_Clues
method is running in an object called Mystery_Novel. When Find_Clues finds a clue, it sends a
Read_Last_Page message to Mystery_Novel:

self~Read_Last_Page

• Pass references about an object to the methods of other objects. For example, a Sing method is
running in object Song. The codeSinger2~Duet(self) would give the Duet method access to the
same Song.

SIGL

is set to the line number of the last instruction that caused a transfer of control to a label (that is, any
SIGNAL, CALL, internal function call, or trapped condition). SeeThe Special Variable SIGL.

SUPER

is set when a method is activated. Its value is the class object that is the usual starting point for a
superclass method lookup for the SELF object. This is the first immediate superclass of the class
that defined the method currently running. (SeeClasses and Instances.)

The special variable SUPER lets you call a method in the superclass of an object. For example, the
following Savings class has INIT methods that the Savings class, Account class, and Object class
define.

::class Account

489

Chapter 18. Special Variables

::method INIT

expose balance

use arg balance

self~init:super /* Forwards to the Object INIT method */

::method TYPE

return "an account"

::method name attribute

::class Savings subclass Account

::method INIT

expose interest_rate

use arg balance, interest_rate

self~init:super(balance) /* Forwards to the Account INIT method */

::method type

return "a savings account"

When the INIT method of the Savings class is called, the variable SUPER is set to the Account
class object. The instruction:

self~init:super(balance) /* Forwards to the Account INIT method */

calls the INIT method of the Account class rather than recursively calling the INIT method of the
Savings class. When the INIT method of the Account class is called, the variable SUPER is
assigned to the Object class.

self~init:super /* Forwards to the Object INIT method */

calls the INIT method that the Object class defines.

You can alter these variables like any other variable, but the language processor continues to set RC,
RESULT, and SIGL automatically when appropriate. The EXPOSE, PROCEDURE, USE and DROP
instructions also affect these variables.

Rexx also supplies functions that indirectly affect the execution of a program. An example is the name
that the program was called by and the source of the program (which are available using the PARSE
SOURCE instruction). In addition, PARSE VERSION makes available the language version and date of
Rexx implementation that is running. The built-in functions ADDRESS, DIGITS, FUZZ, FORM, and
TRACE return other settings that affect the execution of a program.

490

Chapter 19. Useful Services
The following section describes useful commands and services.

19.1. Windows Commands

COPY

copies files.

DELETE

deletes files.

DIR

displays disk directories.

ERASE

erases files.

MODE

controls input and output device characteristics.

PATH

defines or displays the search path for commands and Rexx programs. See alsoSearch Order.

SET

displays or changes Windows environment variables. See alsoVALUE.

19.2. Linux Commands
Most Commonly used commands are:

cp

copies files and directories.

mv

moves files and directories.

rm

removes files and directories.

491

Chapter 19. Useful Services

ls

displayes files and directories.

echo $path

defines or displays the search path for commands and Rexx programs. See alsoSearch Order.

env

displays or changes Linux environment variables.

Any other Linux command can be used. For a description of these commands, see the respective Linux
documentation (for example, man-pages).

19.3. Subcommand Handler Services
For a complete subcommand handler description, see theOpen Object Rexx: Programming Guide.

19.3.1. The RXSUBCOM Command
The RXSUBCOM command registers, drops, and queries Rexx subcommand handlers. A Rexx
procedure or script file can use RXSUBCOM to register dynamic-link library subcommand handlers.
Once the subcommand handler is registered, a Rexx program can send commands to the subcommand
handler with the Rexx ADDRESS instruction. For example, Rexx Dialog Manager programs use
RXSUBCOM to register the ISPCIR subcommand handler.

"RXSUBCOM REGISTER ISPCIR ISPCIR ISPCIR"

Address ispcir

SeeADDRESSfor details of the ADDRESS instruction.

19.3.1.1. RXSUBCOM REGISTER

RXSUBCOM REGISTER registers a dynamic-link library subcommand handler. This command makes
a command environment available to Rexx.

>-RXSUBCOM--REGISTER--envname--dllname--procname--------------><

Parameters:

envname

The subcommand handler name. The Rexx ADDRESS instruction usesenvnameto send commands
to the subcommand handler.

dllname

The name of the dynamic-link library file containing the subcommand handler routine.

492

Chapter 19. Useful Services

procname

The name of the dynamic-link library procedure withindllnamethat Rexx calls as a subcommand
handler.

Return codes:

0

The command environment has been registered.

10

A duplicate registration has occurred. Anenvnamesubcommand handler in a different dynamic-link
library has already been registered. Both the new subcommand handler and the existing
subcommand handler can be used.

30

The registration has failed. Subcommand handlerenvnamein library dllnameis already registered.

1002

RXSUBCOM was unable to obtain the memory necessary to register the subcommand handler.

-1

A parameter is missing or incorrectly specified.

19.3.1.2. RXSUBCOM DROP

RXSUBCOM DROP deregisters a subcommand handler.

>>-RXSUBCOM--DROP--envname--+---------+------------------------><

+-dllname-+

Parameters:

envname

The name of the subcommand handler.

dllname

The name of the dynamic-link file containing the subcommand handler routine.

Return codes:

0

The subcommand handler was successfully deregistered.

30

The subcommand handler does not exist.

493

Chapter 19. Useful Services

40

The environment was registered by a different process as RXSUBCOM_NONDROP.

-1

A parameter is missing or specified incorrectly.

19.3.1.3. RXSUBCOM QUERY

RXSUBCOM QUERY checks the existence of a subcommand handler. The query result is returned.

>>-RXSUBCOM--QUERY--envname--+---------+-----------------------><

+-dllname-+

Parameters:

envname

The name of the subcommand handler.

dllname

The name of the dynamic-link file containing the subcommand handler routine.

Return codes:

0

The subcommand handler is registered.

30

The subcommand handler is not registered.

-1

A parameter is missing or specified incorrectly.

19.3.1.4. RXSUBCOM LOAD

RXSUBCOM LOAD loads a subcommand handler dynamic-link library.

>>-RXSUBCOM--LOAD--envname--+---------+------------------------><

+-dllname-+

Parameters:

envname

The name of the subcommand handler.

494

Chapter 19. Useful Services

libname

The name of the dynamic-link file containing the subcommand handler routine.

Return codes:

0

The dynamic-link library was located and loaded successfully.

50

The dynamic-link library was not located or could not be loaded.

-1

A parameter is missing or incorrectly specified.

19.3.2. The RXQUEUE Filter

>>-RXQUEUE--+-----------+--+--------+--------------------------><

+-queuename-+ +-/FIFO--+

+-/LIFO--+

+-/CLEAR-+

The RXQUEUE filter usually operates on the default queue named SESSION. However, if an
environment variable named RXQUEUE exists, the RXQUEUE value is used for the queue name.

For a full description of Rexx queue services for applications programming, seeExternal Data Queue.

Parameters:

queuename/LIFO

stacks items from STDIN last in, first out (LIFO) on a Rexx queue.

queuename/FIFO

queues items from STDIN first in, first out (FIFO) on a Rexx queue.

queuename/CLEAR

removes all lines from a Rexx queue.

RXQUEUE takes output lines from another program and places them on a Rexx queue. A Rexx
procedure can use RXQUEUE to capture operating system command and program output for processing.
RXQUEUE can direct output to any Rexx queue, either FIFO (first in, first out) or LIFO (last in, first
out).

RXQUEUE uses the environment variable RXQUEUE for the default queue name. When RXQUEUE
does not have a value, RXQUEUE uses SESSION for the queue name.

The following example obtains the Windows version number with RXQUEUE:

/* Sample program to show simple use of RXQUEUE */

495

Chapter 19. Useful Services

/* Find out the Windows version number, using the */

/* VER command. VER produces two lines of */

/* output; one blank line, and one line with the*/

/* format "The Windows Version is n.nn" */

"VER |RXQUEUE" /* Put the data on the Queue */

pull . /* Get and discard the blank line */

Pull . "VERSION" number "]" /* The bracket is required for

Windows 95, not for Windows NT */

Say "We are running on Windows Version" number

Note that the syntax of the version string that is returned by Windows can vary, so the parsing syntax for
retrieving the version number may be different.

The following example processes output from the DIR command:

/* Sample program to show how to use the RXQUEUE filter */

/* This program filters the output from a DIR command, */

/* ignoring small files. It displays a list of the */

/* large files, and the total of the sizes of the large */

/* files. */

size_limit = 10000 /* The dividing line */

/* between large and small*/

size_total = 0 /* Sum of large file sizes*/

NUMERIC DIGITS 12 /* Set up to handle very */

/* large numbers */

/* Create a new queue so that this program cannot */

/* interfere with data placed on the queue by another */

/* program. */

queue_name = rxqueue("Create")

Call rxqueue "Set", queue_name

"DIR /N | RXQUEUE" queue_name

/* DIR output starts with five header lines */

Do 5

Pull . /* discard header line */

End

/* Now all the lines are file or directory lines, */

/* except for one at the end. */

Do queued() - 1 /* loop for lines we want */

Parse Pull . . size . name ./* get one name and size */

/* If the size field says "<DIR>", we ignore this */

/* line. */

If size <> "<DIR>" Then

/* Now check size, and display */

If size > size_limit Then Do

Say format(size,12) name

size_total = size_total + size

496

Chapter 19. Useful Services

End

End

Say "The total size of those files is" size_total

/* Now we are done with the queue. We delete it, which */

/* discards the line remaining in it. */

Call rxqueue "DELETE", queue_name

19.4. Distributing Programs without Source
Open Object Rexx comes with a utility called RexxC. You can use this utility to produce versions of your
programs that do not include the original program source. You can use these programs to replace any
Rexx program file that includes the source, with the following restrictions:

1. The SOURCELINE built-in function returns0 for the number of lines in the program and raises an
error for all attempts to retrieve a line.

2. A sourceless program may not be traced. The TRACE instruction runs without error, but no tracing
of instruction lines, expression results, or intermediate expression values occurs.

The syntax of the RexxC utility is:

>>-RexxC--inputfile--+------------+--+----+--------------------><

+-outputfile-+ +-/s-+

If you specify theoutputfile, the language processor processes theinputfileand writes the executable
version of the program to theoutputfile. If the outputfilealready exists, it is replaced.

If the language processor detects a syntax error while processing the program, it reports the error and
stops processing without creating a new output file. If you omit theoutputfile, the language processor
performs a syntax check on the program without writing the executable version to a file.

You can use the/s option to suppress the display of the information about the interpreter used.

Note: You can use the in-storage capabilities of the RexxStart programming interface to process the
file image of the output file.

With version 2.1, the tokenized form has changed. All Open Object Rexx editions contain a utility called
RxMigrate that can be used to change old tokenized forms to the new one. The recommended procedure
is to create a new tokenized file from the original source with the new version of Open Object Rexx.
However, if the source code is no longer available, RxMigrate can be used to convert the old tokenized
file. The syntax of the RxMigrate utility is:

>>-RxMigrate--inputfile--outputfile----------------------------><

497

Chapter 19. Useful Services

498

Chapter 20. Windows Scripting Host Engine
This chapter describes the use of Object Rexx as a Windows Scripting Host (WSH) engine.

20.1. Object Rexx as a Windows Scripting Host Engine
Object Rexx is automatically enabled as an engine for Windows Scripting Host at installation. This
chapter gives a brief description of WSH and how Object Rexx interacts with it, and shows you how you
can best use this feature.

The easiest part of this feature to understand and to become immediately productive with is its ability to
use Object Rexx as a scripting language for Microsoft’s Web browser, Internet Explorer. To go quickly to
using this technique, seeInvocation by the Browser.

20.1.1. Windows Scripting Host Overview
Windows Scripting Host (WSH) is a unified scripting environment for all Microsoft products. It is usable
by any macro language that follows its specification. WSH is the mechanism that allows users to
customize and dynamically control the products that support its hosting standard.

The Windows Scripting Host engine for Object Rexx enables users to drive Microsoft’s products, notably
Internet Explorer. Other products that can be driven include the components of the Office suite, like
Word, Excel, and so on.

The difference between WSH and the OLE support that Object Rexx provides is the context in which the
script resides. OLE scripts are exterior to the product, and WSH scripts can be embedded in the files that
the product uses. The advantage of embedding the script is that the user has fewer files to manage. The
Object Rexx engine for WSH enables users to accomplish this in a seamless fashion.

There are two components to WSH. The first is the host - the product that can be scripted. The second is
the engine - the product that interprets the script.

Object Rexx supplies the engine component of WSH.

20.1.1.1. The Gestation of WSH

As with many new technologies today, WSH introduces several new concepts and terms. The best way to
describe these is to start with an overview of the problem that WSH addresses, and its history.

Until recently, Microsoft provided users simply with a COM (Common Object Model) interface to their
office products. COM is a binary, as opposed to text, command input system. These commands drove the
product - by, for example, telling Microsoft Word to print the current document - and did not contain any
logic or decision-making capabilities. Users who wanted such capabilities developed them in programs
external to the COM object. Accessing the interface required the user to develop the logic to drive the
COM object at first in C++, then later in Visual Basic. The investment for the user, in development time,
was quite significant.

In order to satisfy customer demand, a particular version of a scripting language (based on Visual Basic)
was developed for each Microsoft product. In addition, the emergence of scripting languages such as

499

Chapter 20. Windows Scripting Host Engine

JavaScript™, with their ability to dynamically control Web browsers, led Microsoft to develop two more
scripting languages, VBScript and JScript.

WSH is a consolidation of the scripting language proliferation. Borrowing heavily from the browser
paradigm, the host interprets a language-independent XML file that contains one or more scripts where
each script is encapsulated in a script (script tag) that denotes the language of the script, and any other
necessary environmental parameters. The host extracts the script from the file, and passes it to the
appropriate interpreter.

20.1.1.2. Hosts Provided by Microsoft

Microsoft provides three fully-implemented scripting hosts. They are Microsoft Internet Explorer,
CScript, and WScript. As an expansion on the concept of using a scripting language to drive external
products, CScript and WScript were developed to control the Windows operating system. The two
modules are so similar that they are sometimes referred to as C/WScript. CScript is intended to be
used from the command line, and WScript is best used in the Windows environment. Both provide their
services to the script through the WScript object. Using the default method for outputWScript~Echo(),
CScript sends the output to a console screen in the same manner as the Object Rexx commandSay,
whereasWScript~Echo() in a script controlled by WScript will create a pop-up box in which the user
must click the OK button to make it disappear.

20.2. Scripting in the Windows Style
Each flavor of WSH has an associated file type. This section gives a brief example of scripting for each
file type, and suggestions that are appropriate in each case. If you need to, see the appropriate
documentation for the exact syntax of WSH’s XML format, and the syntax of an HTML file.

20.2.1. Invocation by the Browser
Invocation by the Web browser is probably the easiest scripting technique to illustrate, and the most
familiar use of WSH. The following is a small HTML file that shows Object Rexx as the scripting
language. There are three paragraphs that have the animating power of Object Rexx behind them. Each
uses an Internet Explorer pop-up window to denote a particular mouse action. The appropriate activity
takes place when the mouse is rolled over the first paragraph, when it leaves the second, and when it is
used to click the third.

<HTML>

<!--

/**/

/* DISCLAIMER OF WARRANTIES. The following [enclosed] */

/* code is sample code created by Rexx Language Association. This */

/* sample code is not part of any standard or RexxLA */

/* product and is provided to you solely for the */

/* purpose of assisting you in the development of your */

/* applications. The code is provided "AS IS", without */

500

Chapter 20. Windows Scripting Host Engine

/* warranty of any kind. RexxLA shall not be liable for */

/* any damages arising out of your use of the sample */

/* code, even if they have been advised of the */

/* possibility of such damages. */

/**/

!-->

<HEAD>

<TITLE>A simple event</TITLE>

<script language="Object Rexx" >

::Routine Display Public

Window~Alert(Arg(1))

Return "something to keep the mouseover function call happy"

</script>

</HEAD>

<BODY BGCOLOR="#ffffff">

<H1>How to use events</H1>

<P>Moving the cursor over the following paragraphs will cause two

events, respectively: one when you move onto the text, and one when

you leave it. At both times a pop-up message will inform you about this.</P>

<!-- in both cases the "alert" function of the object "window" is called !-->

<P onmouseout="alert("Cursor left paragraph")" LANGUAGE="Object Rexx">

Event takes place when cursor leaves this paragraph.</P>

<P onmouseover="a = Display('Cursor is over paragraph')"

LANGUAGE="Object Rexx">

Event takes place when cursor moves over this paragraph.</P>

<P>The following paragraph reacts when you click it:</P>

<P onclick="call Display "Thank you! The current time is" time()"," date()"

LANGUAGE="Object Rexx">Click me!</P>

</BODY>

</HTML>

The important things to note in this example are:

• TheLANGUAGE="Object Rexx" attribute on each tag that contains code.

• The<script> tag in the<HEAD> section defines a function that can be called from any other code
section in this HTML file.

501

Chapter 20. Windows Scripting Host Engine

• The Object Rexx keywordPUBLIC must be on the::ROUTINE statement, or Object Rexx will not be
able to make that name accessible outside of that script block.

• TheWindow object is accessible, even though it was not declared and the::ROUTINE statements have
the variable scope of an external routine.

• Some text was put on theRETURN statement simply as a precaution. Those familiar with Object Rexx
know that routines called as functions demand a return value.

• All of the code for themouseout= is completely contained within the<p> and</p> tags.

• Also note the lack of the leading"Window~" on the Alert(). SeeChanges in Object Rexx due to
WSH.

• The second event references the routine that was defined earlier as a function. The return value is
assigned to the variable "a", and discarded as soon as the event finishes processing. Unlike the situation
in JScript, function return values in WSH must be used in an expression, or assigned to a variable.

• The third event also references the routine that was defined earlier, but this time as a procedure and not
as a function. TheCALL statement forces this kind of access.

• CALL statements do not produce an error if no value is returned. If a value is returned, andCALL was
used to activate the routine, the value can be obtained from the special variableRESULT.

Additional examples can be found in the Samples\WSH subdirectory of your Object Rexx for Windows
installation directory.

20.2.2. WSH File Types and Formats
Two main file types are used by WSH. Both follow an XML format that wraps the script code. The XML
tags are interpreted by C/WScript, and direct it to the correct scripting engine to process the code inside.
The file type.wsf is used to define scripts that are executed as commands. This is similar to the
conventional way of invoking Object Rexx in the Windows environment. The file type.wsc is used to
define scripts that are treated as COM objects. The XML tags here denote the properties, methods, and
events of the COM object, as well as the correct engine to invoke for scripts.

Note that these XML files are well formed, but not valid. There is no associated Document Type
Definition (DTD).

20.2.2.1. .wsf

The.wsf file type is as easy to invoke as HTML, and is very similar in appearance, with only minor
differences. The.wsf file is used to drive the operating system in the same way that an HTML file is
used to drive the browser. The file is an Object Rexx script file with an XML wrapper.

The following sample prints the version of the JScript engine and the version of the scripting host. If this
file had the name"SimpleORexx.wsf", the command to invoke it would be"CScript //nologo

SimpleORexx.wsf", or "WScript //nologo SimpleORexx.wsf".

<?xml version="1.0"?>

<?job error="true" debug="true" ?>

502

Chapter 20. Windows Scripting Host Engine

<package id="wstest">

<!--

/**/

/* DISCLAIMER OF WARRANTIES. The following [enclosed] */

/* code is sample code created by Rexx Language Association. This */

/* sample code is not part of any standard or RexxLA */

/* product and is provided to you solely for the */

/* purpose of assisting you in the development of your */

/* applications. The code is provided "AS IS", without */

/* warranty of any kind. RexxLA shall not be liable for */

/* any damages arising out of your use of the sample */

/* code, even if they have been advised of the */

/* possibility of such damages. */

/**/

!-->

<!-- Just a small file to demonstrate the *.wsf file format, and

--- what Windows provides by default.

-->

<job idid="RunByDefault">

<!---

--- These functions are provided by WSH.

-->

<script language="JScript"><![CDATA[

function GetScriptEngineInfo(){

var s;

s = ""; // Build string with necessary info.

s += ScriptEngine() + " Version "; // Except this function. It can

// only be accessed from JScript

// or VBscript.

s += ScriptEngineMajorVersion() + ".";

s += ScriptEngineMinorVersion() + ".";

s += ScriptEngineBuildVersion();

return(s);

}

]]></script>

<!---

--- Not all of the script needs to be within one tag, or use the

--- same language.

-->

<script language="Object Rexx"><![CDATA[

Say "This is "GetScriptEngineInfo()

Ver = "Accessing the version info from Object Rexx yields"

Ver = Ver ScriptEngineMajorVersion()"."

Ver = Ver||ScriptEngineMinorVersion()"."ScriptEngineBuildVersion()

Say Ver

503

Chapter 20. Windows Scripting Host Engine

WScript~Echo("Done!")

]]></script>

</job>

</package>

The important things to note in this example are:

• Accept the two XML tags (<? ... ?>) at the beginning as boilerplate, although thedebug="true" can
also bedebug="false" without any detrimental effect.

• All XML tag names and attributes are in lower case.

• All XML tags have a beginning and an end tag. The beginning tag looks like<tag>, and the end tag
</tag>. Where the tag contains only attributes, and there is no content between the beginning and the
end tag, it is acceptable to abbreviate<tag attribute=""></tag> to <tag attribute=""/>.

• Comments are the same as in HTML.

• Following the<script> tag is the tag<![CDATA[, and preceding the<script/> tag is]]>. This tells
the XML parser to ignore this text. If this is not done, many of the operators and special characters in
the script will confuse the XML parser, and it will abort the script.

• There are several<script> tags; here Object Rexx is invoking a JScript function.

• The functions that begin withScriptEngine... and the WScript object are not declared, yet Object
Rexx finds them. They are implicit, and their scope is global.

Additional examples can be found in the Samples\WSH subdirectory of your Object Rexx for Windows
installation directory.

20.2.2.2. .wsc

The.wsc file type is much more elaborate than the.wsf type. Since a.wsc file is used as a COM object,
the XML must describe the object in a way that is independent of the script language. Consider the
following example.

<?xml version="1.0"?>

<?component error="true" debug="true" ?>

<package id="SimpleObjectRexxCOMScriptTest">

<!--

/**/

/* DISCLAIMER OF WARRANTIES. The following [enclosed] */

/* code is sample code created by Rexx Language Association. This */

/* sample code is not part of any standard or RexxLA */

/* product and is provided to you solely for the */

/* purpose of assisting you in the development of your */

/* applications. The code is provided "AS IS", without */

/* warranty of any kind. RexxLA shall not be liable for */

/* any damages arising out of your use of the sample */

504

Chapter 20. Windows Scripting Host Engine

/* code, even if they have been advised of the */

/* possibility of such damages. */

/**/

!-->

<!---

--- An example script to demonstrate the features provided by the

--- COM structure. Register our own typelib, create methods,

--- and create a property.

!-->

<!---

--- This section registers the script as a COM

--- object when Register is chosen from the list of commands

--- that appear when this file is right-clicked.

--- The value of progid= is how the world will find us.

--- Two GUID's are needed, one for the COM object, and one

--- for the Typelib that will be generated. The routine's

--- Register and Unregister mimic those required in a COM

--- *.dll. Even within these routines, there is full

--- Object Rexx capability.

!-->

<component id="SimpleORexxCOM">

<registration

progid="SimpleObjectRexx.Com"

description="Test of the COM scriptlet interface as seen by Object

Rexx."

version="1.0"

clsid="{6550bac9-b31d-11d4-9306-b9d506515f14}">

<script language="Object Rexx"><![CDATA[

::Routine Register Public

Shell = .OLEObject~New("WScript.Shell")

Typelib = .OLEObject~New("Scriptlet.TypeLib")

Shell~Popup("We are registering, n o w")

/*

* Please note that the name that follows must match

* our file name exactly, or this fails when registering

* with an "OLE exception", Code 800C0005 or Code 800C0009.

*/

Typelib~AddURL("SimpleORexxCOM.wsc")

Typelib~Path= "SimpleORexxCOM.tlb"

Typelib~Doc = "Test component typelib for Simple Object Rexx.Com"

Typelib~Name = "Test component typelib for Simple Object Rexx.Com"

Typelib~MajorVersion = 1

Typelib~MinorVersion = 0

Typelib~GUID = "{6550bac5-b31d-11d4-9306-b9d506515f14}"

Typelib~Write()

Typelib~Reset()

Shell~Popup("We've really done it n o w")

505

Chapter 20. Windows Scripting Host Engine

::Routine Unregister Public

Shell = .OLEObject~New("WScript.Shell")

Shell~Popup("We are outa here!")

]]></script>

</registration>

<!---

--- This section is what describes this COM object to the outside

--- world. There is one property, and there are two methods named.

--- One of the methods is the default, since its dispid is 0.

--- Object Rexx does not support calling the default in a shorthand

--- manner. All calls are as follows:

--- Obj = .OLEObject~New("SimpleObjectRexx.Com")

--- Obj~DefaultMethod("Some Parm")

!-->

<public>

<property name="ExternalPropertyName"

internalName="InternalPropertyName" dispid="3">

</property>

<method name="NamedRoutine">

<parameter name="NamedParameter"/>

</method>

<method name="DefaultMethod" dispid="0">

<parameter name="ReallyForTheOutsideWorld" />

</method>

</public>

<!---

--- This is the actual script code. Note that the property

--- is declared at the highest scope. If this is not done,

--- then the property will not be found, and the script

--- will not abend when the property is referenced.

!-->

<script language="Object Rexx" ><![CDATA[

InternalPropertyName = "Sample Property"

::Routine NamedRoutine Public

say "There are "Arg()" args."

a = RxMessageBox("Is executing, now.","NamedRoutine","OK",)

Return

::Routine DefaultMethod Public

say "There are "Arg()" args."

a = RxMessageBox("Is executing, now.","DefaultMethod","OK",)

WShell = .OLEObject~New("WScript.Shell")

a = WShell~Popup("A message via an implicit COM object.");

Return "a value"

506

Chapter 20. Windows Scripting Host Engine

]]></script>

</component>

</package>

The important things to note are:

• There are three distinct sections in this file, and two of them contain Object Rexx code.

• The first section identifies this as a COM object. Theprogid=, version=, andclsid= attributes of
the<registration> tag are given so that this file can be entered into the Windows Registry as a
COM object. This is one of the sections that has code. The code here generates the Typelib when
the script is registered as a COM object.

• The second section lists all of the entry points to this object, their parameters, and any data that is
being externalized. When the Typelib is generated, this information is used to create its contents.
This is more of a designer’s wish list than something that is enforced. The designer states what he or
she believes to be the minimal number of parameters. The designer must then enforce this within the
subroutine. However, be aware that other routines calling these listed here may pass more, or fewer,
parameters than this section suggests. This is especially true for procedures named with<method>

tags. WSH passes the named parameterTHIS, which Object Rexx passes on to the routine.

• The third section is the actual code.

• Read the comments before each section; they contain important information about that particular
section.

• Any code that is put in the same scope as the property being assigned its value is called immediate
code. Immediate code is executed when the COM object is loaded, before any of its pieces (methods,
properties, or events) are accessed. It executes even if none of the external pieces are accessed.

Additional examples can be found in the Samples\WSH subdirectory of your Object Rexx for Windows
installation directory.

20.2.3. Invocation from a Command Prompt
Invocation from a command prompt covers many possible means:

• Opening a DOS window to type the command into;

• Selecting Start->Run from the Windows taskbar;

• Starting from a file association made in Windows Explorer.

A conventional Object Rexx file is one in which every line is valid Object Rexx syntax, and makes no
assumptions about global objects. It contains no XML wrapper as described in the section on.wsf files.

Consider what happens when a file namedWSH.rex contains the single line:'WScript~Echo("WSH is

available.")'; another file namedWSH.wsf contains the same line of code in the .wsf wrapper described
above; and another file,Safe.rex, contains the line"Say 'Conventional Rexx file' Arg(1)".

507

Chapter 20. Windows Scripting Host Engine

20.2.3.1. As a Conventional Object Rexx File

From a command prompt,"Rexx WSH.rex", will stop with an error 97:Object "WScript" does not

understand message "Echo".

From a command prompt,"Rexx WSH.wsf", will stop with an error 35:Invalid expression detected

at "<".

From a command prompt,"Rexx Safe.rex GREAT!", produces one line of output,"Conventional Rexx

File GREAT!".

20.2.3.2. As a Windows Scripting Host File

Both CScript and WScript will invoke a file from the command line. All of their parameters begin with a
double slash. Two useful parameters are://nologo and//e:. The//nologo parameter prevents the
banner from being displayed, and//e: tells WSH not to interpret this file, and to pass the complete
contents to the named engine. EnterCScript or WScript with no parameters or file names to see a
complete list of parameters.

WScript converts all WScript~Echo() output into pop-up text boxes, whereas with CScript they are
displayed as output lines in a DOS window. If CScript is executed from outside a DOS window (either
from Start->Run, or from the use of Windows Explorer), a DOS window will be created for the output.
Note, however, that it is removed when the script is complete. Usually, this means that the lifetime of the
DOS window is long enough for a person to detect it, but not to actually read it.

From a command prompt,"cscript //e:"Object Rexx" WSH.rex" produces one line of output,"WSH
is available." From a command prompt,"wscript //e:"Object Rexx" WSH.rex", produces a pop-up
box that contains the title"Windows Script Host", an OK button, and the text"WSH is available."

From a command prompt,"cscript //e:"Object Rexx" WSH.wsf" will stop with an error 35:Invalid
expression detected at "<". From a command prompt,"wscript //e:"Object Rexx" WSH.wsf",
will seem as if it produced no output at all. Though Object Rexx is still generating the error message,
WScript does not detect the output to STDOUT, and no DOS window is created.

From a command prompt,"cscript //e:"Object Rexx" Safe.rex GREAT!" produces one line of
output,"Conventional Rexx File". Note the lack of the word GREAT!. WSH does not pass the
command lineargs to Object Rexx. TheWScript~Arguments method/object must be used, as in the
following code:

/* Note that the WScript object is not declared. It just appears

* courtesy of CScript and WScript

*/

Say "The arguments as WSH sees them."

If WScript~Arguments~length > 0 Then Do I = 0 To (WScript~Arguments~length - 1)

Say i WScript~Arguments(i)

End

Else Say "No arguments were sent."

From a command prompt,"wscript //e:"Object Rexx" Safe.rex GREAT!", will seem as if it produced
no output at all. As whenWSH.wsf is run by WScript with a known engine (see the relevant paragraph
earlier), Object Rexx is still executing theSAY instruction, WScript does not detect the output to
STDOUT, and no DOS window is created.

508

Chapter 20. Windows Scripting Host Engine

20.2.4. Invocation as a COM Object
This is the most intricate of the script files to execute. Multiple steps are involved, and there is no
command that directly invokes the script. C/WScript cannot be used to directly invoke a.wsc file. It must
be processed by other means first. Once created, the file must be registered.

Once registered, this can be invoked by any program that can call COM objects. It does not have to be
another script; that program could be Visual Basic or C++. If the COM object is to be invoked by Visual
Basic, it is a good idea to generate a Typelib. This helps Visual Basic to form its parameter list.

20.2.4.1. Registering the COM Object

Use either of two methods to register a.wsc file. The first is to right-click it in Windows Explorer, and
chooseRegister from the list of commands that appears. The second is from the command line. For
example, to registerWSH.wsc, at a command prompt, enter the command,"regsvr32 /c WSH.wsf".

The GUID in theclsid= attribute must be unique for the machine the COM object is being registered on.
In other words, no other COM object may use the GUID. Once it is registered, the script cannot be
moved. The path to a COM object is stored in the Registry as a complete path. If the script is moved,
then Windows will not know how to find it.

20.2.4.2. Generating a Typelib

Use either of two methods to generate the Typelib. One is using code in the Register method of the
<registration> section. See the sample.wsc code above for an example of this. The other is to choose
Generate Type Library from the list of commands that appear when the file name is right-clicked in
Windows Explorer.

20.2.4.3. Invoking

The easiest method of invoking the script, once it is a COM object, is to use an OLE-enabled application,
such as Object Rexx. The following Object Rexx code shows how to define the object in Object Rexx,
and invoke its methods.

<?xml version="1.0"?>

<?job error="true" debug="true" ?>

<package id="wstest">

<!--

/**/

/* DISCLAIMER OF WARRANTIES. The following [enclosed] */

/* code is sample code created by Rexx Language Association. This */

/* sample code is not part of any standard or RexxLA */

/* product and is provided to you solely for the */

/* purpose of assisting you in the development of your */

/* applications. The code is provided "AS IS", without */

/* warranty of any kind. RexxLA shall not be liable for */

/* any damages arising out of your use of the sample */

/* code, even if they have been advised of the */

509

Chapter 20. Windows Scripting Host Engine

/* possibility of such damages. */

/**/

!-->

<!---

--- This example shows how easy it is to

--- invoke a COM object that is a script by means of

--- Object Rexx.

-->

<job id="RunByDefault">

<script language="Object Rexx"><![CDATA[

Say "Creating the ObjectRexx.Com object. "

Sample = .OLEObject~new("SimpleObjectRexx.Com")

Say "Just before the default method "

ReturnValue = Sample~DefaultMethod("A parm");

ReturnValue = Sample~NamedRoutine("A parm");

]]></script>

</job>

</package>

Object Rexx is not the only way to invoke the script. Any application that can call COM objects can
invoke it. For further information, see the relevant documentation.

20.2.4.4. Events

When scripts are turned into COM objects they can initiate events. Several types of events are supported:
the default COM events, HTML or Behavior events, and ASP events. The type of event that the COM
object supports is denoted by thetype= attribute of the<implements> tag. An in-depth discussion of
events and how to create, code, and handle them is beyond the scope of this documentation. However,
there are a few concepts that should be mentioned.

20.2.4.4.1. COM Events

In the<public> section, where the external attributes of the COM object are disclosed,<event> tags
can be added. They name the events that the script could possibly activate. When the script that calls the
COM object instantiates it by using the method provided by WScript, rather than the Object Rexx
method, it can inform the COM object that it will handle the events that the COM object fires. Note that
when a script agrees to handle the events of an object, it must handle all of the events of that object.

For example, suppose the public section looked as follows:

<public>

<event name="Event1" />

<event name="Event2" />

</public>

and the script that instantiated the COM objects code looked as follows:

RexxObject = WScript~CreateObject("ObjectRexx.Com","Event_");

In that case, the instantiating script would be required to define the two routines below.

510

Chapter 20. Windows Scripting Host Engine

::Routine Event_Event1 Public

::Routine Event_Event2 Public

It is not acceptable if only one of the events is supported. Also, note the naming convention. The second
parameter of CreateObject() names the prefix of the routine name that will support the event. The
remainder of the routine name is composed of the event name from the<event> tag of the<public>

section. Neither the prefix nor the empty string can be elided. In other words, neither
CreateObject("object",) norCreateObject("object","") is allowed. The script host will generate an
error.

20.2.4.4.2. Internet Explorer Events

When coding Internet Explorer events, the user should be aware of the following. The section of code
between the quotes on an HTML tag has to be complete, with correct syntax. TheTHIS object is
implicity defined for the scope of the section. If the section calls a function, and the function needs
access toTHIS, then the section must passTHIS as a variable to the function.THIS is the browser’s object
that represents the tag that the event was fired from. For all of the exact properties and methods
associated withTHIS, see the documentation for the corresponding tag.

To illustrate, consider the following code extract:

<p onmouseover="Call RxMouseOver This" id="SomeTag">

"HOT" text, get your "HOT" text right here

</p>

<script language="Object Rexx">

::Routine RxMouseOver Public

Use Arg This

Text = "This is a <"This~tagName"> tag named '"THIS~id"'"

a = RxMessageBox(Text,"RxMouseOver","OK",)

Return "OK"

</script>

The code for theonmouseover= "Call RxMouseOver This" is complete and correct. If a function call
had been used instead, the code would be something similar to"a = RxMouseOver(This)". Do not forget
to assign the results of a function call to something. IfTHIS is not passed as an argument to
RxMouseOver, it will have the default value of a string whose content isTHIS.

To cancel Internet Explorer events, the Object Rexx Boolean value.false must be returned. The
integer values0 and1 are not appropriate alternatives. For example:

20.2.5. WSH Samples
There are more features to WSH than are listed here. The Samples\WSH subdirectory of your Object
Rexx for Windows installation directory contains some appropriate samples and an explanation of the

511

Chapter 20. Windows Scripting Host Engine

relevant features. Before running any samples, make sure that the latest version of Windows Scripting
Host is installed on the machine.

Several sample files are stand-alone; these are all of the file types.htm, .wsf or .rex. However, all of the
samples covering the aspects of using Object Rexx scripts as COM objects are in pairs or, in one case, a
group of three. One file is the COM object, and the other is the script that instantiates it. All of the COM
objects are of the file type.wsc. The files that instantiate them are either.wsf or .rex. The sample that
uses three files illustrates theinclude= attribute of the<script> tag. All of the.wsc files must be
registered before they can be used (seeRegistering the COM Object).

To view the.htm samples, use Windows Explorer to view the sample directory. Right-click the desired
sample file, and choose Open With->Internet Explorer from the menu that appears.

To view the.wsf or .rex samples, use either a DOS window or Windows Explorer. From Windows
Explorer, double-click the desired file. It will execute automatically. From the DOS window, make the
sample directory the current directory, and use either CScript or WScript to execute the sample. The file
Print.rex is an include file. It is not intended for direct execution.

Samples whose names begin with "w" use only Window pop-up boxes for output. Samples without the
leading "w" are best viewed from the DOS window. They produce output that will not display in a
Windows-only environment. Samples whose name begins with "call" are used to instantiate the COM
objects once they are installed. If they are not installed, the error message"Error 98.909: Class

"......" not found" will be issued.

20.3. Interpretation of and Deviation from the WSH
Specification

This section deals with a number of issues to do with interpreting the WSH specification and with
deviations from it.

20.3.1. Windows Scripting Host (WSH) Advanced Overview
Accommodating to WSH has necessitated some deviations from the Object Rexx standard. To best
understand what these deviations are, you need to be aware of the components of WSH. In addition to the
products that are hosts, there are special COM objects and different mechanisms for initiating the engine.

20.3.1.1. Hosts Provided by Microsoft

Microsoft provides three fully-implemented scripting hosts. They are Microsoft Internet Explorer,
CScript, and WScript. As an expansion on the concept of using a scripting language to drive external
products, CScript and WScript were developed to control the Windows operating system. The two
modules are so similar that they are sometimes referred to as C/WScript. CScript is intended to be used
from the command line, and WScript is best used in the Windows environment. Both provide their
services to the script through the WScript object. Using the default method for outputWScript~Echo(),
CScript sends the output to a console screen in the same manner as the Object Rexx commandSay,

512

Chapter 20. Windows Scripting Host Engine

whereasWScript~Echo() in a script controlled by WScript will create a pop-up box in which the user
must click the OK button to make it disappear.

These are not the only Microsoft products that have WSH capabilities. The core of C/Wscript is
scrobj.dll. Several Microsoft products implement various parts of the scripting host architecture by
usingscrobj.dll.

20.3.1.2. Additional COM Objects

Since JScript and VBScript were developed primarily to manipulate the Web browser DOM (Domain
Object Model), they lack many of the features associated with a language that drives an operating
system. They have no native facilities for I/O (Input and Output), or for controlling the file system. These
powers are granted through several additional COM objects.

Most of the literature on WSH describes these objects. Most of the features in these additional COM
objects are native to Object Rexx; for further information, seeThe OLEObject Class. Further
documentation on the additional COM objects is readily available from other sources.

Object Rexx, since it is OLE-enabled, has access to all of these objects. OLE (Object Linking and
Embedding) is an advanced protocol based on COM. Be aware that the automatic object WScript is only
available when Object Rexx is activated by C/Wscript. Access cannot be obtained if Object Rexx is
initiated by Internet Explorer, or when it is initiated in the classical method"Rexx someFile.rex", either
from the command line or from a command issued by the file explorer as an association with a file type.
This is not a limitation of Object Rexx. It is a consequence of the manner in which this object is loaded.

The WScript object is not registered in the Windows Registry. It exists only when C/WScript
dynamically creates it and then passes the pointer to Object Rexx. All scripting languages, including
JScript and VBScript, have this limitation.

20.3.1.3. Where to Find Additional Documentation

The best source of up-to-date information on WSH is the World Wide Web. The keyword to use when
searching the help facilities provided by Microsoft is "scripting". If you are using a search engine
(available when you click "Search" on your browser’s menu bar), insert "activescript" as the keyword.

In addition, there are several books on the subject. When browsing online bookstores, use the keyword,
"activescript". The MSDN (Microsoft Developers Network) is a good reference source for the syntax of
the XML used to define the WSH files.

Note that the correct file type to use for the XML file that C/WScript processes is.wsf. Existing
documentation often states misleadingly that the file type to use is.ws. C/WScript requires the full file
name, including file type, and it processes the file correctly only when the file type is.wsf. This seems to
be hard coded into C/WScript, and no workaround is available.

20.3.2. Object Rexx in the WSH Environment
Object Rexx is fully compatible with the WSH environment. Interaction with JScript and VBScript is
transparent. Legacy applications developed with these languages will not have to be discarded.

513

Chapter 20. Windows Scripting Host Engine

20.3.2.1. Object Rexx Features Available

All of the features normally associated with Object Rexx are available when Object Rexx is loaded by
WSH. In addition, OLE support is loaded automatically. Scripts do not need to include'::requires

"ORexxOLE.CLS"'. However, when Object Rexx is invoked by Internet Explorer, it honors the "sandbox"
settings that the user has set in the browser’s security panel. Access to I/O, the file system, external
commands, and COM objects may not be granted.

20.3.2.2. Changes in Object Rexx due to WSH

To comply with the WSH definition, some of the scoping rules and default behavior of Object Rexx have
been modified. The default behavior has been altered to allow some objects to be implicitly defined. The
normal scoping rules now allow "global" objects to appear at any procedure depth, without requiring the
use of EXPOSE, or the passing of the object as a parameter. Second-level objects can now be accessed
without specifying the first level. These changes only apply to objects that WSH provides to Object
Rexx. All other objects and variables behave in the standard ways.

Normally, access to objects requires explicit declaration through one of the OLE methods, as in:

"Window = .OLEObject~new("window")"

Some, like WScript, can only be passed in; others -window, for example - have a history of being
implicitly available. Full documentation is not yet available as to what objects have these features, and
therefore only a few will be mentioned.

As previously mentioned, the WScript object is implicitly available when Object Rexx is started by
C/WScript. The "window" object is implicitly available when Object Rexx is initiated by Internet
Explorer. For events associated with an HTML tag -ONMOUSEOVER, for example - the scriptlet in the
HTML tag hasTHIS implicitly defined. Unlike"WINDOW", THIS is not global. Typically, this scriptlet calls
a procedure, andTHIS must be passed to the procedure if the procedure needs to referenceTHIS.

Normally, you reference an object by naming the top level object, followed by the objects at second and
subsequent levels, separated by the tilde symbol (~). However, in order to emulate the current behavior
of Internet Explorer, the engine must resolve object names starting at the second level to the appropriate
top level that owns them. The shorthand"Document~WriteLn()" or "Alert()" is just as acceptable as
"Window~Document~WriteLn()" or "Window~Alert()". It is preferable, as good coding practice, to
explicitly state this relationship. Stating"Doc = Window~Document" removes all doubt as to which global
object WriteLn() is associated with when the statement"Doc~WriteLn()" is encountered.

Note: This applies only to global objects supplied by WSH. Objects created in or supplied by Object
Rexx must be named in the normal fashion.

20.3.2.3. Parameters

A called routine may receive more parameters than expected. This is not necessarily an error on the
caller’s part; WSH adds extra parameters on occasion. When WSH does this, Object Rexx adds the
parameters at the end. There is an exception to this. The documentation is ambiguous in certain sections
about defining properties for scripts that are used as COM objects. If the XML that defines the script

514

Chapter 20. Windows Scripting Host Engine

states that a name should be a property, but Object Rexx finds it defined as a function, then Object Rexx
will prepend the parameter list withGET or PUT, depending on the direction of the property access. For
more information, see the sample fileCall_ExtraParms.wsf in the Samples\WSH subdirectory of your
Object Rexx for Windows installation directory.

20.3.3. Properties
WSH defines properties as variable values that a COM script exposes to outside routines, or strings and
numbers extracted from a Typelib. Properties are to be treated as global variables within the accessing
script. Properties can be implemented as variables or as functions.

Object Rexx supports declaring and defining properties in the intent of the specification (see the section
on.wsc files). That means that the variables at the highest scope, the closest to what could be considered
as global, may have their values exposed as properties for other programs to use.

For another program to reference these properties, it must instantiate the COM object, and the object
name must precede the property name. For example:

Object = .OLEObject~New("SimpleObjectRexx.Com")

/* The next line is a property GET */

Say "The value for ExternalPropertyName is:" Object~ExternalPropertyName

Object~ExternalPropertyName = "New Value" -- This is a PUT

If you experiment, you will find that there is also a shorthand method, as follows:

Object = .OLEObject~New("SimpleObjectRexx.Com")

/* The next line is a property GET */

Say "The ExternalPropertyName value is:" Object~ExternalPropertyName()

Say Object~ExternalPropertyName("New Value")

In the case of the second reference, the method is both a PROPERTYGET and a PROPERTYPUT. It gets
the old value, replacing the current one with the parameter inside the parenthesis. If more than one
parameter is passed, the additional parameters are ignored.

Note: This does not always work, and is supported only by Object Rexx. The cases in which it does
not work are where the properties are defined as functions and not as simple variables. These calls
are, in fact, methods and not property references. When Object Rexx receives method calls for
properties, it converts them to the appropriate action. In the case of properties defined as functions,
WSH translates the property action into a function action. However, when the action is initiated as a
function and not as a property, WSH does not always make the appropriate or correct translation.

Object Rexx does not support the concept of global variables. For a COM script to reference its own
properties, and to react to outside scripts changing them, then the properties have to be global. To meet
the requirement that properties are global in scope within the defining script, the Built-In Function (BIF)
Value() has been expanded to accept "WSHPROPERTY" as a selector when referencing properties. As
with variables accessed with the "ENVIRONMENT" selector, these variables persist only during the life
of the COM object that supplies the properties. The next time that the COM is run, the values will be at
initial coded state.

515

Chapter 20. Windows Scripting Host Engine

The WSH supports various syntax combinations in the case of implementing a property as a function. In
all combinations, the function is named in the<property> section or tag. It assumes that, when no
function is named, the property is a variable; however, it does not enforce this assumption. It is possible
to name a property and define it as a function. Object Rexx defines this to mean that the function must be
invoked whenever a property access is attempted. Object Rexx notifies the function of the intended
access direction by insertingGET or PUT as the first argument, and shifting all original arguments
accordingly; that is, the original first argument is the second, the second is the third, and so on. For a
demonstration of this behavior, see theCall_PropertyORexx.wsf sample in the Samples\WSH
subdirectory of your Object Rexx for Windows installation directory.

The WSH also establishes that Type Library variables may be made accessible to the script. This violates
the default value and scope mechanisms of Object Rexx. To meet the requirement that properties are
global in scope within the defining script, the Built-In Function (BIF) Value() has been expanded to
accept "WSHTYPELIB" as a selector when referencing elements in a Type Library. As with variables
accessed with the "ENVIRONMENT" selector, these variables (because they are external to Object
Rexx) are global and persist only during the life of the COM object that supplies the properties. In
addition, they are read only. They are immutable; they cannot be changed.

20.3.4. The Object Rexx "Sandbox"
Object Rexx contains a feature known as the Security Manager. When this is enabled it can restrict and
audit the other native abilities of Object Rexx. When used with WSH, Object Rexx honors the
IObjectSafety interface and its methods GetInterfaceSafetyOptions() and SetInterfaceSafetyOptions() by
translating their calls into Security Manager settings. This means that when Object Rexx is in the
Internet Explorer’s sandbox, it will restrict itself to the user’s settings. The most secure situation is one
where Object Rexx does not interact with the user’s desktop (no reads or writes to the hard disk, no
external commands, and so on).

20.3.4.1. Implications of Browser Applications That Run Outside the
"Sandbox"

The most useful aspect of this feature is that the user may select the most secure settings for the Internet,
but allow desktop interaction for pages delivered by the local intranet server. In keeping with the current
trend in IT, Object Rexx allows users to leverage their investment in desktop software. This facility is
intended for clients who use the intranet to lighten the client, or put a Web interface on legacy
applications. A lighter client desktop means less software on the user desktop to maintain.

20.3.5. Features Duplicated in Object Rexx and WSH
Several features are available from both WSH and Object Rexx. However, the overlap is not exact, and
knowing the differences can aid the user in deciding which is more appropriate to use.

516

Chapter 20. Windows Scripting Host Engine

20.3.5.1. Declaring Objects with Object Rexx or WScript

When instantiating COM or OLE objects as Rexx objects, either the native Rexx .OLEObject~new()
method, or the WScript~CreateObject() method can be used. The WSH method has the advantage of
allowing the script to support the events that the object might fire. This is part of its definition, and no
scripting language will have access to this ability in its native object enabler. The disadvantage is that it
is a COM object performing a function that can be done internally.

Another disadvantage of using the WSH method becomes evident if the script is executed outside of the
context of WSH. The WScript object will not exist. Therefore, unless the ability to sink events is
necessary, it is suggested that the native Object Rexx method be used.

20.3.5.2. Subcom versus the Host Interface

With the advent of WSH, there are two ways to use Object Rexx to drive a product. The first is through
the Object Rexx Subcom interface. The second is for the product to become a Windows Scripting Host.
The advantage of the WSH interface to the product is that it is a COM interface. This positions the
product to take advantage of DCOM. This interface also allows the package developed by the user to
pass objects to Object Rexx.

The disadvantage is the loss of richness contained in the Subcom interface, and the loss of the close
integration that a.dll connection has over a COM connection. The Subcom interface allows the package
to tailor Object Rexx in ways that are not possible through the COM interface, especially when the
Object Rexx Exit Handlers are implemented.

When writing a product that will be a WSH to Object Rexx, refer to the sections "Concurrency" and
"COM Interfaces" in "Windows Scripting Host Interface", in the Object Rexx for Windows:
Programming Guide.

20.3.5.3. .dll vs COM

There are several issues that should be considered when a choice needs to be made between a COM or a
.dll interface. These issues stem from the intended purposes of each interface.

The.dll interface was developed to extend code reuse by allowing global scope subroutines and
functions to be externalized into a module that is separate from the executable. When more than one
executable wanted these functions, they all shared the same code that was loaded into memory. The code
that was in the.dll executed in the frame of the.exe module. It had the same address space and other
environmental parameters. Multiple copies of a*.dll code exist on a machine at one time. The first one
that was found in the search path was loaded.

COM was developed to embody a flat model world; only one copy per machine. It was developed to
solve two problems with the*.dll interface. The first was entry point resolution, and the other was using
the wrong*.dll because the search path was not correct. COM does this by using RPC, a mechanism
that was designed to communicate between different machines. For conceptual purposes, COM modules
then function in a different address space from that of the invoking*.exe. Therefore, there is overhead in
making any data that is to be passed back and forth opaque on the sender’s side, and converting it into
usable data on the receiver’s side.

517

Chapter 20. Windows Scripting Host Engine

518

Appendix A. Using the DO Keyword
This appendix provides you with additional information about the DO keyword.

A.1. Simple DO Group
If you specify neitherrepetitornorconditional, the DO construct only groups a number of instructions
together. They are processed once. For example:

/* The two instructions between DO and END are both */

/* processed if A has the value "3". */

If a=3 then Do

a=a+2

Say "Smile!"

End

A.2. Repetitive DO Loops
If a DO instruction has a repetitor phrase, a conditional phrase, or both, the group of instructions forms a
repetitive DO loop. The instructions are processed according to the repetitor phrase, optionally modified
by the conditional phrase. (SeeConditional Phrases (WHILE and UNTIL).)

A.2.1. Simple Repetitive Loops
A simple repetitive loop is a repetitive DO loop in which the repetitor phrase is an expression that
evaluates to a count of the iterations.

If repetitor is omitted but there is aconditionalor if the repetitor is FOREVER, the group of instructions
is processed until the condition is satisfied or a Rexx instruction ends the loop (for example, LEAVE).

In the simple form of a repetitive loop,exprr is evaluated immediately (and must result in a positive
whole number or zero), and the loop is then processed that many times.

Example:

/* This displays "Hello" five times */

Do 5

say "Hello"

end

Note that, similar to the distinction between a command and an assignment, if the first token ofexprr is a
symbol and the second token is (or starts with)=, the controlled form ofrepetitor is expected.

519

Appendix A. Using the DO Keyword

A.2.2. Controlled Repetitive Loops
The controlled form specifiescontrol1, acontrol variable that is assigned an initial value (the result of
expri, formatted as though0 had been added) before the first execution of the instruction list. The
variable is then stepped by adding the result ofexprbbefore the second and subsequent times that the
instruction list is processed.

The instruction list is processed repeatedly as long as the end condition (determined by the result of
exprt) is not met. Ifexprbis positive or0, the loop is ended whencontrol1 is greater thanexprt. If
negative, the loop is ended whencontrol1 is less thanexprt.

Theexpri, exprt, andexprboptions must result in numbers. They are evaluated only once, before the
loop begins and before the control variable is set to its initial value. The default value forexprbis 1. If
exprt is omitted, the loop runs infinitely unless some other condition stops it.

Example:

Do I=3 to -2 by -1 /* Displays: */

say i /* 3 */

end /* 2 */

/* 1 */

/* 0 */

/* -1 */

/* -2 */

The numbers do not have to be whole numbers:

Example:

I=0.3 /* Displays: */

Do Y=I to I+4 by 0.7 /* 0.3 */

say Y /* 1.0 */

end /* 1.7 */

/* 2.4 */

/* 3.1 */

/* 3.8 */

The control variable can be altered within the loop, and this can affect the iteration of the loop. Altering
the value of the control variable is not considered good programming practice, though it can be
appropriate in certain circumstances.

Note that the end condition is tested at the start of each iteration (and after the control variable is stepped,
on the second and subsequent iterations). Therefore, if the end condition is met immediately, the group
of instructions can be skipped entirely. Note also that the control variable is referred to by name. If, for
example, the compound nameA.I is used for the control variable, alteringI within the loop causes a
change in the control variable.

The execution of a controlled loop can be limited further by a FOR phrase. In this case, you must specify
exprf, and it must evaluate to a positive whole number or zero. This acts like the repetition count in a
simple repetitive loop, and sets a limit to the number of iterations around the loop if no other condition
stops it. Like the TO and BY expressions, it is evaluated only once--when the DO instruction is first
processed and before the control variable receives its initial value. Like the TO condition, the FOR
condition is checked at the start of each iteration.

Example:

520

Appendix A. Using the DO Keyword

Do Y=0.3 to 4.3 by 0.7 for 3 /* Displays: */

say Y /* 0.3 */

end /* 1.0 */

/* 1.7 */

In a controlled loop, thecontrol1name describing the control variable can be specified on the END
clause. Thisnamemust matchcontrol1 in the DO clause in all respects except the case (note that no
substitution for compound variables is carried out). Otherwise, a syntax error results. This enables the
nesting of loops to be checked automatically, with minimal overhead.

Example:

Do K=1 to 10

...

...

End k /* Checks that this is the END for K loop */

Note: The NUMERIC settings can affect the successive values of the control variable because Rexx
arithmetic rules apply to the computation of stepping the control variable.

A.3. Repetitive Loops over Collections
A collection loop specifies a control variable,control2, which receives a different value on each
repetition of the loop. (For more information oncontrol2, seeDO.) These different values are taken from
successive values ofcollection. Thecollectionis any expression that evaluates to an object that provides
a MAKEARRAY method, including stem variables. The collection returned determines the set of values
and their order. Array and List items return an array with the items in the appropriate order, as do
Streams. Tables, Stems, Directories, etc. are not ordered so the items get placed in the array in no
particular order.

If the collection is a stem variable, the values are the tail names that have been explicitly assigned to the
given stem. The order of the tail names is unspecified, and a program should not rely on any order.

For other collection objects, the MAKEARRAY method of the specific collection class determines the
values assigned to the control variable.

All values for the loop iteration are obtained at the beginning of the loop. Therefore, changes to the target
collection object do not affect the loop iteration. For example, using DROP to change the set of tails
associated with a stem or using a new value as a tail does not change the number of loop iterations or the
values over which the loop iterates.

As with controlled repetition, you can specify the symbol that describes the control variable on the END
clause. The control variable is referenced by name, and you can change it within the loop (although this
would not usually be useful). You can also specify the control variable name on an ITERATE or LEAVE
instruction.

Example:

521

Appendix A. Using the DO Keyword

Astem.=0

Astem.3="CCC"

Astem.24="XXX"

do k over Astem.

say k Astem.k

end k

This example can produce:

3 CCC

24 XXX

or:

24 XXX

3 CCC

SeeConcept of a DO Loopfor a diagram.

A.4. Conditional Phrases (WHILE and UNTIL)
A conditional phrase can modify the iteration of a repetitive DO loop. It can cause the termination of a
loop. It can follow any of the forms ofrepetitor (none, FOREVER, simple, or controlled). If you specify
WHILE or UNTIL, exprwor expru, respectively, is evaluated after each loop using the latest values of all
variables, and the loop is ended ifexprwevaluates to0 or expruevaluates to1.

For a WHILE loop, the condition is evaluated at the top of the group of instructions. For an UNTIL loop,
the condition is evaluated at the bottom--before the control variable has been stepped.

Example:

Do I=1 to 10 by 2 until i>6

say i

end

/* Displays: "1" "3" "5" "7" */

Note: Using the LEAVE or ITERATE instructions can also modify the execution of repetitive loops.

522

Appendix A. Using the DO Keyword

Figure A-1. Concept of a DO Loop

523

Appendix A. Using the DO Keyword

Figure A-2. Concept of Repetitive Loop over Collection

524

Appendix B. Migration
This appendix lists some differences between Object Rexx and earlier versions of Rexx, and between
Object Rexx for OS/2 and Open Object Rexx for Windows NT, Windows 95 and *nix environments.

B.1. Error Codes and Return Codes
Some error codes have changed and some have been added. Also, for most errors you now receive two
error messages. The first should be similar or identical to the message you would have seen previously.
The second provides additional and more detailed information. So, for example, where you formerly
received "Invalid Call to Routine", you now get further information on what is wrong with the call.

Also, the return codes of host commands might be different.

In Windows 95, you do not get return codes for external commands that:

• Are internal commands of the command interpreter COMMAND.COM, such as DIR, COPY, or MD

• Are 16-bit applications

• Redirect input or output

B.2. Error Detection and Reporting
Some errors are now detected earlier. Formerly, Rexx would wait until it encountered an error during
execution to report it to you. Now, some errors are reported before the first instruction in your Rexx
script is executed. In particular, syntax errors are reported after you have invoked the program, but before
it starts execution.

B.3. Environment Variables
Environment variables set within an Object Rexx program by the VALUE function or "SET" are not kept
after the program termination.

B.4. Stems versus Collections
Stems are a general data structure that are powerful but abstract. In earlier releases of Rexx, you could
use stems to create data structures of all types, such as arrays, stacks, and queues. These data structures
were semantically neutral. Because stems were the basis for all of them, the code itself gave no hint of
which structure was implemented and for what purpose.

The best data structure job is not always the most powerful and abstract but the most specific and
restrictive. Object Rexx provides a variety of data structures in the collection classes. This helps reduce

525

Appendix B. Migration

errors because you can select the data structure that best meets your requirements. It also helps eliminate
the misuse of data structures and adds a semantic context that makes programs easier to maintain.

B.5. Input and Output Using Functions and Methods
Do not use a mixture of methods and functions for input and output because it can cause unpredictable
results. For example, using the LINEOUT method and the LINEOUT function on the same persistent
stream object can cause overlays.

When a Rexx I/O function creates a stream object, the language processor maintains the stream object.
When an I/O method creates a stream object, it is returned to the program to be maintained. Therefore,
these two stream objects are separate stream objects with different read and write pointers. The program
needs to synchronize the read and write pointers of both stream objects. Otherwise, overlays would occur.

B.6. .Environment
The .Environment directory in Windows is local and not system-global as in OS/2. This means that in
Windows there is no difference between the scope of the .Local and .Environment directories.

B.7. Deleting Environment Variables
Value(envvar,"","ENVIRONMENT") does not delete an environment variable but sets the environment
variable’s value to "". Use Value(envvar,.nil,"ENVIRONMENT") to delete an environment variable.

B.8. Queuing
To improve performance it is recommended that you use the Queue class instead of RXQUEUE
whenever the queued data is not to be shared among processes.

B.9. Trace in Macrospace
Functions in macrospace cannot be traced using the TRACE keyword. These functions are stored in an
optimized format without source code. If you want to trace functions, do not load them into macrospace.

B.10. The RxMessageBox Function
In Windows, the RxMessageBox function does not support all the options available in OS/2. The
following button styles are not available in Windows: CANCEL, ENTER, and ENTERCANCEL.

526

Appendix C. Error Numbers and Messages
The error numbers produced by syntax errors during the processing of Rexx programs are all in the range
1 to 99. Errors are raised in response to conditions, for example, SYNTAX, NOMETHOD, and
PROPAGATE. When the condition is SYNTAX, the value of the error number is placed in the variable
RC when SIGNAL ON SYNTAX is trapped.

You can use the ERRORTEXT built-in function to return the text of an error message.

Some errors have associated subcodes. A subcode is a one- to three-digit decimal extension to the error
number, for example,115 in 40.115. When an error subcode is available, additional information that
further defines the source of the error is given. The ERRORTEXT built-in function cannot retrieve the
secondary message, but it is available from the condition object created when SIGNAL ON SYNTAX
traps an error.

Some errors are only or not displayed under certain conditions:

• Errors 3 and 5 cannot be trapped by SIGNAL ON SYNTAX.

• Error 4 can only be trapped by SIGNAL ON HALT or CALL ON HALT.

• Errors 6 and 30 can only be trapped by SIGNAL ON SYNTAX if they occur during the execution of
an INTERPRET instruction.

C.1. Error List

C.1.1. Error 3 - Failure during initialization
Explanation:

The REXX program could not be read from the disk.

The associated subcodes are:

001

Failure during initialization: File "filename" is unreadable

901

Failure during initialization: Program "program" was not found

902

Error writing output file "file"

903

Program "program_name" cannot be run by this version of the REXX interpreter

527

Appendix C. Error Numbers and Messages

904

Failure during initialization: Program "program" needs to be tokenized. To run untokenized scripts
you need a full version of Object REXX.

C.1.2. Error 4 - Program interrupted
Explanation:

The system interrupted the execution of your program because of an error or a user request.

The associated subcodes are:

001

Program interrupted withconditioncondition

C.1.3. Error 5 - System resources exhausted
Explanation:

While trying to execute a program, the language processor was unable to get the resources it needed to
continue. For example, it could not get the space needed for its work areas or variables. The program that
called the language processor might itself have already used up most of the available storage. Or a
request for storage might have been for more than the implementation maximum.

C.1.4. Error 6 - Unmatched "/*" or quote
Explanation:

A comment or literal string was started but never finished. This could be because the language processor
detected:

• The end of the program (or the end of the string in an INTERPRET instruction) without finding the
ending "*/" for a comment or the ending quotation mark for a literal string

• The end of the line for a literal string.

The associated subcodes are:

001

Unmatched comment delimiter ("/*") on lineline_number

002

Unmatched single quote (')

528

Appendix C. Error Numbers and Messages

003

Unmatched double quote (")

C.1.5. Error 7 - WHEN or OTHERWISE expected
Explanation:

At least one WHEN construct (and possibly an OTHERWISE clause) is expected within a SELECT
instruction. This message is issued if any other instruction is found or there is no WHEN construct
before the OTHERWISE or all WHEN expressions are false and an OTHERWISE is not present. A
common cause of this error is if you forget the DO and END around the list of instructions following a
WHEN. For example:

WRONG RIGHT

Select Select

When a=c then When a=c then DO

Say 'A equals C' Say 'A equals C'

exit exit

Otherwise nop end

end Otherwise nop

end

The associated subcodes are:

001

SELECT on lineline_numberrequires WHEN

002

SELECT on lineline_numberrequires WHEN, OTHERWISE, or END

003

All WHEN expressions of SELECT are false; OTHERWISE expected

C.1.6. Error 8 - Unexpected THEN or ELSE
Explanation:

A THEN or an ELSE clause was found that does not match a corresponding IF or WHEN clause. This
often occurs because of a missing END or DO...END in the THEN part of a complex IF...THEN...ELSE
construction. For example:

WRONG RIGHT

If a=c then do; If a=c then do;

Say EQUALS Say EQUALS

exit exit

else end

529

Appendix C. Error Numbers and Messages

Say NOT EQUALS else

Say NOT EQUALS

The associated subcodes are:

001

THEN has no corresponding IF or WHEN clause

002

ELSE has no corresponding THEN clause

C.1.7. Error 9 - Unexpected WHEN or OTHERWISE
Explanation:

A WHEN or OTHERWISE was found outside of a SELECT construction. You might have accidentally
enclosed the instruction in a DO...END construction by leaving out an END, or you might have tried to
branch to it with a SIGNAL instruction (which does not work because the SELECT is then ended).

The associated subcodes are:

001

WHEN has no corresponding SELECT

002

OTHERWISE has no corresponding SELECT

C.1.8. Error 10 - Unexpected or unmatched END
Explanation:

More ENDs were found in your program than DO or SELECT instructions, or the ENDs did not match
the DO or SELECT instructions. This message also occurs if you try to transfer control into the middle
of a loop using SIGNAL. In this case, the language processor does not expect the END because it did not
process the previous DO instruction. Remember also that SIGNAL deactivates any current loops, so it
cannot transfer control from one place inside a loop to another.

Another cause for this message is placing an END immediately after a THEN or ELSE subkeyword or
specifying a name on the END keyword that does not match the name following DO. Putting the name of
the control variable on ENDs that close repetitive loops can also help locate this kind of error.

The associated subcodes are:

001

END has no corresponding DO or SELECT

530

Appendix C. Error Numbers and Messages

002

Symbol following END ("symbol") must either match control variable of DO specification
("control_variable" on line line_number) or be omitted

003

END corresponding to DO on linesymbolmust not have a symbol following it because there is no
control variable; found "line_number"

004

END corresponding to SELECT on linesymbolmust not have a symbol following; found
"line_number"

005

END must not immediately follow THEN

006

END must not immediately follow ELSE

C.1.9. Error 11 - Control stack full
Explanation:

Your program exceeds the nesting level limit for control structures (for example, DO...END and
IF...THEN...ELSE). This could be because of a looping INTERPRET instruction, such as:

line='INTERPRET line'

INTERPRET line

These lines loop until they exceed the nesting level limit and the language processor issues this message.
Similarly, a recursive subroutine or internal function that does not end correctly can loop until it causes
this message.

The associated subcodes are:

001

Insufficient control stack space; cannot continue execution

C.1.10. Error 13 - Invalid character in program
Explanation:

A character was found outside a literal (quoted) string that is not a blank or one of the valid
alphanumeric and special characters.

The associated subcodes are:

531

Appendix C. Error Numbers and Messages

001

Incorrect character in program "character" ('hex_character'X)

C.1.11. Error 14 - Incomplete DO/SELECT/IF
Explanation:

At the end of the program or the string for an INTERPRET instruction, a DO or SELECT instruction was
found without a matching END or an IF clause that is not followed by a THEN clause. Putting the name
of the control variable on each END closing a controlled loop can help locate this kind of error.

The associated subcodes are:

001

DO instruction on lineline_numberrequires matching END

002

SELECT instruction on lineline_numberrequires matching END

003

THEN on lineline_numbermust be followed by an instruction

004

ELSE on lineline_numbermust be followed by an instruction

901

OTHERWISE on lineline_numberrequires matching END

C.1.12. Error 15 - Invalid hexadecimal or binary string
Explanation:

Hexadecimal strings must not have leading or trailing blanks and blanks can only be embedded at byte
boundaries. Only the digits 0-9 and the letters a-f and A-F are allowed. The following are valid
hexadecimal strings:

'13'x

'A3C2 1c34'x

'1de8'x

Binary strings can have blanks only at the boundaries of groups of four binary digits. Only the digits 0
and 1 are allowed. These are valid binary strings:

'1011'b

'110 1101'b

'101101 11010011'b

532

Appendix C. Error Numbers and Messages

You might have mistyped one of the digits, for example, typing a letter O instead of the number 0. Or
you might have used the one-character symbol X or B (the name of the variable X or B, respectively)
after a literal string when the string is not intended as a hexadecimal or binary specification. In this case,
use the explicit concatenation operator (||) to concatenate the string to the value of the symbol.

The associated subcodes are:

001

Incorrect location of blank in positionpositionin hexadecimal string

002

Incorrect location of blank in positionpositionin binary string

003

Only 0-9, a-f, A-F, and blank are valid in a hexadecimal string; found "character"

004

Only 0, 1, and blank are valid in a binary string; found "character"

C.1.13. Error 16 - Label not found
Explanation:

A SIGNAL instruction has been executed or an event for which a trap was set with SIGNAL ON has
occurred, and the language processor could not find the label specified. You might have mistyped the
label or forgotten to include it.

The associated subcodes are:

001

Label "label_name" not found

C.1.14. Error 17 - Unexpected PROCEDURE
Explanation:

A PROCEDURE instruction was encountered at an incorrect position. This could occur because no
internal routines are active or because the PROCEDURE instruction was not the first instruction
processed after the CALL instruction or function call. One cause for this error is dropping through to an
internal routine, rather than calling it with a CALL instruction or a function call.

The associated subcodes are:

533

Appendix C. Error Numbers and Messages

001

PROCEDURE is valid only when it is the first instruction executed after an internal CALL or
function invocation

901

INTERPRET data must not contain PROCEDURE

C.1.15. Error 18 - THEN expected
Explanation:

A THEN clause must follow each REXX IF or WHEN clause. The language processor found another
clause before it found a THEN clause.

The associated subcodes are:

001

IF instruction on lineline_numberrequires matching THEN clause

002

WHEN instruction on lineline_numberrequires matching THEN clause

C.1.16. Error 19 - String or symbol expected
Explanation:

A symbol or string was expected after the CALL or SIGNAL keywords but none was found. You might
have omitted the string or symbol or inserted a special character (such as a parenthesis).

The associated subcodes are:

001

String or symbol expected after ADDRESS keyword

002

String or symbol expected after CALL keyword

003

String or symbol expected after NAME keyword

004

String or symbol expected after SIGNAL keyword

006

String or symbol expected after TRACE keyword

534

Appendix C. Error Numbers and Messages

007

String or symbol expected after PARSE keyword

901

String or symbol expected after ::CLASS keyword

902

String or symbol expected after ::METHOD keyword

903

String or symbol expected after ::ROUTINE keyword

904

String or symbol expected after ::REQUIRES keyword

905

String or symbol expected after EXTERNAL keyword

906

String or symbol expected after METACLASS keyword

907

String or symbol expected after SUBCLASS keyword

908

String or symbol expected after INHERIT keyword

909

String or symbol expected after tilde (~)

911

String or symbol expected after superclass colon (:)

912

String or symbol expected after STREAM keyword

913

String or symbol expected after MIXINCLASS keyword

C.1.17. Error 20 - Symbol expected
Explanation:

A symbol is expected after CALL ON, CALL OFF, END, ITERATE, LEAVE, NUMERIC, PARSE,
SIGNAL ON, or SIGNAL OFF. Also, a list of symbols or variable references is expected after DROP,

535

Appendix C. Error Numbers and Messages

EXPOSE, and PROCEDURE EXPOSE. Either there was no symbol when one was required or the
language processor found another token.

The associated subcodes are:

901

Symbol expected after DROP keyword

902

Symbol expected after EXPOSE keyword

903

Symbol expected after PARSE keyword

904

Symbol expected after PARSE VAR

905

NUMERIC must be followed by one of the keywords DIGITS, FORM, or FUZZ; found "symbol"

906

Symbol expected after "(" of a variable reference

907

Symbol expected after LEAVE keyword

908

Symbol expected after ITERATE keyword

909

Symbol expected after END keyword

911

Symbol expected after ON keyword

912

Symbol expected after OFF keyword

913

Symbol expected after USE ARG

914

Symbol expected after RAISE keyword

915

Symbol expected after USER keyword

536

Appendix C. Error Numbers and Messages

916

Symbol expected after ::

917

Symbol expected after superclass colon (:)

C.1.18. Error 21 - Invalid data on end of clause
Explanation:

A clause such as SELECT or NOP is followed by a token other than a comment.

The associated subcodes are:

901

Data must not follow the NOP keyword; found "data"

902

Data must not follow the SELECT keyword; found "data"

903

Data must not follow the NAME keyword; found "data"

904

Data must not follow the condition name; found "data"

905

Data must not follow the SIGNAL label name; found "data"

906

Data must not follow the TRACE setting; found "data"

907

Data must not follow the LEAVE control variable name; found "data"

908

Data must not follow the ITERATE control variable name; found "data"

909

Data must not follow the END control variable name; found "data"

911

Data must not follow the NUMERIC FORM specification; found "data"

537

Appendix C. Error Numbers and Messages

912

Data must not follow the GUARD OFF specification; found "data"

C.1.19. Error 22 - Invalid character string
Explanation:

A literal string contains character codes that are not valid. This might be because some characters are not
possible, or because the character set is extended and certain character combinations are not allowed.

The associated subcodes are:

001

Incorrect character string "character_string" ('hex_string'X)

901

Incorrect double-byte character

C.1.20. Error 23 - Invalid data string
Explanation:

A data string (that is, the result of an expression) contains character codes that are not valid. This might
be because some characters are not possible, or because the character set is extended and certain
character combinations are not allowed.

The associated subcodes are:

001

Incorrect data string "string" ('hex_string'X)

C.1.21. Error 24 - Invalid TRACE request
Explanation:

This message is issued when:

• The option on a TRACE instruction or the argument to the built-in function does not start with A, C,
E, F, I, L, N, O, or R.

• In interactive debugging, you entered a number that is not a whole number.

The associated subcodes are:

538

Appendix C. Error Numbers and Messages

001

TRACE request letter must be one of "ACEFILNOR"; found "value"

901

Numeric TRACE requests are valid only from interactive debugging

C.1.22. Error 25 - Invalid subkeyword found
Explanation:

An unexpected token was found at his position of an instruction where a particular subkeyword was
expected. For example, in a NUMERIC instruction, the second token must be DIGITS, FUZZ, or FORM.

The associated subcodes are:

001

CALL ON must be followed by one of the keywords ERROR, FAILURE, HALT, NOTREADY,
USER, or ANY; found "word"

002

CALL OFF must be followed by one of the keywords ERROR, FAILURE, HALT, NOTREADY,
USER, or ANY; found "word"

003

SIGNAL ON must be followed by one of the keywords ERROR, FAILURE, HALT, LOSTDIGITS,
NOTREADY, NOMETHOD, NOSTRING, NOVALUE, SYNTAX, USER, or ANY; found "word"

004

SIGNAL OFF must be followed by one of the keywords ERROR, FAILURE, HALT, LOSTDIGITS,
NOTREADY, NOMETHOD, NOSTRING, NOVALUE, SYNTAX, USER, or ANY; found "word"

011

NUMERIC FORM must be followed by one of the keywords SCIENTIFIC or ENGINEERING;
found "word"

012

PARSE must be followed by one of the keywords ARG, LINEIN, PULL, SOURCE, VALUE, VAR,
or VERSION; found "word"

015

NUMERIC must be followed by one of the keywords DIGITS, FORM, or FUZZ; found "word"

017

PROCEDURE must be followed by the keyword EXPOSE or nothing; found "word"

539

Appendix C. Error Numbers and Messages

901

Unknown keyword on ::CLASS directive; found "word"

902

Unknown keyword on ::METHOD directive; found "word"

903

Unknown keyword on ::ROUTINE directive; found "word"

904

Unknown keyword on ::REQUIRES directive; found "word"

905

USE must be followed by the keyword ARG; found "word"

906

RAISE must be followed by one of the keywords ERROR, FAILURE, HALT, LOSTDIGITS,
NOMETHOD, NOSTRING, NOTREADY, NOVALUE, or SYNTAX; found "word"

907

Unknown keyword on RAISE instruction; found "word"

908

Duplicate DESCRIPTION keyword found

909

Duplicate ADDITIONAL or ARRAY keyword found

911

Duplicate RETURN or EXIT keyword found

912

GUARD ON or GUARD OFF must be followed by the keyword WHEN; found "word"

913

GUARD must be followed by the keyword ON or OFF; found "word"

914

CALL ON condition must be followed by the keyword NAME; found "word"

915

SIGNAL ON condition must be followed by the keyword NAME; found "word"

916

Unknown keyword on FORWARD instruction; found "keyword"

540

Appendix C. Error Numbers and Messages

917

Duplicate TO keyword found

918

Duplicate ARGUMENTS or ARRAY keyword found

919

Duplicate RETURN or CONTINUE keyword found

921

Duplicate CLASS keyword found

922

Duplicate MESSAGE keyword found

C.1.23. Error 26 - Invalid whole number
Explanation:

An expression was found that did not evaluate to a whole number or is greater than the limit (the default
is 999 999 999):

• The positional patterns in parsing templates (including variable positional patterns)

• The operand to the right of the power operator

• The values of exprr and exprf in the DO instruction

• The values given for DIGITS or FUZZ in the NUMERIC instruction

• The number used in the option of the TRACE setting This error is also raised if the value is not
permitted (for example, a negative repetition count in a DO instruction), or the division performed
during an integer divide or remainder operation does not result in a whole number.

The associated subcodes are:

002

Value of repetition count expression in DO instruction must be zero or a positive whole number;
found "value"

003

Value of FOR expression in DO instruction must be zero or a positive whole number; found "value"

004

Positional pattern of PARSE template must be a whole number; found "value"

541

Appendix C. Error Numbers and Messages

005

NUMERIC DIGITS value must be a positive whole number; found "value"

006

NUMERIC FUZZ value must be zero or a positive whole number; found "value"

007

Number used in TRACE setting must be a whole number; found "value"

008

Operand to the right of the power operator (**) must be a whole number; found "value"

011

Result of % operation did not result in a whole number

012

Result of // operation did not result in a whole number

C.1.24. Error 27 - Invalid DO syntax
Explanation:

A syntax error was found in the DO instruction. You probably used BY, TO, FOR, WHILE, or UNTIL
twice, used a WHILE and an UNTIL, or used BY, TO, or FOR when there is no control variable
specified.

The associated subcodes are:

001

WHILE and UNTIL keywords cannot be used on the same DO loop

901

Incorrect data following FOREVER keyword on the DO loop; found "data"

902

DO keywordkeywordcan be specified only once

C.1.25. Error 28 - Invalid LEAVE or ITERATE
Explanation:

A LEAVE or ITERATE instruction was found at an incorrect position. Either no loop was active, or the
name specified on the instruction did not match the control variable of any active loop. Note that internal
routine calls and the INTERPRET instruction protect DO loops by making them inactive. Therefore, for
example, a LEAVE instruction in a subroutine cannot affect a DO loop in the calling routine. You

542

Appendix C. Error Numbers and Messages

probably tried to use the SIGNAL instruction to transfer control within or into a loop. Because a
SIGNAL instruction ends all active loops, any ITERATE or LEAVE instruction causes this message.

The associated subcodes are:

001

LEAVE is valid only within a repetitive DO loop

002

ITERATE is valid only within a repetitive DO loop

003

Symbol following LEAVE ("symbol") must either match the control variable of a current DO loop
or be omitted

004

Symbol following ITERATE ("symbol") must either match the control variable of a current DO loop
or be omitted

C.1.26. Error 29 - Environment name too long
Explanation:

The environment name specified on the ADDRESS instruction is longer than permitted for the system
under which the interpreter is running.

The associated subcodes are:

001

Environment name exceedslimit characters; found "environment_name"

C.1.27. Error 30 - Name or string too long
Explanation:

A variable name, label name, literal (quoted) string has exceeded the allowed limit of 250 characters.
The limit for names includes any substitutions. A possible cause of this error is if you use a period (.) in a
name, causing an unexpected substitution. Leaving off an ending quotation mark for a literal string, or
putting a single quotation mark in a string, can cause this error because several clauses can be included in
the string. For example, write the string 'don't' as 'don't' or "don't".

The associated subcodes are:

001

Name exceeds 250 characters: "name"

543

Appendix C. Error Numbers and Messages

002

Literal string exceeds 250 characters: "string"

901

Hexadecimal literal string exceeds 250 characters "string"

902

Binary literal string exceeds 250 characters "string"

C.1.28. Error 31 - Name starts with number or "."
Explanation:

A variable was found whose name begins with a numeric digit or a period. You cannot assign a value to
such a variable because you could then redefine numeric constants.

The associated subcodes are:

001

A value cannot be assigned to a number; found "number"

002

Variable symbol must not start with a number; found "symbol"

003

Variable symbol must not start with a "."; found "symbol"

C.1.29. Error 33 - Invalid expression result
Explanation:

The result of an expression was found not to be valid in the context in which it was used.

The associated subcodes are:

001

Value of NUMERIC DIGITS ("value") must exceed value of NUMERIC FUZZ ("value")

002

Value of NUMERIC DIGITS ("value") must not exceedvalue

901

Incorrect expression result following VALUE keyword of ADDRESS instruction

902

Incorrect expression result following VALUE keyword of SIGNAL instruction

544

Appendix C. Error Numbers and Messages

903

Incorrect expression result following VALUE keyword of TRACE instruction

904

Incorrect expression result following SYNTAX keyword of RAISE instruction

C.1.30. Error 34 - Logical value not 0 or 1
Explanation:

An expression was found in an IF, WHEN, DO WHILE, or DO UNTIL phrase that did not result in a 0
or 1. Any value operated on by a logical operator must result in a 0 or 1. For example, the phrase If result
then exit rc fails if result has a value other than 0 or 1.

The associated subcodes are:

001

Value of expression following IF keyword must be exactly "0" or "1"; found "value"

002

Value of expression following WHEN keyword must be exactly "0" or "1"; found "value"

003

Value of expression following WHILE keyword must be exactly "0" or "1"; found "value"

004

Value of expression following UNTIL keyword must be exactly "0" or "1"; found "value"

005

Value of expression to the left of the logical operator "operator" must be exactly "0" or "1"; found
"value"

901

Logical value must be exactly "0" or "1"; found "value"

902

Value of expression following GUARD keyword must be exactly "0" or "1"; found "value"

903

Authorization return value must be exactly "0" or "1"; found "value"

C.1.31. Error 35 - Invalid expression
Explanation:

545

Appendix C. Error Numbers and Messages

An expression contains a grammatical error. Possible causes:

• An expression is missing when one is required

• You ended an expression with an operator

• You specified, in an expression, two operators next to one another with nothing in between them

• You did not specify a right parenthesis when one was required

• You used special characters (such as operators) in an intended character expression without enclosing
them in quotation marks

The associated subcodes are:

001

Incorrect expression detected at "token"

901

Prefix operator "operator" is not followed by an expression term

902

Missing conditional expression following IF keyword

903

Missing conditional expression following WHEN keyword

904

Missing initial expression for DO control variable

905

Missing expression following BY keyword

906

Missing expression following TO keyword

907

Missing expression following FOR keyword

908

Missing expression following WHILE keyword

909

Missing expression following UNTIL keyword

911

Missing expression following OVER keyword

546

Appendix C. Error Numbers and Messages

912

Missing expression following INTERPRET keyword

913

Missing expression following OPTIONS keyword

914

Missing expression following VALUE keyword of an ADDRESS instruction

915

Missing expression following VALUE keyword of a SIGNAL instruction

916

Missing expression following VALUE keyword of a TRACE instruction

917

Missing expression following VALUE keyword of a NUMERIC FORM instruction

918

Missing expression following assignment instruction

919

Operator "operator" is not followed by an expression term

921

Missing expression following GUARD keyword

922

Missing expression following DESCRIPTION keyword of a RAISE instruction

923

Missing expression following ADDITIONAL keyword of a RAISE instruction

924

Missing "(" on expression list of the ARRAY keyword

925

Missing expression following TO keyword of a FORWARD instruction

926

Missing expression following ARGUMENTS keyword of a FORWARD instruction

927

Missing expression following MESSAGE keyword of a FORWARD instruction

547

Appendix C. Error Numbers and Messages

928

Missing expression following CLASS keyword of a FORWARD instruction

C.1.32. Error 36 - Unmatched "(" or "[" in expression
Explanation:

A matched parenthesis or bracket was found within an expression. There are more left parentheses than
right parentheses or more left brackets than right brackets. To include a single parenthesis in a command,
enclose it in quotation marks.

The associated subcodes are:

901

Left parenthesis "(" in positionpositionon line line_numberrequires a corresponding right
parenthesis ")"

902

Square bracket "[" in positionpositionon line line_numberrequires a corresponding right square
bracket "]"

C.1.33. Error 37 - Unexpected ",", ")", or "]"
Explanation:

Either a comma was found outside a function invocation, or there are too many right parentheses or right
square brackets in an expression. To include a comma in a character expression, enclose it in quotation
marks. For example, write the instruction:

Say Enter A, B, or C

as follows:

Say 'Enter A, B, or C'

The associated subcodes are:

001

Unexpected ","

002

Unmatched ")" in expression

548

Appendix C. Error Numbers and Messages

901

Unexpected "]"

C.1.34. Error 38 - Invalid template or pattern
Explanation:

A special character that is not allowed within a parsing template (for example, "%") has been found, or
the syntax of a variable pattern is incorrect (that is, no symbol was found after a left parenthesis). This
message is also issued if you omit the WITH subkeyword in a PARSE VALUE instruction.

The associated subcodes are:

001

Incorrect PARSE template detected at "column_position"

002

Incorrect PARSE position detected at "column_position"

003

PARSE VALUE instruction requires WITH keyword

901

Missing PARSE relative position

C.1.35. Error 39 - Evaluation stack overflow
Explanation:

The expression is too complex to be evaluated by the language processor.

C.1.36. Error 40 - Incorrect call to routine
Explanation:

An incorrect call to a routine was found. Possible causes:

• You passed incorrect data (arguments) to the built-in or external routine.

• You passed too many arguments to the built-in, external, or internal routine.

• The external routine called was not compatible with the language processor.

If you did not try to call a routine, you might have a symbol or a string adjacent to a "(" when you meant
it to be separated by a blank or other operator. The language processor would treat this as a function call.
For example, write TIME(4+5) as follows: TIME*(4+5)

The associated subcodes are:

549

Appendix C. Error Numbers and Messages

001

External routine "routine" failed

003

Not enough arguments in invocation ofroutine; minimum expected isnumber

004

Too many arguments in invocation ofroutine; maximum expected isnumber

005

Missing argument in invocation ofroutine; argumentargument_numberis required

011

function_nameargumentargument_numbermust be a number; found "value"

012

function_nameargumentargument_numbermust be a whole number; found "value"

013

function_nameargumentargument_numbermust be zero or positive; found "value"

014

function_nameargumentargument_numbermust be positive; found "value"

019

function_nameargument 2, "value", is not in the format described by argument 3, "value"

021

function_nameargumentargument_numbermust not be null

022

function_nameargumentargument_numbermust be a single character or null; found "value"

023

function_nameargumentargument_numbermust be a single character; found "value"

024

function_nameargumentargument_numbermust be a binary string; found "value"

025

function_nameargumentargument_numbermust be a hexadecimal string; found "value"

026

function_nameargumentargument_numbermust be a valid symbol; found "value"

550

Appendix C. Error Numbers and Messages

027

function_nameargument 1 must be a valid stream name; found "value"

029

function_nameconversion to format "value" is not allowed

032

RANDOM difference between argument 1 ("value") and argument 2 ("value") must not exceed
100000

033

RANDOM argument 1 ("argument") must be less than or equal to argument 2 ("argument")

034

SOURCELINE argument 1 ("argument") must be less than or equal to the number of lines in the
program (argument)

035

X2D argument 1 cannot be expressed as a whole number; found "value"

043

function_nameargumentnumbermust be a single non-alphanumeric character or the null string;
found "value"

044

function_nameargumentnumber, "value", is a format incompatible with the separator specified in
argumentnumber

901

Result returned byroutine is longer thanlength: "value"

902

function_nameargumentargument_numbermust not exceed 999,999,999

903

function_nameargumentargument_numbermust be in the range 0-99; found "value"

904

function_nameargumentargument_numbermust be one ofvalues; found "value"

905

TRACE setting letter must be one of "ACEFILNOR"; found "value"

912

function_nameargumentargument_numbermust be a single-dimensional array; found "value"

551

Appendix C. Error Numbers and Messages

913

function_nameargumentargument_numbermust have a string value; found "value"

914

Unknown VALUE function variable environment selector; found "value"

915

funtion_namecannot be used with QUEUE:

916

Cannot read from a write-only property.

917

Cannot write to a read-only property or typelib element.

C.1.37. Error 41 - Bad arithmetic conversion
Explanation:

A term in an arithmetic expression is not a valid number or has an exponent outside the allowed range of
-999 999 999 to +999 999 999.

You might have mistyped a variable name, or included an arithmetic operator in a character expression
without putting it in quotation marks.

The associated subcodes are:

001

Nonnumeric value ("value") used in arithmetic operation

003

Nonnumeric value ("value") used with prefix operator

004

Value of TO expression of DO instruction must be numeric; found "value"

005

Value of BY expression of DO instruction must be numeric; found "value"

006

Value of control variable expression of DO instruction must be numeric; found "value"

007

Exponent exceedsnumberdigits; found "value"

552

Appendix C. Error Numbers and Messages

901

Value of RAISE SYNTAX expression of DO instruction must be numeric; found "value"

C.1.38. Error 42 - Arithmetic overflow/underflow
Explanation:

The result of an arithmetic operation requires an exponent that is greater than the limit of nine digits
(more than 999 999 999 or less than -999 999 999).

This error can occur during the evaluation of an expression (often as a result of trying to divide a number
by 0) or while stepping a DO loop control variable.

The associated subcodes are:

001

Arithmetic overflow detected at: "value operator value"

002

Arithmetic underflow detected at: "value operator value"

003

Arithmetic overflow; divisor must not be zero

901

Arithmetic overflow; exponent ("exponent") exceedsnumberdigits

902

Arithmetic underflow; exponent ("exponent") exceedsnumberdigits

903

Arithmetic underflow; zero raised to a negative power

C.1.39. Error 43 - Routine not found
Explanation:

A function has been invoked within an expression or a subroutine has been invoked by a CALL, but it
cannot be found. Possible reasons:

• The specified label is not in the program

• It is not the name of a built-in function

• The language processor could not locate it externally

Check if you mistyped the name.

553

Appendix C. Error Numbers and Messages

If you did not try to call a routine, you might have put a symbol or string adjacent to a "(" when you
meant it to be separated by a blank or another operator. The language processor then treats it as a
function call. For example, write the string 3(4+5) as 3*(4+5).

The associated subcodes are:

001

Could not find routine "routine"

901

Could not find routine "routine" for ::REQUIRES

C.1.40. Error 44 - Function or message did not return data
Explanation:

The language processor called an external routine within an expression. The routine seemed to end
without error, but it did not return data for use in the expression.

You might have specified the name of a program that is not intended for use as a REXX function. Call it
as a command or subroutine instead.

The associated subcodes are:

001

No data returned from function "function"

C.1.41. Error 45 - No data specified on function RETURN
Explanation:

A REXX program has been called as a function, but returned without passing back any data.

The associated subcodes are:

001

Data expected on RETURN instruction because routine "routine" was called as a function

C.1.42. Error 46 - Invalid variable reference
Explanation:

Within an ARG, DROP, EXPOSE, PARSE, PULL, or PROCEDURE instruction, the syntax of a variable
reference (a variable whose value is to be used, indicated by its name being enclosed in parentheses) is
incorrect. The right parenthesis that must immediately follow the variable name might be missing or the
variable name might be misspelled.

The associated subcodes are:

554

Appendix C. Error Numbers and Messages

001

Extra token ("token") found in variable reference list; ")" expected

901

Missing ")" in variable reference

902

Extra token ("token") found in USE ARG variable reference; "," or end of instruction expected

C.1.43. Error 47 - Unexpected label
Explanation:

A label was used in the expression being evaluated for an INTERPRET instruction or in an expression
entered during interactive debugging.

The associated subcodes are:

001

INTERPRET data must not contain labels; found "label"

C.1.44. Error 48 - Failure in system service
Explanation:

The language processor stopped processing the program because a system service, such as stream input
or output or the manipulation of the external data queue, has failed to work correctly.

The associated subcodes are:

001

Failure in system service:service

C.1.45. Error 49 - Interpretation error
Explanation:

A severe error was detected in the language processor or execution process during internal
self-consistency checks.

The associated subcodes are:

001

Interpretation error: unexpected failure initializing the interpreter

555

Appendix C. Error Numbers and Messages

C.1.46. Error 90 - External name not found
Explanation:

An external class, method, or routine (specified with the EXTERNAL option on a ::CLASS,
::METHOD, or ::ROUTINE directive, or as a second argument on a NEW message to the Method class)
cannot be found.

The associated subcodes are:

997

Unable to find external class "class"

998

Unable to find external method "method"

999

Unable to find external routine "routine"

C.1.47. Error 91 - No result object
Explanation:

A message term requires a result object, but the method did not return one.

The associated subcodes are:

999

Message "message" did not return a result object

C.1.48. Error 92 - OLE error
The associated subcodes are:

901

An unknown OLE error occured (HRESULT=hresult).

902

Cannot convert VARIANT to REXX object: The conversion of the VARIANT typevarianttypeinto
a REXX object failed.

903

Cannot convert REXX object to VARIANT: The conversion ofrexx_objectinto a VARIANT failed.

556

Appendix C. Error Numbers and Messages

904

The number of elements provided to the method or property is different from the number of
parameters accepted by it.

905

One of the parameters is not a valid VARIANT type.

906

OLE exception:exc_name

907

The requested method does not exist, or you tried to set the value of a read-only property.

908

One of the parameters could not be coerced to the desired type.

909

One or more of the parameters could not be coerced to the desired type. The first parameter with
incorrect type is argumentindex.

910

A required parameter was omitted.

911

Could not create OLE instance.

912

The object invoked has disconnected from its clients.

C.1.49. Error 93 - Incorrect call to method
Explanation:

The specified method or built-in or external routine exists, but you used it incorrectly.

The associated subcodes are:

901

Not enough arguments in method;numberexpected

902

Too many arguments in invocation of method;numberexpected

903

Missing argument in method; argumentargumentis required

557

Appendix C. Error Numbers and Messages

904

Method argumentargumentmust be a number; found "value"

905

Method argumentargumentmust be a whole number; found "value"

906

Method argumentargumentmust be zero or a positive whole number; found "value"

907

Method argumentargumentmust be a positive whole number; found "value"

908

Method argumentargumentmust not exceedlimit; found "value"

909

Method argumentargumentmust be in the range 0-99; found "value"

911

Method argumentargumentmust not be null

912

Method argumentargumentmust be a hexadecimal string; found "value"

913

Method argumentargumentmust be a valid symbol; found "value"

914

Method argumentargumentmust be one ofarguments; found "value"

915

Method option must be one ofarguments; found "value"

916

Method argumentargumentmust have a string value

917

Methodmethoddoes not exist

918

Incorrect list index "index"

919

Incorrect array position "position"

558

Appendix C. Error Numbers and Messages

921

Argument missing on binary operator

922

Incorrect pad or character argument specified; found "value"

923

Incorrect length argument specified; found "value"

924

Incorrect position argument specified; found "value"

925

Not enough subscripts for array;numberexpected

926

Too many subscripts for array;numberexpected

927

Length must be specified to convert a negative value

928

D2X value must be a valid whole number; found "value"

929

D2C value must be a valid whole number; found "value"

931

Incorrect location of blank in positionpositionin hexadecimal string

932

Incorrect location of blank in positionpositionin binary string

933

Only 0-9, a-f, A-F, and blank are valid in a hexadecimal string; character found "character"

934

Only 0, 1, and blank are valid in a binary string; character found "character"

935

X2D result is not a valid whole number with NUMERIC DIGITSdigits

936

C2D result is not a valid whole number with NUMERIC DIGITSdigits

559

Appendix C. Error Numbers and Messages

937

No more supplier items available

938

Method argumentargumentmust have a string value

939

Method argumentargumentmust have a single-dimensional array value

941

Exponent "exponent" is too large fornumberspaces

942

Integer part "integer" is too large fornumberspaces

943

methodmethod target must be a number; found "value"

944

Method argumentargumentmust be a message object

945

Missing argument in message array; argumentargumentis required

946

A message array must be a single-dimensional array with 2 elements

947

Method SECTION can be used only on single-dimensional arrays

948

Method argumentargumentmust be of theclassclass

949

The index and value objects must be the same for PUT to an index-only collection

951

Incorrect alarm time; found "time"

952

Method argumentargumentis an array and does not contain all string values

953

Method argumentargumentcould not be converted to typetype

560

Appendix C. Error Numbers and Messages

954

Method "method" can be used only on a single-dimensional array

956

Elementelementof the array must be a string

957

Elementelementof the array must be a subclass of the target object

958

Positioning of transient streams is not valid

959

An array cannot contain more than 99,999,999 elements

961

Method argumentargumentmust have a string value or an array value

962

Invalid Base 64 encoded string.

963

Call to unsupported or unimplemented method

964

Application error:message

C.1.50. Error 97 - Object method not found
Explanation:

The object does not have a method with the given name. A frequent cause of this error is an uninitialized
variable.

The associated subcodes are:

001

Object "object" does not understand message "message"

C.1.51. Error 98 - Execution error
Explanation:

The language processor detected a specific error during execution. The associated error gives the reason
for the error.

561

Appendix C. Error Numbers and Messages

The associated subcodes are:

901

SOM object "object" is no longer available

902

Unable to convert object "object" to a double-float value

903

Unable to load library "name"

904

Abnormal termination occurred

905

Deadlock detected on a guarded method

906

Incorrect object reference detected

907

Object of type "type" was required

908

Metaclass "metaclass" not found

909

Class "class" not found

911

Cyclic inheritance in program "program"

912

SOM class "class" not found

913

Unable to convert object "object" to a single-dimensional array value

914

Unable to convert object "object" to a string value

915

A message object cannot be sent more than one SEND or START message

562

Appendix C. Error Numbers and Messages

916

Message object "object" received an error from message "message"

917

Incorrect condition object received for RAISE OBJECT; found "value"

918

No active condition available for PROPAGATE

919

Unable to convert object "object" to a method

921

Could not retrieve "value" information for method "method"

931

No method descriptor information for method "method" on class "class"

932

The SOM interface does not currently support parameter type "type", specified for argument
argument

933

The SOM interface does not currently support parameter type "type", specified for return value

934

The number of OUT or INOUT type arguments cannot exceednumber

935

REPLY can be issued only once per method invocation

936

RETURN cannot return a value after a REPLY

937

EXIT cannot return a value after a REPLY

938

Message search overrides can be used only from methods of the target object

939

Additional information for SYNTAX errors must be a single-dimensional array of values

941

Unknown error number specified on RAISE SYNTAX; found "number"

563

Appendix C. Error Numbers and Messages

942

Class "class" must be a MIXINCLASS for INHERIT

943

Class "class" is not a subclass of "class" base class "class"

944

Class "class" cannot inherit from itself, a superclass, or a subclass ("class")

945

Class "class" has not inherited class "class"

946

FORWARD arguments must be a single-dimensional array of values

947

FORWARD can only be issued in an object method invocation

948

Authorization failure:value

949

The DSOM Server for classclass, could not be resolved.

951

Concurrency not supported

952

servernameclass server not installed

961

Too many parameters for event "event"

962

Error creating OSA event "event"

963

Error creating direct parameter for OSA event "event"

964

Error accessing event information in AETE

965

Error launching application "application"

564

Appendix C. Error Numbers and Messages

966

Invalid additional parameter "parameter" for OSA event "event"

967

Error creating additional parameter for OSA event "event"

968

Error sending OSA event "event"

969

Error handling result for OSA event "event"

971

Error converting OSA event result to a REXX object

972

Invalid direct parameter "parameter" for OSA event "event"

973

Invalid key form for object specifier

974

Invalid parameter type for key form "keyform"

C.1.52. Error 99 - Translation error
Explanation:

An error was detected in the language syntax. The associated error subcode identifies the syntax error.

The associated subcodes are:

901

Duplicate ::CLASS directive instruction

902

Duplicate ::METHOD directive instruction

903

Duplicate ::ROUTINE directive instruction

904

Duplicate ::REQUIRES directive instruction

565

Appendix C. Error Numbers and Messages

905

CLASS keyword on ::METHOD directive requires a matching ::CLASS directive

907

EXPOSE must be the first instruction executed after a method invocation

908

INTERPRET data must not contain EXPOSE

909

GUARD must be the first instruction executed after EXPOSE or USE

911

GUARD can only be issued in an object method invocation

912

INTERPRET data must not contain GUARD

913

GUARD instruction did not include references to exposed variables

914

INTERPRET data must not contain directive instructions

915

INTERPRET data must not contain USE

916

Unrecognized directive instruction

917

Incorrect external directive name "method"

918

USE ARG requires a "," between variable names; found "token"

919

REPLY can only be issued in an object method invocation

921

Incorrect program line in method source array

922

::REQUIRES directives must appear before other directive instructions

566

Appendix C. Error Numbers and Messages

923

INTERPRET data must not contain FORWARD

924

INTERPRET data must not contain REPLY

925

An ATTRIBUTE method name must be a valid variable name; found "name"

926

Incorrect class external; too many parameters

927

"classname" is not a valid metaclass

928

Incorrect class external; class name missing or invalid

929

Incorrect class external; invalid class server "servername"

C.2. RXSUBCOM Utility Program
RXSUBCOM issues the following errors:

C.2.1. Error 116 - The RXSUBCOM parameter REGISTER is
incorrect.
Explanation:

RXSUBCOM REGISTER requires the following parameters:

RXSUBCOM REGISTER Environment_Name Dll_Name Procedure_Name

Environment_Name

is the name of the subcommand handler.

. Dll_Name

is the name of the file containing the subcommand handler routine.

. Procedure_Name

is the name of the procedure that REXX calls as a subcommand handler.

567

Appendix C. Error Numbers and Messages

C.2.2. Error 117 - The RXSUBCOM parameter DROP is
incorrect.
Explanation:

RXSUBCOM DROP requires that the subcommand handler name be specified.

RXSUBCOM DROP Environment_Name [Dll_Name]

Environment_Name

is the name of the subcommand handler.

. Dll_Name

is the name of the file containing the subcommand handler routine (optional).

C.2.3. Error 118 - The RXSUBCOM parameter LOAD is
incorrect.
Explanation:

RXSUBCOM LOAD requires thatn the subcommand handler name be specified.

RXSUBCOM LOAD Environment_Name [Dll_Name]

Environment_Name

is the name of the subcommand handler.

. Dll_Name

is the name of the file containing the subcommand handler routine (optional).

C.2.4. Error 125 - The RXSUBCOM parameter QUERY is
incorrect.
Explanation:

RXSUBCOM QUERY requires the environment name be specified.

RXSUBCOM QUERY Environment_Name [Dll_Name]

Environment_Name

is the name of the subcommand handler.

568

Appendix C. Error Numbers and Messages

. Dll_Name

is the name of the file containing the subcommand handler routine (optional).

C.3. RXQUEUE Utility Program
RXQUEUE issues the following errors:

C.3.1. Error 119 - The REXX queuing system is not initialized.
Explanation:

The queuing system requires a housekeeping program to run. This program usually runs under the
Presentation Manager shell. The program is not running.

C.3.2. Error 120 - The size of the data is incorrect.
Explanation:

The data supplied to the RXQUEUE command is too long. The RXQUEUE program accepts data
records containing 0 - 65472 bytes. A record exceeded the allowable limits.

C.3.3. Error 121 - Storage for data queues is exhausted.
Explanation:

The queuing system is out of memory. No more storage is available to store queued data.

C.3.4. Error 122 - The name %1 is not a valid queue name.
Explanation:

The queue name contains an invalid character. Only the following characters can appear in queue names:

'A' .. 'Z', '0' .. '9', '.', '!', '?', '_'

C.3.5. Error 123 - The queue access mode is not correct.
Explanation:

569

Appendix C. Error Numbers and Messages

An internal error occurred in RXQUEUE. The RXQUEUE program tried to access a queue with an
incorrect access mode. Correct access modes are LIFO and FIFO.

C.3.6. Error 124 - The queue %1 does not exist.
Explanation:

The command attempted to access a nonexistent queue.

C.3.7. Error 131 - The syntax of the command is incorrect

C.3.8. Error 132 - System error occurred while processing the
command

C.4. RexxC Utility Program
RexxC issues the following errors:

C.4.1. Error 127 - The REXXC command parameters are
incorrect.
Explanation:

The REXXC utility was invoked with zero or more than three parameters. REXXC accepts the following
parameters:

• To check the syntax of a REXX program: REXXC Program_name [/s]

• To convert a REXX program into a sourceless executable file: REXXC Program_name
Output_file_name [/s]

C.4.2. Error 128 - Output file name must be different from
input file name.

570

Appendix C. Error Numbers and Messages

C.4.3. Error 129 - SYNTAX: REXXC InProgramName
[OutProgramName] [/S]

C.4.4. Error 130 - Without OutProgramName REXXC only
performs a syntax check

571

Appendix C. Error Numbers and Messages

572

Appendix D. Notices
Any reference to a non-open source product, program, or service is not intended to state or imply that
only non-open source product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any RexxLA intellectual property right may be used instead.
However, it is the user’s responsibility to evaluate and verify the operation of any non-open source
product, program, or service.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurement may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-open source products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. RexxLA has not tested those products
and cannot confirm the accuracy of performance, compatibility or any other claims related to
non-RexxLA packages. Questions on the capabilities of non-RexxLA packages should be addressed to
the suppliers of those products.

All statements regarding RexxLA’s future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

D.1. Trademarks
The following terms are trademarks of the IBM Corporation in the United States, other countries, or both:

1-2-3
AIX
IBM
Lotus
OS/2
S/390
VisualAge

AMD is a trademark of Advance Micro Devices, Inc.

Intel, Intel Inside (logos), MMX and Pentium are trademarks of Intel Corporation in the United States,
other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the Unites States, other
countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in
the United States, other countries, or both.

573

Appendix D. Notices

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

D.2. Source Code For This Document
The source code for this document is available under the terms of the Common Public License v1.0
which accompanies this distribution and is available in the appendixCommon Public License Version
1.0. The source code itself is available at
http://sourceforge.net/project/showfiles.php?group_id=119701.

The source code for this document is maintained in DocBook SGML/XML format.

574

Appendix E. Common Public License Version
1.0

THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS COMMON
PUBLIC LICENSE ("AGREEMENT"). ANY USE, REPRODUCTION OR DISTRIBUTION OF THE
PROGRAM CONSTITUTES RECIPIENT’S ACCEPTANCE OF THIS AGREEMENT.

E.1. Definitions
"Contribution" means:

1. in the case of the initial Contributor, the initial code and documentation distributed under this
Agreement, and

2. in the case of each subsequent Contributor:

a.changes to the Program, and

b. additions to the Program;

where such changes and/or additions to the Program originate from and are distributed by that particular
Contributor. A Contribution ’originates’ from a Contributor if it was added to the Program by such
Contributor itself or anyone acting on such Contributor’s behalf. Contributions do not include additions
to the Program which: (i) are separate modules of software distributed in conjunction with the Program
under their own license agreement, and (ii) are not derivative works of the Program.

"Contributor" means any person or entity that distributes the Program.

"Licensed Patents " mean patent claims licensable by a Contributor which are necessarily infringed by
the use or sale of its Contribution alone or when combined with the Program.

"Program" means the Contributions distributed in accordance with this Agreement.

"Recipient" means anyone who receives the Program under this Agreement, including all Contributors.

E.2. Grant of Rights

1. Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-exclusive,
worldwide, royalty-free copyright license to reproduce, prepare derivative works of, publicly
display, publicly perform, distribute and sublicense the Contribution of such Contributor, if any, and
such derivative works, in source code and object code form.

2. Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-exclusive,
worldwide, royalty-free patent license under Licensed Patents to make, use, sell, offer to sell, import
and otherwise transfer the Contribution of such Contributor, if any, in source code and object code
form. This patent license shall apply to the combination of the Contribution and the Program if, at
the time the Contribution is added by the Contributor, such addition of the Contribution causes such

575

Appendix E. Common Public License Version 1.0

combination to be covered by the Licensed Patents. The patent license shall not apply to any other
combinations which include the Contribution. No hardware per se is licensed hereunder.

3. Recipient understands that although each Contributor grants the licenses to its Contributions set
forth herein, no assurances are provided by any Contributor that the Program does not infringe the
patent or other intellectual property rights of any other entity. Each Contributor disclaims any
liability to Recipient for claims brought by any other entity based on infringement of intellectual
property rights or otherwise. As a condition to exercising the rights and licenses granted hereunder,
each Recipient hereby assumes sole responsibility to secure any other intellectual property rights
needed, if any. For example, if a third party patent license is required to allow Recipient to distribute
the Program, it is Recipient’s responsibility to acquire that license before distributing the Program.

4. Each Contributor represents that to its knowledge it has sufficient copyright rights in its
Contribution, if any, to grant the copyright license set forth in this Agreement.

E.3. Requirements
A Contributor may choose to distribute the Program in object code form under its own license
agreement, provided that:

1. it complies with the terms and conditions of this Agreement; and

2. its license agreement:

a.effectively disclaims on behalf of all Contributors all warranties and conditions, express and
implied, including warranties or conditions of title and non-infringement, and implied
warranties or conditions of merchantability and fitness for a particular purpose;

b. effectively excludes on behalf of all Contributors all liability for damages, including direct,
indirect, special, incidental and consequential damages, such as lost profits;

c. states that any provisions which differ from this Agreement are offered by that Contributor
alone and not by any other party; and

d. states that source code for the Program is available from such Contributor, and informs
licensees how to obtain it in a reasonable manner on or through a medium customarily used for
software exchange.

When the Program is made available in source code form:

1. it must be made available under this Agreement; and

2. a copy of this Agreement must be included with each copy of the Program.

Contributors may not remove or alter any copyright notices contained within the Program.

Each Contributor must identify itself as the originator of its Contribution, if any, in a manner that
reasonably allows subsequent Recipients to identify the originator of the Contribution.

576

Appendix E. Common Public License Version 1.0

E.4. Commercial Distribution
Commercial distributors of software may accept certain responsibilities with respect to end users,
business partners and the like. While this license is intended to facilitate the commercial use of the
Program, the Contributor who includes the Program in a commercial product offering should do so in a
manner which does not create potential liability for other Contributors. Therefore, if a Contributor
includes the Program in a commercial product offering, such Contributor ("Commercial Contributor")
hereby agrees to defend and indemnify every other Contributor ("Indemnified Contributor") against any
losses, damages and costs (collectively "Losses") arising from claims, lawsuits and other legal actions
brought by a third party against the Indemnified Contributor to the extent caused by the acts or omissions
of such Commercial Contributor in connection with its distribution of the Program in a commercial
product offering. The obligations in this section do not apply to any claims or Losses relating to any
actual or alleged intellectual property infringement. In order to qualify, an Indemnified Contributor must:
a) promptly notify the Commercial Contributor in writing of such claim, and b) allow the Commercial
Contributor to control, and cooperate with the Commercial Contributor in, the defense and any related
settlement negotiations. The Indemnified Contributor may participate in any such claim at its own
expense.

For example, a Contributor might include the Program in a commercial product offering, Product X. That
Contributor is then a Commercial Contributor. If that Commercial Contributor then makes performance
claims, or offers warranties related to Product X, those performance claims and warranties are such
Commercial Contributor’s responsibility alone. Under this section, the Commercial Contributor would
have to defend claims against the other Contributors related to those performance claims and warranties,
and if a court requires any other Contributor to pay any damages as a result, the Commercial Contributor
must pay those damages.

E.5. No Warranty
EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, THE PROGRAM IS PROVIDED
ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, EITHER
EXPRESS OR IMPLIED INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OR
CONDITIONS OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Each Recipient is solely responsible for determining the appropriateness of
using and distributing the Program and assumes all risks associated with its exercise of rights under this
Agreement, including but not limited to the risks and costs of program errors, compliance with applicable
laws, damage to or loss of data, programs or equipment, and unavailability or interruption of operations.

E.6. Disclaimer of Liability
EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, NEITHER RECIPIENT NOR ANY
CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING WITHOUT
LIMITATION LOST PROFITS), HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OR DISTRIBUTION OF THE

577

Appendix E. Common Public License Version 1.0

PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED HEREUNDER, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES.

E.7. General
If any provision of this Agreement is invalid or unenforceable under applicable law, it shall not affect the
validity or enforceability of the remainder of the terms of this Agreement, and without further action by
the parties hereto, such provision shall be reformed to the minimum extent necessary to make such
provision valid and enforceable.

If Recipient institutes patent litigation against a Contributor with respect to a patent applicable to
software (including a cross-claim or counterclaim in a lawsuit), then any patent licenses granted by that
Contributor to such Recipient under this Agreement shall terminate as of the date such litigation is filed.
In addition, if Recipient institutes patent litigation against any entity (including a cross-claim or
counterclaim in a lawsuit) alleging that the Program itself (excluding combinations of the Program with
other software or hardware) infringes such Recipient’s patent(s), then such Recipient’s rights granted
under Section 2(b) shall terminate as of the date such litigation is filed.

All Recipient’s rights under this Agreement shall terminate if it fails to comply with any of the material
terms or conditions of this Agreement and does not cure such failure in a reasonable period of time after
becoming aware of such noncompliance. If all Recipient’s rights under this Agreement terminate,
Recipient agrees to cease use and distribution of the Program as soon as reasonably practicable.
However, Recipient’s obligations under this Agreement and any licenses granted by Recipient relating to
the Program shall continue and survive.

Everyone is permitted to copy and distribute copies of this Agreement, but in order to avoid inconsistency
the Agreement is copyrighted and may only be modified in the following manner. The Agreement
Steward reserves the right to publish new versions (including revisions) of this Agreement from time to
time. No one other than the Agreement Steward has the right to modify this Agreement. IBM is the
initial Agreement Steward. IBM may assign the responsibility to serve as the Agreement Steward to a
suitable separate entity. Each new version of the Agreement will be given a distinguishing version
number. The Program (including Contributions) may always be distributed subject to the version of the
Agreement under which it was received. In addition, after a new version of the Agreement is published,
Contributor may elect to distribute the Program (including its Contributions) under the new version.
Except as expressly stated in Sections 2(a) and 2(b) above, Recipient receives no rights or licenses to the
intellectual property of any Contributor under this Agreement, whether expressly, by implication,
estoppel or otherwise. All rights in the Program not expressly granted under this Agreement are reserved.

This Agreement is governed by the laws of the State of New York and the intellectual property laws of
the United States of America. No party to this Agreement will bring a legal action under this Agreement
more than one year after the cause of action arose. Each party waives its rights to a jury trial in any
resulting litigation.

578

Index

Symbols
% (integer division operator),19, 434

% method,205

& (AND logical operator) operator,21

& method,208

&& (exclusive OR operator),22

&& method,??

> (greater than operator),20

> method,206

>> (strictly greater than operator),20, 21

>> method,208

>>> tracing flag,74

>>= (strictly greater than or equal operator),

21

>>= method,208

>< (greater than or less than operator),20

>< method

of Object class,173

of String class,206, 206

>.> tracing flag,74

>= (greater than or equal operator),20

>= method,206

>C> tracing flag,75

>F> tracing flag,75

>L> tracing flag,75

>M> tracing flag,75

>O> tracing flag,75

>P> tracing flag,75

>V> tracing flag,75

< (less than operator),20

< method,206

<> (less than or greater than operator),20

<> method

of Object class,173

of String class,206

<< (strictly less than operator),20, 21

<< method,??

<<= (strictly less than or equal operator),21

<<= method,208

<= (less than or equal operator(<=), 20

<= method,??

* (multiplication operator),19, 434

* method,205

** (power operator),434

** method,206

- tracing flag,74

+ (addition operator),19, 434

+ method,205

+++ tracing flag,74

, (comma)

as a special character,15

as continuation character,16

in CALL instruction,43

in function calls,291

in parsing template list,41, 427

separator of arguments,43, 291

- (subtraction operator),19, 434

- method,205

. (period)

as placeholder in parsing,419

causing substitution in variable names,32

in numbers,433

.dll vs COM (WSH engine),517

.ENVIRONMENT object,285

.ERROR object,288

.INPUT object,289

.LOCAL object,287

.METHODS object,289

.NIL object,289

.OUTPUT object,289

.RS (return code)

not set during interactive debug,483

.RS object,290

/ (division operator),19, 434

/ method,205

// (remainder operator),434

// method,205

: (colon)

as a special character,15

in a label,27

:: METHOD directive,78

:: REQUIRES directive,80

:: ROUTINE directive,81

::CLASS directive,77

; semicolon

as a special character,15

= (equal sign)

assignment operator,29

equal operator,20

immediate debug command,483

in DO instruction),45

579

in parsing template,421

= method

of Object class,173

of String class,206

== (strictly equal operator),20, 21, 437

== method

of Object class,173

of String class,207

? prefix on TRACE option,73

[] method

of Array class,107

of Bag class,113

of Directory class,120

of List class,125

of Queue class,130

of Relation class,133

of Set class,138

of Stem class,185

of Table class,140

[]= method

of Array class,108

of Bag class,113

of Directory class,120

of List class,126

of Queue class,130

of Relation class,133

of Set class,138

of Stem class,185

of Table class,140

\ (NOT operator),21

\ method,208

\> (not greater than operator),21

\> method,207

\>> (strictly not greater than operator),21

\>> method,208

\< (not less than operator),20

\< method,207

\<< (strictly not less than operator),21

\<< method,208

\= (not equal operator),20

\= method

of Object class,173

\== (not strictly equal operator),20, 21, 437

\== method,207

of Object class,173

| inclusive OR operator,21

| method,209

|| concatenation operator,18

|| method,209

~ (tilde or twiddle),5, 26

~~,26

¬ (NOT operator),21

¬> (not greater than operator),21

¬>> (strictly not greater than operator),21

¬< (not less than operator),20

¬<< (strictly not less than operator),21

¬= (not equal operator),20

¬== (not strictly equal operator),20, 21, 437

A
ABBREV function

description,296

example,296

using to select a default,297

ABBREV method

of String class,210

abbreviations with ABBREV function,296

ABS function

description,297

example,297

ABS method

of String class,210

absolute value

finding using the ABS function,297

finding using the ABS method,210

used with power,435

abstract class, definition,84

abuttal,18

action taken when a condition is not trapped,

444

action taken when a condition is trapped,441,

444

active loops,55

activity, 451

add external function,326

ADDDESKTOPICON method

of WindowsProgramManager class,259

ADDGROUP method

of WindowsProgramManager class,261

ADDITEM method

of WindowsProgramManager class,261

addition operator,19

ADDITIONAL subkeyword

in a RAISE instruction,64

580

ADDRESS function

description,297

determining current environment,297

example,297

ADDRESS instruction

description,39

example,40

issuing commands to,39

settings saved during subroutine calls,45

address setting,40, 45

ADDSHORTCUT method

of WindowsProgramManager class,260

Alarm class,149

algebraic precedence,22

ALLAT method

of Relation class,133

ALLINDEX method

of Relation class,133

alphabetical character word options in

TRACE,72

alphabetics

checking with DATATYPE,217, 309

used in symbols,13

alphanumerics

checking with DATATYPE,309

alphnumerics

checking with DATATYPE,217

altering

flow within a repetitive DO loop,54

special variables,36

TRACE setting,342

alternating exclusive scope access,458

AND, logical operator,21

ANDing character strings,211, 300

ANY subkeyword

in a CALL instruction,42, 441

in a SIGNAL instruction,69, 441

APPEND method

of MutableBuffer class,170

ARG function

description,298

example,298

ARG instruction

description,41

example,41

ARG option of PARSE instruction,58

ARG subkeyword

in a PARSE instruction,41, 58, 425

in a USE instruction,75

arguments

checking with ARG function,298

of functions,41, 291

of programs,41

of subroutines,41

passing in messages,26

passing to functions,291, 292

retrieving with ARG function,298

retrieving with ARG instruction,41

retrieving with PARSE ARG instruction,58

ARGUMENTS subkeyword

in a FORWARD instruction,49

arithmetic

basic operator examples,435

comparisons,437

errors,438

exponential notation,436

examples,436

numeric comparisons example

examples,438

NUMERIC setting,56

operator examples,435

operators,17, 433, 434

overflow,438

precision,434

underflow,438

array

initialization,30

setting up,32

Array class,106

ARRAY subkeyword

in a FORWARD instruction,49

in a RAISE instruction,64

ARRAYIN method

of Stream class,187

ARRAYOUT method

of Stream class,187

assigning data to variables,58

assignment

description,29

indicator (=),29

of compound variables,32

of stems variables,30

several assignments,424

associative storage,32

ASSOCWINDOW method

of WindowsObject class,248

581

AT method

of Array class,108

of Directory class,120

of List class,126

of Queue class,130

of Relation class,133

of Set class,138

of Table class,140

ATTRIBUTE subkeyword

in a METHOD directive,78

AVAILABLE method

of Supplier class,234

B
B2X function

description,299

example,299

B2X method

of String class,211

backslash, use of,14, 21

Bag class,111

base class for mixins,84

Base option of DATE function,311

base64

DECODEBASE64 method,218

ENCODEBASE64 method,219

BASECLASS method

of Class class,152

bash command environment,40

basic operator examples,435

BEEP function

description,300

example,300

binary

digits,12

strings

description,12

implementation maximum,13

nibbles,12

to hexadecimal conversion,211, 299

BITAND function

description,300

example,300

BITAND method

of String class,211

BITOR function

description,301

example,301

BITOR method

of String class,212

bits checked using DATATYPE function,309

bits checked using DATATYPE method,217

BITXOR function

description,301

example,301

BITXOR method

of String class,212

blanks,18

adjacent to special character,9

in parsing, treatment of,418

removal with STRIP function,337

removal with STRIP method,226

boolean operations,21

boolean values,511

bottom of program reached during execution,

48

bounded buffer,463

browser, invocation by (WSH engine),500

built-in functions

ABBREV, 296

ABS, 297

ADDRESS,297

ARG, 298

B2X, 299

BEEP,300

BITAND, 300

BITOR, 301

BITXOR, 301

C2D,302

C2X, 302

calling,42

CENTER,303

CENTRE,303

CHANGESTR,303

CHARIN, 303

CHAROUT,304

CHARS,305

COMPARE,306

CONDITION, 306

COPIES,308

COUNTSTR,308

D2C,308

D2X, 309

DATATYPE, 309

582

DATE, 311

definition,42

DELSTR,314

DELWORD,314

DIGITS, 315

DIRECTORY,315

ENDLOCAL, 315

ERRORTEXT,316

FILESPEC,316

FORM,317

FORMAT, 317

FUZZ, 318

INSERT,318

LASTPOS,319

LEFT, 319

LENGTH, 320

LINEIN, 320

LINEOUT, 321

LINES, 323

MAX, 323

MIN, 324

OVERLAY, 324

POS,324

QUEUED,325

RANDOM, 325

REVERSE,326

RIGHT, 326

RXFUNCADD, 326

RXFUNCDROP,327

RXFUNCQUERY,327

RXQUEUE,327

SETLOCAL,329

SIGN,329

SOURCELINE,330

SPACE,330

STREAM,330

STRIP,337

SUBSTR,338

SUBWORD,338

SYMBOL, 339

TIME, 339

TRACE,342

TRANSLATE, 342

TRUNC,343

USERID,343

VALUE, 344

VAR, 346

VERIFY, 347

WORD,347

WORDINDEX, 347

WORDLENGTH,348

WORDPOS,348

WORDS,348

X2B, 349

X2C, 349

X2D, 350

XRANGE, 350

built-in object

.ENVIRONMENT object,285

.ERROR object,288

.INTPUT object,289

.LOCAL object,287

.METHODS object,289

.NIL object,289

.OUTPUT object,289

.RS object,290

BY phrase of DO instruction,46

BY subkeyword

in a DO instruction,45, 520

C
C2D function

description,302

example,302

C2D method

of String class,213

C2X function

description,302

example,302

C2X method

of String class,213

CALL instruction

description,42

example,44

call, recursive,44

calls to the Security Manager,467

CANCEL method

of Alarm class,150

cancelling Internet Explorer events (WSH

engine),511

CASELESS subkeyword

in a PARSE instruction,58, 425

CENTER function

description,303

583

example,303

CENTER method

of String class,214

centering a string

CENTER,303

CENTRE,303

CENTRE function

description,303

example,303

CENTRE method

of String class,214

CHANGESTR function

description,303

example,303

CHANGESTR method

of String class,214

changing destination of commands,39

changing the search order for methods,90

character

definition,9

removal with STRIP function,338

removal with STRIP method,226

strings, ANDing,211, 300

strings, exclusive-ORing,212, 301

strings, ORing,212, 301

to decimal conversion,213, 302

to hexadecimal conversion,213, 302

character input and output,473, 484

character input streams,474

character output streams,474

CHARIN function

description,303

example,304

CHARIN method

of Stream class,187

role in input and output,474

CHAROUT function

description,304

example,305

CHAROUT method

of Stream class,187

role in input and output,475

CHARS function

description,305

example,306

CHARS method

of Stream class,188

role in input and output,474

checking arguments with ARG function,298

CHILDATPOSITION method

of WindowsObject class,251

CircularQueue class,114

class

Alarm class,149

Array class,106

Bag class,111

CircularQueue class,114

Class class,151

definition,6

Directory class,119

List class,124

MenuObject class,159

Message class,161

Method class,165

Monitor class,167

MutableBuffer class,169

Object class,172

OLEObject class,276

Queue class,129

RegularExpression class,177

Relation class,132

Set class,137

Stem class,183

Stream class,186

String class,203

subclasses,8

superclasses,8

Supplier class,233

Table class,139

types

abstract,84

metaclass,84

mixin, 83

object,83

WindowsClipboard class,235

WindowsEventLog class,236

WindowsManager class,244

WindowsObject class,246

WindowsProgramManager class,258, 268

Class class,151

CLASS method

of Object class,173

class methods,83

CLASS subkeyword

in a FORWARD instruction,49

in a METHOD directive,78

584

CLASSES_ROOT method

of WindowsRegistry class,269

CLASSES_ROOT= method

of WindowsRegistry class,269

clauses

assignment,28, 29

commands,28

continuation of,16

description,9, 29

directives,27

instructions,28

keyword instructions,28

labels,27

message instructions,28

null, 27

CLEAR method

of WindowsEventLog class,242

CLOSE method

of Stream class,188

of WindowsEventLog class,238

of WindowsRegistry class,269

CMD command environment,40

code page,9

codes, error,527

collating sequence using XRANGE,350

collection classes,105

COLLECTOR example program,480

colon

as a special character,15

as label terminators,27

in a label,27

COM events (WSH engine),510

COM object registration (WSH engine),509

combining string and positional patterns,428

comma

as a special character,15

as continuation character,16

in CALL instruction,43

in function calls,291

in parsing template list,41, 427

separator of arguments,43, 291

command

alternative destinations,36

clause,28

destination of,39

errors, trapping,441

issuing to host,36

COMMAND method,473

of Stream class,188

command prompt, invocation from (WSH

engine),507

comments,9

line comment,9

standard comment,9

Common Public License,575

COMPARE function

description,306

example,306

COMPARE method

of String class,214

comparisons

description,19

numeric, example,438

of numbers,20, 437

of strings,19, 214, 306

COMPLETED method

of Message class,162

compound

symbols,32

variable

description,32

setting new value,30

concatenation

abuttal,18

as concatenation operator,18

blank,18

of strings,18

operator

||,14, 18

conceptual overview of parsing,417

concurrency

alternating exclusive scope access,458

conditional,458

default,454

early reply,451

GUARD instruction,51, 458

guarded methods,458

message objects,453

object based,451

SETGUARDED method,166

SETUNGUARDED method,167, 458

UNGUARDED option,458

condition

action taken when not trapped,444

action taken when trapped,444

ANY, 441

585

definition,441

ERROR,441

FAILURE, 442

HALT, 442

information,45

described,446

LOSTDIGITS,442

NOMETHOD,442

NOSTRING,442

NOTREADY, 442

NOVALUE, 442

saved,45

saved during subroutine calls,45

SYNTAX, 443

trap information using CONDITION,306

trapping of,441

traps, notes,443

USER,443

CONDITION function

description,306

example,307

conditional

loops,45

phrase,522

conditional concurrency,458

conditions

raising of,64

CONNECT method

of WindowsRegistry class,270

console

reading from with PULL,63

writing to with SAY, 68

CONSOLETITLE method

of WindowsManager class,245

CONSOLETITLE= method

of WindowsManager class,245

constant symbols,29

content addressable storage,32

continuation

character,16

clauses,16

example,16

of data for display,68

CONTINUE subkeyword

in a FORWARD instruction,49

control variable,520

controlled loops,520

conversion

binary to hexadecimal,211, 299

character to decimal,213, 302

character to hexadecimal,213, 302

conversion functions,295

decimal to character,215, 308

decimal to hexadecimal,216, 309

formating numbers,219, 317

hexadecimal to binary,231, 349

hexadecimal to character,232, 349

hexadecimal to deciaml,232

hexadecimal to decimal,350

COORDINATES method

of WindowsObject class,248

COPIES function

description,308

example,308

COPIES method

of String class,215

COPY method

of Object class,173

of WindowsClipboard class,235

copying a string using COPIES,215, 308

count from stream,304

counting

words in a string,231, 348

COUNTSTR function

description,308

example,308, 308

COUNTSTR method

of String class,215

CPL,575

create external data queue,327

CREATE method

of WindowsRegistry class,270

CScript,500, 512

CURRENT method

of Monitor class,168

CURRENT_KEY method

of WindowsRegistry class,270

CURRENT_KEY= method

of WindowsRegistry class,270

CURRENT_USER method

of WindowsRegistry class,270

CURRENT_USER= method

of WindowsRegistry class,270

586

D
D2C function

description,308

example,308

implementation maxium,309

D2C method

of String class,215

D2X function

description,309

example,309

implementation maxium,309

D2X method

of String class,216

data

abstraction,8

encapsulation,4

modularization,2

objects,16

terms,17

DATATYPE function

description,309

example,311

DATATYPE method

of String class,217

date and version of the language processor,60

DATE function

description,311

example,312

Days option of DATE function,312

debug interactive,71

decimal

integer,433

to character conversion,215, 308

to hexadecimal conversion,216, 309

declaring objects (WSH engine),517

DECODEBASE64 method

of String class,218

default

character streams,473

concurrency,454

environment,36

search order for methods,89

selecting with ABBREV function,296

selecting with ABBREV method,210

DEFAULTNAME method

of Class class,152

of Object class,173

DEFINE method

of Class class,152

delayed state

description,441

of NOTREADY condition,481

DELETE method

of Class class,153

of MutableBuffer class,170

of WindowsRegistry class,271

DELETEDESKTOPICON method

of WindowsProgramManager class,262

DELETEGROUP method

of WindowsProgramManager class,264

DELETEITEM method

of WindowsProgramManager class,264

DELETEVALUE method

of WindowsRegistry class,271

deleting

part of a string,218, 314

words from a string,219, 314

DELSTR function

description,314

example,314

DELSTR method

of String class,218

DELWORD function

description,314

example,314

DELWORD method

of String class,219

derived names of variables,32

DESCRIPTION method

of Stream class,194

DESCRIPTION subkeyword

in a RAISE instruction,64

DESTINATION method

of Monitor class,168

DIFFERENCE method

of Directory class,122

of Table class,142

DIFFERNCE method

of Relation class,135

DIGITS function

description,315

example,315

DIGITS option of NUMERIC instruction,433

DIGITS subkeyword

in a NUMERIC instruction,56, 434

587

DIMENSION method

of Array class,108

directives

::CLASS,77

::METHOD, 78

::REQUIRES,80

::ROUTINE,81

Directory class,119

DIRECTORY function

description,315

example,315

DISABLE method

of WindowsObject class,250

DISPATCH method

of OLEObject class,277

division operator,19

dllfunctions,353

DO instruction

description,45

example,519

Domain Object Model (DOM),513

drop external function,327

DROP instruction

description,46

example,47

DROP keyword

in a RXSUBCOM command,493

duplicated features in Object Rexx and WSH,

516

dyadic operators,17

dynamic link library (RexxUtil),353

E
early reply,66, 451

elapsed-time clock

measuring intervals with,339

saved during subroutine calls,45

ELSE

as free standing clause,39

ELSE subkeyword

in an IF instruction,52

EMPTY method

of WindowsClipboard class,236

ENABLE method

of WindowsObject class,250

encapsulation of data,4

ENCODEBASE64 method

of String class,219

END

as free standing clause,39

END clause

specifying control variable,520

END subkeyword

in a DO instruction,45

in a SELECT instruction,68

ENDLOCAL function

description,315

example,316

engineering notation,437

ENGINEERING subkeyword

in a NUMERIC instruction,56

ENHANCED method

of Class class,153

ENTRY method

of Directory class,120

ENUMERATECHILDREN method

of WindowsObject class,252

environment,39

addresing of,40

default,40

determining current using ADDRESS

function,297

equal

operator,20

sign

in parsing templates,420, 421

to indicate assignment,14, 29

equality, testing of,19

error

definition,36

during execution of functions,293

during stream input and output,481

from commands,36

messages

list, 527

retrieving with ERRORTEXT,527

syntax,527

traceback after,72

trapping,441

error codes,527

error messages and codes,527

ERROR subkeyword

in a CALL instruction,42, 441, 446

in a RAISE instruction,64

588

in a SIGNAL instruction,69, 441, 446

ERRORTEXT function

description,316

example,316

European option of DATE function,312

evaluation of expressions,17

events (WSH engine),510

examples

::CLASS directive,78

::METHOD directive,79

::ROUTINE directive,81

ABBREV function,296

ABBREV method,210

ABS function,297

ABS method,210

ADDRESS function,297

ADDRESS instruction,40

ARG function,298

ARG instruction,41

arithmetic methods of String class,206

B2X function,299

B2X method,211

basic operator examples,435

BEEP function,300

BITAND function, 300

BITAND method,211

BITOR function,301

BITOR method,212

BITXOR function,301

BITXOR method,212

C2D function,302

C2D method,213

C2X function,302

C2X method,213

CALL instruction,44

CENTER function,303

CENTER method,214

CENTRE function,303

CENTRE method,214

CHANGESTR function,303

CHANGESTR method,214

CHARIN function,304

CHAROUT function,305

CHARS function,306

COLLECTOR program,480

combining positional pattern and parsing

into words,424

combining string and positional patterns,

428

combining string pattern and parsing into

words,423

COMMAND method

OPEN option,191

QUERY DATETIME option,193

QUERY EXISTS option,193

QUERY HANDLE option,193

SEEK option,192

COMPARE function,306

COMPARE method,215

comparison methods of String class,207

concatenation methods of String class,209

CONDITION function,307

continuation,16

COPIES function,308

COPIES method,215

COPY method,173

COUNTSTR function,308, 308

COUNTSTR method,215

D2C function,308

D2C method,216

D2X function,309

D2X method,216

DATATYPE function,311

DATATYPE method,218

DATE function,312

DECODEBASE64 method,218

DEFAULTNAME method,152

DEFINE method,153

DELETE method,153

DELSTR function,314

DELSTR method,219

DELWORD function,314

DELWORD method,219

DIGITS function,315

DIRECTORY function,315

DO instruction,519

DROP instruction,47

ENCODEBASE64 method,219

ENDLOCAL function,316

ENHANCED method,153

ERRORTEXT function,316

EXIT instruction,47

exponential notation,436

EXPOSE instruction,48

expressions,23

589

FILECOPY program,480

FILESPEC function,317

FORM function,317

FORMAT function,317

FORMAT method,220

FORWARD instruction,50

FUZZ function,318

GUARD instruction,51

ID method,154

IF instruction,52

INHERIT method,154

INSERT function,319

INSERT method,219

of List class,127

of String class,221

INTERPRET instruction,53, 53

ITERATE instruction,55

LASTPOS function,319

LASTPOS method,221

LEAVE instruction,55

LEFT function,319

LEFT method,222

LENGTH function,320

LENGTH method,222

line comments,10

LINEIN function, 320

LINEOUT function,322

LINES function,323

logical methods of String class,209

MAX function, 323

MAX method,223

message instructions,35

metaclass,85

METHOD method,155

METHODS method,156

MIN function, 324

MIN method,223

MIXINCLASS method,156

NEW method,157

NOP instruction,56

NOTIFY method,163

numeric comparisons,438

OBJECTNAME= method,174

of Alarm class,150

of Array class,111

of Bag class,114

of CircularQueue class,117

of Directory class,123

of Message class,164

of Monitor class,169

of program,480

of Relation class,136

of Supplier class,234

OPEN method,198

operator examples,435

OVERLAY function,324

OVERLAY method,224

PARSE instruction,60

parsing instructions,426

parsing multiple strings in a subroutine,427

period as a placeholder,419

POS function,325

POS method,224

PROCEDURE instruction,61

PULL instruction,63

PUSH instruction,64

QUERY method,199

QUEUE instruction,64

QUEUED function,325

RAISE instruction,66

RANDOM function,325

RegularExpression class,179, 181, 181,

182

REPLY instruction,67

REVERSE function,326

REVERSE method,224

RIGHT function,326

RIGHT method,225

RXFUNCADD function,326

RXFUNCDROP function,327

RXFUNCQUERY function,327

RXFUNCQUEUE function,328

RxMessageBox,358

SAY instruction,68

SEEK method,202

SELECT instruction,69

set operations

concepts,143

eliminating duplicates,144

principals,144

with duplicates,145

SETLOCAL function,329

SIGL, special variable,448

SIGN function,329

SIGN method,225

SIGNAL instruction,70

590

simple templates, parsing,417

SOURCELINE function,330

SPACE function,330

SPACE method,225

special characters,15

standard comments,10

START method,164

STREAM function,334, 335

STRIP function,338

STRIP method,226

SUBCLASS method,158

SUBSTR function,338

SUBSTR method,227

SUBWORD function,339

SUBWORD method,227

SUPERCLASSES method,158

SYMBOL function,339

SysCurPos,363

SysDriveInfo,364

SysDriveMap,365

SysDumpVariables,367

SysFileCopy,368

SysFileDelete,369

SysFileMove,369

SysFileSearch,370

SysFileSystemType,371

SysFileTree,374

SysGetDefaultPrinter,415

SysGetErrortext,378

SysGetFileDateTime,378

SysGetMessage,380

SysGetMessageX,381

SysGetPrinters,415

SysIni,382

SysMkDir,389

SysRmDir,397

SysSearchPath,398

SysSetDefaultPrinter,415

SysSetFileDateTime,399

SysSleep,402

SysStemCopy,403

SysStemDelete,404

SysStemSort,406

SysTempFileName,407

SysTextScreenRead,408

SysTextScreenSize,408

templates containing positional patterns,

421

templates containing string patterns,420

TIME function,341, 341

TRACE function,342

TRACE instruction,74

TRANSLATE function,343

TRANSLATE method,228

TRUNC function,343

TRUNC method,228

UNINHERIT method,159

USE instruction,75

using a variable as a positional pattern,425

using a variable as a string pattern,424

VALUE function, 344, 345

VAR function,346

VERIFY function,347

VERIFY method,229

WORD function,347

WORD method,230

WORDINDEX function,348

WORDINDEX method,230

WORDLENGTH function,348

WORDLENGTH method,230

WORDPOS function,348

WORDPOS method,230

WORDS function,349

WORDS method,231

X2B function,349

X2B method,231

X2C function,349

X2C method,232

X2D function,350, 350

X2D method,232

XRANGE function,350

exception conditions saved during subroutine

calls,44

exclusive OR operator,22

exclusive-ORing character strings together,

212, 301

execution

by language processor,1

of data,53

EXIT instruction

description,47

example,47

EXIT subkeyword

in a RAISE instruction,64

exponential notation

description,436

591

example,13, 436

exponentiation

description,436

operator,19

EXPOSE instruction

description,48

example,48

EXPOSE option of PROCEDURE instruction,

61

EXPOSE subkeyword

in a PROCEDURE instruction,60

exposed variable,61

expressions

evaluation,17

examples,23

parsing of,60

results of,17

tracing results of,73

external character streams,473

external data queue

counting lines in,325

creating and deleting queues,327

description,475

naming and quering queues,327

reading from with PULL,63

RXQUEUE function,327

writing to with PUSH,63

writing to with QUEUE,64

external functions

description,292

functions

description,??

search order,292

external routine,42

external subroutines,292

external variables

access with VALUE function,344

extracting

substring,227, 338

word from a string,229, 347

words from a string,231, 348

extracting words with SUBWORD,227

F
FAILURE subkeyword

in a CALL instruction,42, 442, 446

in a RAISE instruction,64

in a SIGNAL instruction,69, 442, 446

failure, definition,36

features duplicated in Object Rexx and WSH,

516

FIFO (first-in/first-out) stacking,64

file name, extension, path of program,59

FILECOPY example program,480

files,473

FILESPEC function

description,316

example,317

FIND method

of WindowsManager class,245

FINDCHILD method

of WindowsObject class,251

finding

mismatch using COMPARE,214, 306

string in another string,224, 324

string length,222, 320

word length,230, 348

FINDITEM method

of MenuObject class,161

FINDSUBMENU method

of MenuObject class,160

FIRST method

of Array class,108

of List class,126

of WindowsObject class,251

FIRSTCHILD method

of WindowsObject class,252

FIRSTITEM method

of List class,126

flag, tracing

>>>, 74

>.>, 74

>C>, 75

>F>, 75

>L>, 75

>M>, 75

>O>, 75

>P>, 75

>V>, 75

-, 74

592

+++, 74

flow of control

unusual, with CALL,441

unusual, with SIGNAL,441

with CALL and RETURN construct,42

with DO construct,45

with IF construct,52

with SELECT construct,68

FLUSH method

of Stream class,195

of WindowsRegistry class,271

FOCUSITEM method

of WindowsObject class,250

FOCUSNEXTITEM method

of WindowsObject class,250

FOCUSPREVIOUSITEM method

of WindowsObject class,250

FOR phrase of DO instruction,46

FOR subkeyword

in a DO instruction,45

FOREGROUNDWINDOW method

of WindowsManager class,245

FOREVER phrase of DO instruction,45

FOREVER repetitor on DO instruction,46

FOREVER subkeyword

in a DO instruction,45, 519, 522

FORM function

description,317

example,317

FORM option of NUMERIC instruction,57

FORM subkeyword

in a NUMERIC instruction,56, 437

FORMAT function

description,317

example,317

FORMAT method

of String class,219

formatting

numbers for display,219, 317

numbers with TRUNC,228, 343

of output during tracing,74

text centering,214, 303

text left justification,221, 319

text right justification,225, 326

text spacing,225, 330

FORWARD instruction

description,49

example,50

functions,291

ABBREV, 296

ABS, 297

ADDRESS,297

ARG, 298

B2X, 299

BEEP,300

BITAND, 300

BITOR, 301

BITXOR, 301

built-in, 295

built-in, description,296

C2D,302

C2X, 302

call, definition,291

calling,291

CENTER,303

CENTRE,303

CHANGESTR,303

CHARIN, 303

CHAROUT,304

CHARS,305

COMPARE,306

CONDITION, 306

COPIES,308

COUNTSTR,308

D2C,308

D2X, 309

DATATYPE, 309

DATE, 311

definition,291

DELSTR,314

DELWORD,314

description,291

DIGITS, 315

DIRECTORY,315

ENDLOCAL, 315

ERRORTEXT,316

external,292

FILESPEC,316

forcing built-in or external reference,292

FORM,317

FORMAT, 317

FUZZ, 318

INSERT,318

internal,292

LASTPOS,319

LEFT, 319

593

LENGTH, 320

LINEIN, 320

LINEOUT, 321

LINES, 323

logical bit operations,300, 301, 301

MAX, 323

MIN, 324

numerice arguments of,??

OVERLAY, 324

POS,324

QUEUED,325

RANDOM, 325

return from,67

REVERSE,326

RIGHT, 326

RXFUNCADD, 326

RXFUNCDROP,327

RXFUNCQUERY,327

RXQUEUE,327

SETLOCAL,329

SIGN,329

SOURCELINE,330

SPACE,330

STREAM,330

STRIP,337

SUBSTR,338

SUBWORD,338

SYMBOL, 339

TIME, 339

TRACE,342

TRANSLATE, 342

TRUNC,343

USERID,343

VALUE, 344

VAR, 346

variables in,60

VERIFY, 347

WORD,347

WORDINDEX, 347

WORDLENGTH,348

WORDPOS,348

WORDS,348

X2B, 349

X2C, 349

X2D, 350

XRANGE, 350

FUZZ

controlling numeric comparison,437

instruction,57, 437

FUZZ function

description,318

example,318

FUZZ subkeyword

in a NUMERIC instruction,56, 437

G
general concepts,1, 39

GETBUFFERSIZE method

of MutableBuffer class,170

GETCONSTANT method

of OLEObject class,278

GETKNOWNEVENTS method

of OLEObject class,278

GETKNOWNMETHODS method

of OLEObject class,279

GETNUMBER method

of WindowsEventLog class,243

GETOBJECT method

of OLEObject class,281

GETOUTPARAMETERS method

of OLEObject class,281

getting value with VALUE,344

GETVALUE method

of WindowsRegistry class,271

global variables

access with VALUE function,344

GOTO, unusual,441

greater than operator,20

greater than operator (>), 20

greater than or equal operator,20

greater than or equal to operator (>=), 20

greater than or less than operator,20

greater than or less than operator (><), 20

group, DO,519

grouping instructions to run repetitively,45

GUARD instruction

description,51

example,51

guarded methods,458

GUARDED subkeyword

in a METHOD directive,78

594

H
HALT subkeyword

in a CALL instruction,42, 442, 446

in a SIGNAL instruction,69, 442, 446

halt, trapping,442

HANDLE method

of WindowsObject class,248

HASENTRY method

of Directory class,120

HASINDEX method

of Array class,108

of Bag class,113

of Directory class,120

of List class,126

of Queue class,130

of Relation class,133

of Set class,138

of Table class,141

HASITEM method

of Relation class,134

HASMETHOD method

of Object class,173

hexadecimal

checking with DATATYPE,217, 309

digits,12

strings

description,12

implementation maximum,12

to binary, converting with X2B,231, 349

to character, converting with X2C,232, 349

to decimal, converting with X2D,232, 350

HIDE method

of WindowsObject class,249

host commands

issuing commands to underlying operating

system,36

hours calculated from midnight,340

I
ID method

of Class class,154

of WindowsObject class,248

IDOF method

of MenuObject class,160

IF instruction

description,52

example,52

implementation maximum

binary strings,13

D2C function,309

D2C method,216

D2X function,309

D2X method,216

hexadecimal strings,12

literal strings,12

numbers,14

TIME function,342

implied semicolons,15

imprecise numeric comparison,437

inclusive OR operator,21

indentation during tracing,74

INDEX method

of Relation class,134

of Supplier class,234

indirect evaluation of data,53

inequality, testing of,20

infinite loops,45, 520

information hiding,4

INHERIT method

of Class class,154

INHERIT subkeyword

in a CLASS directive,77

inheritance,8

INIT method

of Alarm class,150

of CircularQueue class,115

of Class class,155

of Message class,162

of Monitor class,168

of MutableBuffer class,170

of Object class,174

of OLEObject class,277

of RegularExpression class,180

of Stream class,195

of WindowsEventLog class,237

of WindowsProgramManager class,264

of WindowsRegistry class,272

initialization

of arrays,30

of compound variables,30

input and output

functions

CHARIN, 303

595

CHAROUT,304

CHARS,305

LINEIN, 320

LINEOUT, 321

LINES, 323

STREAM,330

model,473

streams,473

input from the user,473

input object,289

input streams,474

input to PULL from STDIN,63

input to PULL from the keyboard,63

input, errors during,481

INSERT function

description,318

example,319

INSERT method

of List class,126

of MutableBuffer class,170

of String class,221

inserting a string into another,221, 318

instance methods,83

instances

definition,6

instructions

ADDRESS,39

ARG, 41

CALL, 42

definition,28

DO, 45

DROP,46

EXIT, 47

EXPOSE,48

FORWARD,49

GUARD, 51, 458

IF, 52

INTERPRET,53

ITERATE, 54

keyword,28

description,39

LEAVE, 55

message,28, 35

NOP,56

NUMERIC, 56

PARSE,58

parsing, summary,425

PROCEDURE,60

PULL, 63

PUSH,63

QUEUE,64

RAISE,64

REPLY,66

RETURN,67

SAY, 68

SELECT,68

SIGNAL, 69

TRACE,71

USE,75

integer

arithmetic,433

division

description>, 433, 435

integer division operator,19

interactive debug,71

internal

functions

return from,67

variables in,60

routine,42

Internet Explorer events (WSH engine),511

INTERPRET instruction

description,53

example,53, 53

interpretive execution of data,53

INTERSECTION method

of Directory class,123

of Relation class,135

of Table class,142

invocation as a COM object (WSH engine),

509

invocation by browser (WSH engine),500

invocation from a command prompt (WSH

engine),507

invoking

built-in functions,42

routines,42

invoking a script (WSH engine),509

ISDATAAVAILABLE method

of WindowsClipboard class,236

ISMENU method

of MenuObject class,159

of WindowsObject class,258

ITEM method

of Supplier class,234

ITEMS method

596

of Array class,109

of Directory class,121

of List class,127

of MenuObject class,159

of Queue class,130

of Relation class,134

of Set class,138

of Table class,141

ITERATE instruction

description,54

example,55

J
JScript,513

justification, text right, RIGHT function,326

justification, text right, RIGHT method,225

K
keyword

conflict with commands,487

description,39

mixed case,39

reservation of,487

L
label

as target of CALL,42

as target of SIGNAL,69

description,27

duplicate,70

in INTERPRET instruction,53

search algorithm,69

language

processor date and version,60

processor execution,1

structure and syntax,9

Language (local) option of DATE function,

312

LAST method

of Array class,109

of List class,127

of WindowsObject class,252

LASTITEM method

of List class,127

LASTPOS function

description,319

example,319

LASTPOS method

of String class,221

leading

blank removal with STRIP method,226

leading blank removal with STRIP

function,337

zeros

adding with RIGHT function,326

adding with RIGHT method,225

removing with STRIP function,337

removing with STRIP method,226

LEAVE instruction

description,55

example,55

leaving your program,47, 47

LEFT function

description,319

example,319

LEFT method

of String class,221

LENGTH function

description,320

example,320

LENGTH method

of MutableBuffer class,171

of String class,222

less than operator (<), 20

less than or equal to operator (>=), 20

less than or greater than operator (<>), 20

License, Common Public,575

License, Open Object Rexx,575

LIFO (last-in, first-out) stacking,63

line input and output,473

LINEIN function

description,320

example,320

LINEIN method

of Stream class,195

role in input and output,474

LINEIN option of PARSE instruction,59

LINEIN subkeyword

in a PARSE instruction,58, 425

597

LINEOUT function

description,321

example,322

LINEOUT method

of Stream class,195

role in input and output,475

lines

from a program retrieved with

SOURCELINE,330

from stream,59

LINES function

description,323

example,323

from stream,320

remaining in stream,323

LINES method

of Stream class,196

role in input and output,474

List class,124

LIST method

of WindowsRegistry class,272

LISTVALUES method

of WindowsRegistry class,272

literal

description,11

implementation maximum,12

patterns,419

LOAD keyword

in a RXSUBCOM command,494

LOAD method

of WindowsRegistry class,272

LOCAL_MACHINE method

of WindowsRegistry class,273

LOCAL_MACHINE= method

of WindowsRegistry class,273

locating

string in another string,224, 324

word in another string,229, 347

logical

operations,21

logical bit operations

BITAND, 300

BITOR, 301

BITXOR, 301

logical NOT character,14

logical OR operator,14

loops

active,55

execution model,523, 524

modification of,54

over collections,521

repetitive,519

termination of,55

LOSTDIGITS subkeyword

in a CALL instruction,446

in a SIGNAL instruction,69, 446

LOSTFIGITS subkeyword

in a SIGNAL instruction,442

LOWER subkeyword

in a PARSE instruction,58, 425

lowercase translation

with PARSE LOWER,58

M
MAKEARRAY method

of Array class,109

of Bag class,113

of CircularQueue class,115

of Directory class,121

of List class,128

of Queue class,130

of Relation class,134

of Set class,138

of Stem class,185

of Stream class,196

of String class,222

of Table class,141

of WindowsClipboard class,235

MAKESTRING method

of Array class,109

of String class,223

MATCH method

of RegularExpression class,180

MAX function

description,323

example,323

MAX method

of String class,223

MAXIMIZE method

of WindowsObject class,249

MENU method

of WindowsObject class,257

MenuObject class,159

Message class,161

598

message instructions,28, 35

message sequence instructions,35

MESSAGE subkeyword

in a FORWARD instruction,49

message-send operator (~),5

messages,4

messages to objects

operator as message,17

~, using,26

~~, using,26

messages, error,527

METACLASS method

of Class class,155

METACLASS subkeyword

in a CLASS directive,77

metaclasses,84

method

%, 205

&, 208

&&, 209

>, 206

>>, 208

>>=, 208

><

of Object class,173

of String class,206

>=, 206

<, 206

<>

of Object class,173

of String class,206

<<, 208

<<=, 208

<=, 207

*, 205

**, 206

+, 205

-, 205

/, 205

//, 205

=

of Object class,173

of String class,206

==

of Object class,173

of String class,207

ABBREV method

of String class,210

ABS method

of String class,210

ADDDESKTOPICON method

of WindowsProgramManager class,259

ADDGROUP method

of WindowsProgramManager class,261

ADDITEM method

of WindowsProgramManager class,261

ADDSHORTCUT method

of WindowsProgramManager class,260

ALLAT method

of Relation class,133

ALLINDEX method

of Relation class,133

APPEND method

of MutableBuffer class,170

arithmetic methods

of String class,205

ARRAYIN method

of Stream class,187

ARRAYOUT method

of Stream class,187

ASSOCWINDOW method

of WindowsObject class,248

AT method

of Array class,108

of Directory class,120

of List class,126

of Queue class,130

of Relation class,133

of Set class,138

of Table class,140

AVAILABLE method

of Supplier class,234

B2X method

of String class,211

BASECLASS method

of Class class,152

BITAND method

of String class,211

BITOR method

of String class,212

BITXOR method

of String class,212

C2D method

of String class,213

C2X method

of String class,213

599

CANCEL method

of Alarm class,150

CENTER method

of String class,214

CENTRE method

of String class,214

CHANGESTR method

of String class,214

CHARIN method

of Stream class,187

CHAROUT method

of Stream class,187

CHARS method

of Stream class,188

CHILDATPOSITION method

of WindowsObject class,251

CLASS method

of Object class,173

CLASSES_ROOT method

of WindowsRegistry class,269

CLASSES_ROOT= method

of WindowsRegistry class,269

CLEAR method

of WindowsEventLog class,242

CLOSE method

of Stream class,188

of WindowsEventLog class,238

of WindowsRegistry class,269

COMMAND method

of Stream class,188

COMPARE method

of String class,214

comparison methods

of String class,206

COMPLETED method

of Message class,162

concatenation methods

of String class,209

CONNECT method

of WindowsRegistry class,270

CONSOLETITLE method

of WindowsManager class,245

CONSOLETITLE= method

of WindowsManager class,245

COORDINATES method

of WindowsObject class,248

COPIES method

of String class,215

COPY method

of Object class,173

of WindowsClipboard class,235

COUNTSTR method

of String class,215

CREATE method

of WindowsRegistry class,270

creation,78

CURRENT method

of Monitor class,168

CURRENT_KEY method

of WindowsRegistry class,270

CURRENT_KEY= method

of WindowsRegistry class,270

CURRENT_USER method

of WindowsRegistry class,270

CURRENT_USER= method

of WindowsRegistry class,270

D2C method

of String class,215

D2X method

of String class,216

DATATYPE method

of String class,217

DECODEBASE64 method

of String class,218

DEFAULTNAME method

of Class class,152

of Object class,173

DEFINE method

of Class class,152

definition,5

DELETE method

of Class class,153

of MutableBuffer class,170

of WindowsRegistry class,271

DELETEDESKTOPICON method

of WindowsProgramManager class,262

DELETEGROUP method

of WindowsProgramManager class,264

DELETEITEM method

of WindowsProgramManager class,264

DELETEVALUE method

of WindowsRegistry class,271

DELSTR method

of String class,218

DELWORD method

of String class,219

600

DESCRIPTION method

of Stream class,194

DESTINATION method

of Monitor class,168

DIFFERENCE method

of Directory class,122

of Relation class,135

of Table class,142

DIMENSION method

of Array class,108

DISABLE method

of WindowsObject class,250

DISPATCH method

of OLEObject class,277

EMPTY method

of WindowsClipboard class,236

ENABLE method

of WindowsObject class,250

ENCODEBASE64 method

of String class,219

ENHANCED method

of Class class,153

ENTRY method

of Directory class,120

ENUMERATECHILDREN method

of WindowsObject class,252

FINDCHILD method

of WindowsObject class,251

FINDITEM method

of MenuObject class,161

FINDSUBMENU method

of MenuObject class,160

FIRST method

of Array class,108

of List class,126

of WindowsObject class,251

FIRSTCHILD method

of WindowsObject class,252

FIRSTITEM method

of List class,126

FLUSH method

of Stream class,195

of WindowsRegistry class,271

FOCUSITEM method

of WindowsObject class,250

FOCUSNEXTITEM method

of WindowsObject class,250

FOCUSPREVIOUSITEM method

of WindowsObject class,250

FOREGROUNDWINDOW method

of WindowsManager class,245

FORMAT method

of String class,219

GETBUFERSIZE method

of MutableBuffer class,170

GETCONSTANT

of OLEObject class,278

GETKNOWNEVENTS method

of OLEObject class,278

GETKNOWNMETHODS method

of OLEObject class,279

GETNUMBER method

of WindowsEventLog class,243

of WindowsManager class,245

GETOBJECT method

of OLEObject class,281

GETOUTPARAMETERS method

of OLEObject class,281

GETVALUE method

of WindowsRegistry class,271

HANDLE method

of WindowsObject class,248

HASENTRY method

of Directory class,120

HASINDEX method

of Array class,108

of Bag class,113

of Directory class,120

of List class,126

of Queue class,130

of Relation class,133

of Set class,138

of Table class,141

HASITEM method

of Relation class,134

HASMETHOD method

of Object class,173

HIDE method

of WindowsObject class,249

ID method

of Class class,154

of WindowsObject class,248

IDOF method

of MenuObject class,160

INDEX method

of Relation class,134

601

of Supplier class,234

INHERIT method

of Class class,154

INIT method

of Alarm class,150

of CircularQueue class,115

of Class class,155

of Message class,162

of Monitor class,168

of MutableBuffer class,170

of Object class,174

of OLEObject class,277

of RegularExpression class,180

of Stream class,195

of WindowsEventLog class,237

of WindowsProgramManager class,264

of WindowsRegistry class,272

INSERT method

of List class,126

of MutableBuffer class,170

of String class,221

INTERSECTION method

of Directory class,123

of Relation class,135

of Table class,142

ISDATAAVAILABLE method

of WindowsClipboard class,236

ISMENU method

of MenuObject class,159

of WindowsObject class,258

ITEM method

of Supplier class,234

ITEMS method

of Array class,109

of Directory class,121

of List class,127

of MenuObject class,159

of Queue class,130

of Relation class,134

of Set class,138

of Table class,141

LAST method

of Array class,109

of List class,127

of WindowsObject class,252

LASTITEM method

of List class,127

LASTPOS method

of String class,221

LEFT method

of String class,221

LENGTH method

of MutableBuffer class,171

of String class,222

LINEIN method

of Stream class,195

LINEOUT method

of Stream class,195

LINES method

of Stream class,196

LIST method

of WindowsRegistry class,272

LISTVALUES method

of WindowsRegistry class,272

LOAD method

of WindowsRegistry class,272

LOCAL_MACHINE method

of WindowsRegistry class,273

LOCAL_MACHINE= method

of WindowsRegistry class,273

logical methods

of String class,208

MAKEARRAY method

of Array class,109

of Bag class,113

of CircularQueue class,115

of Directory class,121

of List class,128

of Queue class,130

of Relation class,134

of Set class,138

of Stem class,185

of Stream class,196

of String class,222

of Table class,141

of WindowsClipboard class,235

MAKESTRING method

of Array class,109

of String class,223

MATCH method

of RegularExpression class,180

MAX method

of String class,223

MAXIMIZE method

of WindowsObject class,249

MENU method

602

of WindowsObject class,257

METACLASS method

of Class class,155

METHOD method

of Class class,155

METHODS method

of Class class,155

MIN method

of String class,223

MINIMIZE method

of WindowsObject class,249

MIXINCLASS method

of Class class,156

MOVETO method

of WindowsObject class,250

NEW method

of Array class,107

of Class class,157

of Method class,166

of Object class,172

of Stem class,184

of String class,205

of Supplier class,234

NEWFILE method

of Method class,166

NEXT method

of Array class,109

of List class,128

of Supplier class,234

of WindowsObject class,251

NOTIFY method

of Message class,163

OBJECTNAME method

of Object class,174

OBJECTNAME= method

of Object class,174

OF method

of Array class,107

of Bag class,112

of CircularQueue class,115

of List class,125

of Set class,138

OPEN method

of Stream class,196

of WindowsEventLog class,237

of WindowsRegistry class,273

OVERLAY method

of MutableBuffer class,171

of String class,224

OWNER method

of WindowsObject class,252

PARSE method

of RegularExpression class,180

PASTE method

of WindowsClipboard class,236

PEEK method

of Queue class,131

POS method

of RegularExpression class,182

of String class,224

POSITION method

of RegularExpression class,183

of Stream class,198

prefix +,206

prefix -,??

PREVIOUS method

of Array class,109

of List class,128

of WindowsObject class,251

private,91

PROCESSITEM method

of MenuObject class,161

PROCESSMENUCOMMAND method

of WindowsManager class,246

of WindowsObject class,258

public,91

PULL method

of Queue class,131

PUSH method

of CircularQueue class,116

of Queue class,131

PUSHBUTTON method

of WindowsObject class,256

PUSHBUTTONINWINDOW method

of WindowsManager class,246

PUT method

of Array class,110

of Bag class,113

of Directory class,121

of List class,128

of Queue class,131

of Relation class,134

of Set class,139

of Table class,141

QUALIFY method

of Stream class,199

603

QUERY

of Stream class,199

QUERY method

of WindowsRegistry class,274

QUERYMIXINCLASS method

of Class class,157

QUEUE method

of CircularQueue class,116

of Queue class,131

READ method

of WindowsEventLog class,238

REMOVE method

of Array class,110

of Directory class,121

of List class,128

of Queue class,131

of Relation class,134

of Set class,139

of Table class,141

REMOVEITEM method

of Relation class,135

REPLACE method

of WindowsRegistry class,274

REQUEST method

of Object class,174

of Stem class,185

RESIZE method

of CircularQueue class,116

of WindowsObject class,249

RESTORE method

of WindowsObject class,249

of WindowsRegistry class,275

RESULT method

of Message class,163

REVERSE method

of String class,224

RIGHT method

of String class,225

RUN method

of Object class,175

SAVE method

of WindowsRegistry class,275

SAY method

of Stream class,201

scope,88

search order

changing,89

SECTION method

of Array class,110

of List class,128

SEEK method

of Stream class,201

selection

search order,89

SEND method

of Message class,164

SENDCHAR method

of WindowsObject class,257

SENDCOMMAND method

of WindowsObject class,253

SENDKEY method

of WindowsObject class,256

SENDKEYDOWN method

of WindowsObject class,257

SENDKEYUP method

of WindowsObject class,257

SENDMENUCOMMAND method

of WindowsObject class,253

SENDMESSAGE method

of WindowsObject class,253

SENDMOUSECLICK method

of WindowsObject class,253

SENDSYSCOMMAND method

of WindowsObject class,255

SENDTEXT method

of WindowsObject class,257

SENDTEXTTOWINDOW method

of WindowsManager class,245

SETBUFERSIZE method

of MutableBuffer class,171

SETENTRY method

of Directory class,121

SETGUARDED method

of Method class,166

SETMETHOD method

of Directory class,121

of Object class,176

SETPRIVATE method

of Method class,166

SETPROTECTED method

of Method class,167

SETSECURITYMANAGER method

of Method class,167

SETUNGUARDED method

of Method class,167

SETVALUE method

604

of WindowsRegistry class,275

SHOWGROUP method

of WindowsProgramManager class,265

SIGN method

of String class,225

SIZE method

of Array class,110

of CircularQueue class,116

SOURCE method

of Method class,167

SPACE method

of String class,225

START method

of Message class,164

of Object class,176

STATE method

of Stream class,203

of WindowsObject class,249

STRING method

of CircularQueue class,117

of MutableBuffer class,171

of Object class,177

of String class,226

STRIP method

of String class,226

SUBCLASS method

of Class class,157

SUBCLASSES method

of Class class,158

SUBMENU method

of MenuObject class,160

SUBSET method

of Directory class,123

of Relation class,135

of Table class,142

SUBSTR method

of MutableBuffer class,171

of String class,227

SUBWORD method

of String class,227

SUPERCLASSES method

of Class class,158

SUPPLIER method

of Array class,110

of Bag class,113

of CircularQueue class,117

of Directory class,122

of List class,129

of Queue class,132

of Relation class,135

of Set class,139

of Stream class,203

of Table class,141

SYSTEMMENU method

of WindowsObject class,257

TEXTOF(id) method

of MenuObject class,160

TEXTOF(position) method

of MenuObject class,160

TITLE method

of WindowsObject class,248

TITLE= method

of WindowsObject class,248

TOFOREGROUND method

of WindowsObject class,250

TRANSLATE method

of String class,227

TRUNC method

of String class,228

UNINHERIT method

of Class class,158

UNION method

of Directory class,123

of Relation class,136

of Table class,142

UNKNOWN method

of Directory class,122

of Monitor class,169

of OLEObject class,282

of Stem class,186

UNLOAD method

of WindowsRegistry class,275

UNSETMRTHOD method

of Object class,177

USERS method

of WindowsRegistry class,276

USERS= method

of WindowsRegistry class,276

VERIFY method

of String class,229

WCLASS method

of WindowsObject class,248

WINDOWATPOSITION method

of WindowsManager class,245

WORD method

of String class,229

605

WORDINDEX method

of String class,230

WORDLENGTH method

of String class,230

WORDPOS method

of String class,230

WORDS method

of String class,231

WRITE method

of WindowsEventLog class,240

X2B method

of String class,231

X2C method

of String class,232

X2D method

of String class,232

XOR method

of Directory class,123

of Relation class,136

of Table class,142

[] method

of Array class,107

of Bag class,113

of Directory class,120

of List class,125

of Queue class,130

of Relation class,133

of Set class,138

of Stem class,185

of Table class,140

[]= method

of Array class,108

of Bag class,113

of Directory class,120

of List class,126

of Queue class,130

of Relation class,133

of Set class,138

of Stem class,185

of Table class,140

\, 209

\>, 207

\>>, 208

\<, 207

\<<, 208

\=

of Object class,173

of String class,206

\==

of Object class,173

of String class,207

|, 209

||,209

Method class,165

METHOD method

of Class class,155

METHODS method

of Class class,155

Microdoft Internet Explorer events (WSH

engine),511

Microsoft Internet Explorer,500, 512

MIN function

description,324

example,324

MIN method

of String class,223

MINIMIZE method

of WindowsObject class,249

minutes calculated from midnight,340

mixin classes,83

MIXINCLASS method

of Class class,156

MIXINCLASS subkeyword

in a CLASS directive,77

model of input and output,473

modularizing data,2

monitor,463

Monitor class,167

Month option of DATE function,312

MOVETO method

of WindowsObject class,250

multiple inheritance,8

multiplication operator,19

MutableBuffer class,169

606

N
NAME subkeyword

in a CALL instruction,42

in a SIGNAL instruction,69

name, definition,39

names

of functions,291

of programs,59

of subroutines,42

of variables,13

negation

of logical values,19, 22

NEW method

of Array class,107

of Class class,157

of Method class,166

of Object class,172

of Stem class,184

of String class,205

of Supplier class,234

NEWFILE method

of Method class,166

NEXT method

of Array class,109

of List class,128

of Supplier class,234

of WindowsObject class,251

nibbles,12

NOMETHOD subkeyword

in a SIGNAL instruction,69, 442, 446

NOP instruction

description,56

example,56

Normal option of DATE function,312

NOSTRING subkeyword

in a SIGNAL instruction,69, 442, 446

not equal operator,20

not greater than operator,21

not less than operator,20

NOT operator,14, 22

notation

engineering,436

exponential, example,436

scientific,436

Notices,573

NOTIFY method

of Message class,163

NOTREADY condition

condition trapping,481

reaised by stream errors,481

NOTREADY subkeyword

in a CALL instruction,42, 447

in a SIGNAL instruction,69, 442, 447

NOVALUE condition

not raised by VALUE function,346

use of,487

NOVALUE subkeyword

in a SIGNAL instruction,69, 442, 447

null

clauses,27

strings,11

numbers

arithmetic on,19, 433, 434

checking with DATATYPE,217, 309

comparison of,19, 437

description,14, 433

formatting for display,219, 317

implementation maximum,14

in DO instruction,46

truncating,228, 343

use in the language,438

numbers for display,219, 317

numeric

comparisons, example,438

options in TRACE,73

NUMERIC instruction

description,56, 56

DIGITS option,57

FORM option,57, 436

FUZZ option,57

settings saved during subroutine calls,44

O
object,16

as data value,17

definition,3

kinds of,3

Object class,172

object classes,7, 83

object method,83

Object Rexx Sandbox,516

object variable pool,48, 454

object-based concurrency,451

607

object-oriented programming,1

OBJECTNAME method

of Object class,174

OBJECTNAME= method

of Object class,174

objects, declaring (WSH engine),517

OF method

of Array class,107

of Bag class,112

of CircularQueue class,115

of LIST class,125

of Set class,138

OFF subkeyword

in a CALL instruction,42

in a SIGNAL instruction,69

in an GUARD instruction,51

OLEObject class,276

ON subkeyword

in a CALL instruction,42

in a SIGNAL instruction,69

in an GUARD instruction,51

ooRexx License,575

OPEN method

of Stream class,196

of WindowsEventLog class,237

of WindowsRegistry class,273

Open Object Rexx License,575

operations

tracing results,71

operator

arithmetic

description,17, 433, 434

list, 19

as message,17

as special characters,14

characters,14

comparison,19, 437

concatenation,18

examples,436

logical,21

precedence (priorities) of,22

options

alphabetical character word options,72

numeric in TRACE,73

OR, logical,21

Ordered option of DATE function,312

ORing character together,212, 301

OTHERWISE

as free standing clause,39

OTHERWISE subkeyword

in a SELECT instruction,68

output

errors during,481

object,289

to the user,473

OVER subkeyword

in a DO instruction,45, 521

overflow, arithmetic,438

OVERLAY function

description,324

example,324

OVERLAY method

of MutableBuffer class,171

of String class,224

overlaying a string onto another,224, 324

overview of parsing,430

OWNER method

of WindowsObject class,252

P
packing a string with X2C,232, 349

pad character, definition,296

page, code,9

parentheses

adjacent to blanks,15

in expressions,22

in function calls,291

in parsing templates,424

PARSE instruction

description,58

example,60

PARSE LINEIN method

role in input and output,474

PARSE method

of RegularExpression class,180

PARSE PULL method

role in input and output,474

parsing,421

advanced topics,427

combining patterns and parsing into words

string,423

combining string and positional patterns,

428

conceptual overview,429

608

description,417, 430

equal sign,421

examples

combining positional patterns with

parsing into words,424

combining string and positional patterns,

428

combining string pattern and parsing

into words,423

parsing instructions,426

parsing multiple strings in a subroutine,

427

period as a placeholder,419

simple template,417

templates containing positional patterns,

421

templates containing string patterns,420

using a variable as a positional pattern,

425

using a variable as a string pattern,424

into words,417

patterns

positional,417, 420

string,417, 419

word parsing, conceptual overview,432

period as placeholder,419

positional patterns,417

absolute,420

variable,425

selecting words,417

several assignments,424

several strings,427

source string,417

special case,428

steps,430

string patterns,417

literal string patterns,419

variable string patterns,424

summary of instructions,425

templates

in ARG instruction,41

in PARSE instruction,58

in PULL instruction,63

treatment of blanks,418

UPPER, use of,425

variable patterns

string,424

word parsing

conceptual overview,432

description and examples,417

PASTE method

of WindowsClipboard class,236

patterns in parsing

combined with parsing into words,423

conceptual overview,430, 431, 432

positional,417, 420

string,417, 419

PEEK method

of Queue class,131

period

as placeholder in parsing,419

causing substitution in variable names,32

in numbers,433

permanent command destination change,39

persistent input and output,473

polymorphism,5

POS function

description,324

example,325

POS method

of RegularExpression class,182

of String class,224

position

last occurrence of a string,221, 319

POSITION method

of RegularExpression class,183

of Stream class,198

positional patterns

absolute,419

description,417

relative,421

variable,425

power operator,19

powers of ten in numbers,14

precedence of operators,22

prefix + method,209

prefix + operator,19

prefix - method,209

prefix - operator,19

prefix \ operator,20, 21

presumed command destinations,39

PREVIOUS method

of Array class,109

of List class,128

of WindowsObject class,251

private method,91

609

PRIVATE subkeyword

in a METHOD directive,78

PROCEDURE instruction

description,60

example,61

PROCESSITEM method

of MenuObject class,161

PROCESSMENUCOMMAND method

of WindowsManager class,246

of WindowsObject class,258

programming restrictions,1

programs

arguments to,41

examples,480

retrieving lines with SOURCELINE,330

retrieving name of,59

programs without source,497

PROPAGATE subkeyword

in a RAISE instruction,64

properties (WSH engine),515

PROTECTED subkeyword

in a METHOD directive,78

protecting variables,60

pseudo random number RANDOM function,

325

public class

.METHOD class,286

public method,91

public object,285

.ALARM object, 285

.ARRAY object,285

.BAG object,285

.CLASS object,285

.DIRECTORY object,285

.ENVIRONMENT object,286

.ERROR object,??, 288

.FALSE object,286

.INPUT object,286, 289

.LIST object,286

.LOCAL object,286, 287

.MESSAGE object,286

.METHOD object,289

.METHODS object,286

.MONITOR object,286

.NIL object,286, 289

.OBJECT object,286

.OLEBJECT object,286

.OUTPUT object,286, 289

.QUEUE object,286

.RELATION object,287

.RS object,??, 290

.SET object,287

.STEM object,287

.STREAM object,287

.STRING object,287

.SUPPLIER object,287

.TABLE object,287

.TRUE object,287

PUBLIC subkeyword

in a CLASS directive,77

in a ROUTINE directive,81

PULL instruction

description,63

example,63

PULL method

of Queue class,131

role in input and output,474

PULL option of PARSE instruction,59

PULL subkeyword

in a PARSE instruction,58, 425

in an PARSE instruction,63

PUSH instruction

description,63

example,64

PUSH method

of CircularQueue class,116

of Queue class,131

PUSHBUTTON method

of WindowsObject class,256

PUSHBUTTONINWINDOW method

of WindowsManager class,246

PUT method

of Array class,110

of Bag class,113

of Directory class,121

of List class,128

of Queue class,131

of Relation class,134

of Set class,139

of Table class,141

610

Q
QUALIFY method

of Stream class,199

query external function,327

QUERY keyword

in a RXSUBCOM command,494

QUERY method

of Stream class,199

of WindowsRegistry class,274

QUERYMIXINCLASS method

of Class class,157

queue

creating and deleting queues,327

named,475

naming and quering,327

RXQUEUE function,327

session,475

unnamed,475

Queue class,129

QUEUE instruction

description,64

example,64

role in input and output,475

Queue interface from Rexx programs,327

QUEUE method

of CircularQueue class,116

of Queue class,131

QUEUED function

description,325

example,325

role in input and output,476

R
RAISE instruction

description,64

example,66

RANDOM function

description,325

example,325

random number RANDOM function,325

RC (return code)

not set during interactive debug,483

set by commands,36

special variable,449, 489

RC special variable

description,489

READ method

of WindowsEventLog class,238

read position in a stream,474

recursive call,44, 292

register external functions,326

REGISTER keyword

in a RXSUBCOM command,492

RegularExpression class,177

Relation class,132

relative positional pattern

positional patterns

relative,421

remainder

description>, 435

remainder operator,19

REMOVE method

of Array class,110

of Directory class,121

of List class,128

of Queue class,131

of Relation class,134

of Set class,139

of Table class,141

REMOVEITEM method

of Relation class,135

reordering data,227, 342

repeating s string with COPIES,215, 308

repetitive loops

altering flow,55

controlled repetitive loops,520

exiting,55

simple DO group,519

REPLACE method

of WindowsRegistry class,274

REPLY instruction

description,66

example,67

REQUEST method

of Object class,174

of Stem class,185

reservation of keywords,487

RESIZE method

of CircularQueue class,116

of WindowsObject class,249

RESTORE method

of WindowsObject class,249

of WindowsRegistry class,275

611

restrictions

embedded in numbers,14

first character of variable name,29

in programming,1

RESULT method

of Message class,163

RESULT special variable

description,489

return value from a routine,295

set by RETURN instruction,44, 67

retrieving

argument strings with ARG,41

arguments with ARG function,298

lines with SOURCELINE,330

return

code

as set by commands,36

setting on exit,47

string

setting on exit,47

RETURN instruction

description,67

RETURN subkeyword

in a RAISE instruction,64

returning control from Rexx program,67

REVERSE function

description,326

example,326

REVERSE method

of String class,224

rexxutil functions,353

RxMessageBox,356

example,358

RxWinExec,358

SysAddFileHandle,360

SysAddRexxMacro,360

SysBootDrive,360

SysClearRexxMacroSpace,360

SysCloseEventSem,361

SysCloseMutexSem,361

SysCls,362

SysCreateEventSem,362

SysCreateMutexSem,362

SysCreatePipe,363

SysCurPos,363

example,363

SysCurState,364

SysDriveInfo,364

example,364

SysDriveMap,365

example,365

SysDropFuncs,366

SysDropLibrary,366

SysDropRexxMacro,366

SysDumpVariables,367

example,367

SysFileCopy,367

example,368

SysFileDelete,368

example,369

SysFileMove,369

example,369

SysFileSearch,369

example,370

SysFileSystemType,371

example,371

SysFileTree,372

example,374

SysFork,375

SysFromUnicode,375

SysGetCollate,377

SysGetErrortext,378

example,378

SysGetFileDateTime,378

example,378

SysGetKey,379

SysGetMessage,379

example,380

SysGetMessageX,380

example,381

SysIni,381

example,382

SysIsFile,383

SysIsFileCompressed,383

SysIsFileDirectory,384

SysIsFileEncrypted,384

SysIsFileLink,385

SysIsFileNotContentIndexed,386

SysIsFileOffline,386

SysIsFileSparse,387

SysIsFileTemporary,387

SysLoadFuncs,388

SysLoadRexxMacroSpace,388

SysMapCase,388

SysMkDir,388

example,389

612

SysNationalLanguageCompare,389

SysOpenEventSem,390

SysOpenMutexSem,390

SysPostEventSem,391

SysProcessType,391

SysPulseEventSem,392

SysQueryProcess,392

SysQueryProcessCodePage,394

SysQueryRexxMacro,394

SysReleaseMutexSem,394

SysReorderRexxMacro,395

SysRequestMutexSem,395

SysResetEventSem,396

SysRmDir,396

example,397

SysSaveRexxMacroSpace,397

SysSearchPath,398

example,398

SysSetFileDateTime,398

example,399

SysSetPriority,399

SysSetProcessCodePage,400

SysShutdownSystem,401

SysSleep,401

example,402

SysStemCopy,402

example,403

SysStemDelete,403

example,404

SysStemInsert,404

SysStemSort,405

example,406

SysSwitchSession,406

SysSystemDirectory,406

SysTempFileName,406

example,407

SysTextScreenRead,407

example,408

SysTextScreenSize,408

example,408

SysToUnicode,408

SysUtilVersion,410

SysVersion,411

SysVolumeLabel,411

SysWait,411

SysWaitEventSem,412

SysWaitNamedPipe,412

SysWinDecryptFile,412

SysWinEncryptFile,413

SysWinGetDefaultPrinter,414

example,415

SysWinGetPrinters,414

example,415

SysWinSetDefaultPrinter,414

example,415

SysWinVer,415

RIGHT function

description,326

example,326

RIGHT method

of String class,225

rounding

using a character string as a number,14

RUN method

of Object class,175

running off the end of a program,67

RXFUNCADD function

description,326

example,326

RXFUNCDROP function

description,327

example,327

RXFUNCQUERY function

description,327

example,327

RXFUNCQUEUE function

example,328

RxMessageBox,356

example,358

RXQUEUE filter,495

RXQUEUE function

description,327

RXSUBCOM command,492

RXTRACE envirinment variable,485

RxWinExec,358

613

S
samples (WSH engine,511

Sandbox, Object Rexx,516

SAVE method

of WindowsRegistry class,275

SAY instruction

description,68

displaying data,68

example,68

role in output,474

SAY method

of Stream class,201

scientific notation,436

SCIENTIFIC subkeyword

in a NUMERIC instruction,56

scope

alternating exclusive access,458

description,88

search order

external functions,292

for functions,292

for methods

changing,90

default,89

for subroutines,43

seconds calculated from midnight,341

SECTION method

of Array class,110

of List class,128

Security Manager,467

calls to,467

SEEK method

of Stream class,201

SELECT instruction

description,68

example,69

selecting a default with ABBREV function,

296

selecting a default with ABBREV method,

210

SELF special variable

description,489

semaphore,459

semicolons

implied,15

omission of,39

within a clause,9

SEND method

of Message class,164

SENDCHAR method

of WindowsObject class,257

SENDCOMMAND method

of WindowsObject class,253

SENDKEY method

of WindowsObject class,256

SENDKEYDOWN method

of WindowsObject class,257

SENDKEYUP method

of WindowsObject class,257

SENDMENUCOMMAND method

of WindowsObject class,253

SENDMESSAGE method

of WindowsObject class,253

SENDMOUSECLICK method

of WindowsObject class,253

SENDSYSCOMMAND method

of WindowsObject class,255

SENDTEXT method

of WindowsObject class,257

SENDTEXTTOWINDOW method

of WindowsManager class,245

sequence, collating using XRANGE,350

serial input and output,473

Set class,137

set-operator methods,143

SETBUFFERSIZE method

of MutableBuffer class,171

SETENTRY method

of Directory class,121

SETGUARDED method

of Method class,166

SETLOCAL function

description,329

example,329

SETMETHOD method

of Directory class,121

of Object class,176

SETPRIVATE method

of Method class,166

SETPROTECTED method

of Method class,167

SETSECURITYMANAGER method

of Method class,167

SETUNGUARDED method,457

of Method class,167

614

SETVALUE method

of WindowsRegistry class,275

shared library (RexxUtil),353

SHOWGROUP method

of WindowsProgramManager class,265

SIGL

in CALL instruction,44

in condition trapping,448

in SIGNAL instruction,71

SIGL special variable

description,489

SIGN function

description,329

example,329

SIGN method

of String class,225

SIGNAL instruction

description,69

example,70

execution of in subroutines,45

significant digits in arithmetic,434

simple

repetitive loops,519

symbols,30

SIZE method

of Array class,110

of CircularQueue class,116

source

of program and retrieval of information,59

string,417

SOURCE method

of Method class,167

SOURCE option of PARSE instruction,59

SOURCE subkeyword

in a PARSE instruction,58, 425

sourceless programs,497

SOURCELINE function

description,330

example,330

SPACE function

description,330

example,330

SPACE method

of String class,225

spacing, formatting, SPACE function,330

spacing, formatting, SPACE method,225

special

characters and example,15

parsing case,428

variable

RC,489

RESULT,44, 67, 295, 489

SELF,489

SIGL, 44, 489

SUPER,489

variables

RC,36, 447, 489

RESULT,67, 295, 489

SELF,489

SIGL, 448, 489

SUPER,489

specification (WSH engine>, 512

standard input and output,477

Standard option of DATE function,312

START method

of Message class,164

of Object class,176

State method,481

of Stream class,203

of WindowsObject class,249

Stem class,183

stem of a variable

assignment to,30

description,32

used in DROP instruction,47

used in PROCEDURE instruction,62

steps in parsing,429

stream,473

character positioning,478

function overview,479

line positioning,478

Stream class,186

stream errors,481

STREAM function

command options,331

command strings,332

description,330

example,334, 335

options,332

query options,335

write options,332

strict comparison,19, 20

strictly equal operator,20, 21

strictly greater than operator,20, 21

strictly greater than or equal operator,21

strictly less than operator,20, 21

615

strictly not equal operator,20, 21

strictly not greater than operator,21

strictly not less than operator,21

string

as literal constant,11

as name of function,11

as name of subroutine,42

binary specification of,12

centering using CENTER function,214

centering using CENTER method,303

centering using CENTRE function,214

centering using CENTRE method,303

comparison of,19

concatenation of,18

copying using COPIES,215, 308

DECODEBASE64 method,218

deleting part, DELSTR function,314

deleting part, DELSTR method,218

description,11

ENCODEBASE64 method,219

extracting using SUBSTR function,338

extracting using SUBSTR method,227

extracting words with SUBWORD,338

from stream,303

hexidecimal specification of,12

interpretation of,53

null, 11

patterns

description,417

literal, 419

variable,424

quotations marks in,11

reapting using COPIES,308

repeating using COPIES,215

verifying contents of,229, 347

String class,203

STRING method

of CircularQueue class,117

of MutableBuffer class,171

of Object class,177

of String class,226

STRIP function

description,337

example,338

STRIP method

of String class,226

structure and syntax,9

SUBCLASS method

of Class class,157

SUBCLASS subkeyword

in a CLASS directive,77

subclasses,8

SUBCLASSES method

of Class class,158

Subcom vs the host interface (WSH engine),

517

subexpression,17

subkeyword,28

SUBMENU method

of MenuObject class,160

subroutines

calling of,42

definition,291

forcing built-in or external reference,42

naming of,42

passing back values from,67

return from,67

use of labels,42

variables in,60

SUBSET method

of Directory class,123

of Relation class,135

of Table class,142

subsidary list,46, 48, 61

substitution

in variable names,32

SUBSTR function

description,338

example,338

SUBSTR method

of MutableBuffer class,171

of String class,227

subtraction operator,19

SUBWORD function

description,338

example,339

SUBWORD method

of String class,227

summary

methods by class,97

parsing instructions,425

SUPER special variable

description,489

superclasses,8

SUPERCLASSES method

of Class class,158

616

Supplier class,233

SUPPLIER method

of Array class,110

of Bag class,113

of CircularQueue class,117

of Directory class,122

of List class,129

of Queue class,132

of Relation class,135

of Set class,139

of Stream class,203

of Table class,141

symbol

assigning values to,29

classifying,29

compound,32

constant,29

description,13

simple,29

uppercase translation,13

use of,29

valid names,13

SYMBOL function

description,339

example,339

symbols

.METHODS,286

environment,34

syntax

error

traceback after,75

trapping with SIGNAL instruction,441

general,9

SYNTAX subkeyword

in a RAISE instruction,64

in a SIGNAL instruction,69, 443, 447

SysAddBootDrive,360

SysAddFileHandle,360

SysAddRexxMacro,360

SysClearRexxMacroSpace,360

SysCloseEventSem,361

SysCloseMutexSem,361

SysCls,362

SysCreateEventSem,362

SysCreateMutexSem,362

SysCreatePipe,363

SysCurPos,363

example,363

SysCurState,364

SysDriveInfo,364

example,364

SysDriveMap,365

example,365

SysDropFuncs,366

SysDropLibrary,366

SysDropRexxMacro,366

SysDumpVariables,367

example,367

SysFileCopy,367

example,368

SysFileDelete,368

example,369

SysFileMove,369

example,369

SysFileSearch,369

example,370

SysFileSystemType,371

example,371

SysFileTree,372

example,374

SysFork,375

SysFromUnicode,375

SysGetCollate,377

SysGetErrortext,378

example,378

SysGetFileDateTime,378

example,378

SysGetKey,379

SysGetMessage,379

example,380

SysGetMessageX,380

example,381

SysIni,381

example,382

SysIsFile,383

SysIsFileCompressed,383

SysIsFileDirectory,384

SysIsFileEncrypted,384

SysIsFileLink,385

SysIsFileNotContentIndexed,386

SysIsFileOffline,386

SysIsFileSparse,387

SysIsFileTemporary,387

SysLoadFuncs,388

SysLoadRexxMacroSpace,388

SysMapCase,388

617

SysMkDir,388

example,389

SysNationalLanguageCompare,389

SysOpenEventSem,390

SysOpenMutexSem,390

SysPostEventSem,391

SysProcessType,391

SysPulseEventSem,392

SysQueryProcess,392

SysQueryProcessCodePage,394

SysQueryRexxMacro,394

SysReleaseMutexSem,394

SysReorderRexxmacro,395

SysRequestMutexSem,395

SysResetEventSem,396

SysRmDir,396

example,397

SysSaveRexxMacroSpace,397

SysSearchPath,398

example,398

SysSetFileDateTime,398

example,399

SysSetPriority,399

SysSetProcessCodePage,400

SysShutdownSystem,401

SysSleep,401

example,402

SysStemCopy,402

example,403

SysStemDelete,403

example,404

SysStemInsert,404

SysStemSort,405

example,406

SysSwitchSession,406

SysSystemDirectory,406

SYSTEMMENU method

of WindowsObject class,257

SysTempFileName,406

example,407

SysTextScreenRead,407

example,408

SysTextScreenSize,408

example,408

SysToUnicode,408

SysUtilVersion,410

SysVersion,411

SysVolumeLabel,411

SysWait,411

SysWaitEventSem,412

SysWaitNamedPipe,412

SysWinDecryptFile,412

SysWinEncryptFile,413

SysWinGetDefaultPrinter,414

example,415

SysWinGetPrinters,414

example,415

SysWinSetDefaultPrinter,414

example,415

SysWinVer,415

T
Table class,139

tail, 32

template

definition,417

list

ARG instruction,41

PARSE instruction,58

PULL instruction,63

temporary change of,39

temporary command destination change,39

ten, powers of,436

terminal

reading from with PULL,63

writing to with SAY, 68

terms and data,16

testing,296, 339

abbreviations with ABBREV method,210

TEXTOF(id) method

of MenuObject class,160

TEXTOF(position) method

of MenuObject class,160

THEN

as free standing clause,39

following IF clause,52

following WHEN clause,68

THEN subkeyword

in a SELECT instruction,68

in an IF instruction,52

thread,??, 392, 392, 409, 451

tilde (~),5

TIME function

description,339

618

example,341, 341

implementation maximum,342

tips, tracing,74

TITLE method

of WindowsObject class,248

TITLE= method

of WindowsObject class,248

TO phrase of DO instruction,46

TO subkeyword

in a DO instruction,45, 520

TOFOREGROUND method

of WindowsObject class,250

tokens

binary strings,12

description,11

hexadecimal strings,12

literal strings,11

numbers,14

operator characters,14

special characters,15

symbols,13

TRACE function

description,342

example,342

TRACE instruction

alphabetical character word options,72

description,71

example,74

TRACE setting

altering with TRACE function,342

altering with TRACE instruction,71

querying,342

traceback, on syntax error,75

tracing

action saved during subroutine calls,44

by interactive debug,483

data identifiers,74

execution of programs,71

tips,74

tracing flag

>>>, 74

>.>, 74

>C>, 75

>F>, 75

>L>, 75

>M>, 75

>O>, 75

>P>, 75

>V>, 75

-, 74

+++, 74

trailing

blank removed using STRIP function,337

blank removed using STRIP method,226

transient input and output,473

TRANSLATE function

description,342

example,343

TRANSLATE method

of String class,227

translation

with TRANSLATE function,342

with TRANSLATE method,227

trap conditions

explanation,441

how to,441

information about trapped conditions,306

using CONDITION function,306

trapname,443

trincating numbers,228

TRUNC function

description,343

example,343

TRUNC method

of String class,228

truncating numbers,343

twiddle (~),5

Type conversion,283

type of data, checking with DATATYPE,217,

309

Typelib generation (WSH engine),509

typewiter input and output,473

U
unassing variables,46

unconditionally leaving your program,47

underflow, arithmetic,438

UNGUARDED option of ::METHOD,79, 457

UNGUARDED subkeyword

in a METHOD directive,78

UNINHERIT method

of Class class,158

uninitialized variable,29

UNION method

619

of Directory class,123

of Relation class,136

of Table class,142

UNKNOWN method

of Directory class,122

of Monitor class,169

of OLEObject class,282

of Stem class,186

UNLOAD method

of WindowsRegistry class,275

unpacking a string

with B2X, 211, 299

with C2X, 213, 302

UNSETMETHOD method

of Object class,177

UNTIL phrase of DO instruction,45

UNTIL subkeyword

in a DO instruction,45, 522

unusual change in flow of control,441

UPPER subkeyword

in a PARSE instruction,41, 58, 425

in an PARSE instruction,63

uppercase translation

during ARG instruction,41

during PULL instruction,63

of symbols,13

with PARSE UPPER,58

with TRANSLATE function,342

with TRANSLATE method,227

Usa option of DATE function,312

USE instruction

description,75

example,75

user input and output,473, 483

USER subkeyword

in a CALL instruction,42, 443, 447

in a RAISE instruction,64

in a SIGNAL instruction,69, 443, 447

USERID function

description,343

USERS method

of WindowsRegistry class,276

USERS= method

of WindowsRegistry class,276

V
value,17

VALUE function

description,344

example,344, 345

VALUE option of PARSE instruction,60

VALUE subkeyword

in a NUMERIC instruction,56

in a PARSE instruction,58, 425

in a SIGNAL instruction,69

in a TRACE instruction,71

in an ADDRESS instruction,39

VAR function

description,346

example,346

VAR option of PARSE instruction,60

VAR subkeyword

in a PARSE instruction,58, 425

variable

access with VALUE function,344

checking name,346

compound,32

controlling loops,520

description,29

dropping of,46

exposing to caller,60

external collections,344

global,344

in internal functions,60

in subroutines,60

names,13

new level of,60

parsing of,60

patterns, parsing with

string,424

patterns, parsing with positional,425

pool interface,??

positional patterns,425

reference,424

resetting of,46

setting a new value,29

SIGL, 448

simple,30

special

RC,36

SIGL, 44, 448

string patterns,424

620

testing for initialization,339

valid names,29

variable initialization,339

variables

aquiring,5, 9

in objects,4

VBScript,512

VERIFY function

description,347

example,347

VERIFY method

of String class,229

verifying contents of a string,229, 347

VERSION option of PARSE instruction,60

VERSION subkeyword

in a PARSE instruction,58, 425

virtual keys,265

W
WCLASS method

of WindowsObject class,248

Weekday option of DATE function,312

WHEN

as free standing clause,39

WHEN subkeyword

in a SELECT instruction,68

in an GUARD instruction,51

WHILE phrase of DO instruction,45

WHILE subkeyword

in a DO instruction,45, 522

whole numbers

checking with DATATYPE,217, 309

description,14

WINDOWATPOSITION method

of WindowsManager class,245

Windows Scripting engine,499

Windows Scripting Host engine

.wsc file type,504

.wsf file type,502

and Microsoft Internet Explorer,500, 512

boolean values,511

cancelling Internet Explorer events,511

COM events,510

COM object registration,509

CScript,500, 512

dll vs COM,517

Domain Object Model (DOM),513

events,510

features duplicated inObject Rexx,516

file types,502

Internet Explorer events,511

invocation as a COM object,509

invocation by browser,500

invocation from a command prompt,507

invoking a script,509

JScript,513

Object Rexx Sandbox,516

properties,515

samples,511

specification, interpretation of and

deviation from,512

Subcom vs the host interface,517

Typelib generation,509

VBScript,513

WScript,500, 512

WindowsClipboard class,235

WindowsEventLog class,236

WindowsManager class,244

WindowsObject class,246

WindowsProgramManager class,258

WindowsRegistry class,268

WITH subkeyword

in a PARSE instruction,58

word

alphabetical character options in TRACE,

72

counting in a string,231, 348

deleting from a string,219, 314

extracting from a string,227, 231, 338, 348

finding length of,222, 320

in parsing,417

locating in a string,230, 348

parsing

conceptual view,432

examples,417

WORD function

description,347

example,347

WORD method

of String class,229

WORDINDEX function

description,347

example,348

WORDINDEX method

621

of String class,230

WORDLENGTH function

description,348

example,348

WORDLENGTH method

of String class,230

WORDPOS function

description,348

example,348

WORDPOS method

of String class,230

WORDS function

description,348

example,349

WORDS method

of String class,231

writ position in a stream,474

WRITE method

of WindowsEventLog class,240

writing to external data queue

with PUSH,63

with QUEUE,64

WScript,500, 512

WSH engine,499

X
X2B function

description,349

example,349

X2B method

of String class,231

X2C function

description,349

example,349

X2C method

of String class,232

X2D function

description,350

example,350, 350

X2D method

of String class,232

XOR method

of Directory class,123

of Relation class,136

of Table class,142

XOR, logical,22

XORing character strings together,212, 301

XRANGE function

description,350

example,350

Y
YO subkeyword

in a FORWARD instruction,49

Z
zeros

added on left with RIGHT function,326

added on left with RIGHT method,225

removal with STRIP function,337

removal with STRIP method,226

622

	Open Object Rexx
	Table of Contents
	List of Tables
	List of Figures
	About This Book
	1. Related Information
	2. How to Read the Syntax Diagrams
	3. A Note About Program Examples in this Document
	4. Getting Help
	4.1. The Rexx Language Association Mailing List
	4.2. The Open Object Rexx SourceForge Site
	4.3. comp.lang.rexx Newsgroup

	Chapter 1. Rexx General Concepts
	1.1. What Is ObjectOriented Programming?
	1.2. Modularizing Data
	1.3. Modeling Objects
	1.4. How Objects Interact
	1.5. Methods
	1.6. Polymorphism
	1.7. Classes and Instances
	1.8. Data Abstraction
	1.9. Subclasses, Superclasses, and Inheritance
	1.10. Structure and General Syntax
	1.10.1. Characters
	1.10.2. Comments
	1.10.3. Tokens
	1.10.3.1. Literal Strings
	1.10.3.2. Hexadecimal Strings
	1.10.3.3. Binary Strings
	1.10.3.4. Symbols
	1.10.3.5. Numbers
	1.10.3.6. Operator Characters
	1.10.3.7. Special Characters
	1.10.3.8. Example

	1.10.4. Implied Semicolons
	1.10.5. Continuations

	1.11. Terms, Expressions, and Operators
	1.11.1. Terms and Expressions
	1.11.2. Operators
	1.11.2.1. String Concatenation
	1.11.2.2. Arithmetic
	1.11.2.3. Comparison
	1.11.2.4. Logical (Boolean)

	1.11.3. Parentheses and Operator Precedence
	1.11.4. Message Terms
	1.11.5. Message Sequences

	1.12. Clauses and Instructions
	1.12.1. Null Clauses
	1.12.2. Directives
	1.12.3. Labels
	1.12.4. Instructions
	1.12.5. Assignments
	1.12.6. Message Instructions
	1.12.7. Keyword Instructions
	1.12.8. Commands

	1.13. Assignments and Symbols
	1.13.1. Constant Symbols
	1.13.2. Simple Symbols
	1.13.3. Stems
	1.13.4. Compound Symbols
	1.13.4.1. Evaluated Compound Variables

	1.13.5. Environment Symbols

	1.14. Message Instructions
	1.15. Commands to External Environments
	1.15.1. Environment
	1.15.2. Commands

	1.16. Using Rexx on Windows and Unix

	Chapter 2. Keyword Instructions
	2.1. ADDRESS
	2.2. ARG
	2.3. CALL
	2.4. DO
	2.5. DROP
	2.6. EXIT
	2.7. EXPOSE
	2.8. FORWARD
	2.9. GUARD
	2.10. IF
	2.11. INTERPRET
	2.12. ITERATE
	2.13. LEAVE
	2.14. NOP
	2.15. NUMERIC
	2.16. PARSE
	2.17. PROCEDURE
	2.18. PULL
	2.19. PUSH
	2.20. QUEUE
	2.21. RAISE
	2.22. REPLY
	2.23. RETURN
	2.24. SAY
	2.25. SELECT
	2.26. SIGNAL
	2.27. TRACE
	2.27.1. Alphabetic Character (Word) Options
	2.27.2. Prefix Option
	2.27.3. Numeric Options
	2.27.3.1. Tracing Tips
	2.27.3.2. Example
	2.27.3.3. The Format of Trace Output

	2.28. USE

	Chapter 3. Directives
	3.1. ::CLASS
	3.2. ::METHOD
	3.3. ::REQUIRES
	3.4. ::ROUTINE

	Chapter 4. Objects and Classes
	4.1. Types of Classes
	4.1.1. Object Classes
	4.1.2. Mixin Classes
	4.1.3. Abstract Classes
	4.1.3.1. Metaclasses
	4.1.3.2. Creating Classes and Methods
	4.1.3.3. Using Classes
	4.1.3.4. Scope
	4.1.3.5. Defining Instance Methods with SETMETHOD or ENHANCED
	4.1.3.6. Method Names
	4.1.3.7. Default Search Order for Method Selection
	4.1.3.8. Defining an UNKNOWN Method
	4.1.3.9. Changing the Search Order for Methods
	4.1.3.10. Public and Private Methods
	4.1.3.11. The Class Hierarchy
	4.1.3.12. Initialization
	4.1.3.13. Object Destruction and Uninitialization
	4.1.3.14. Required String Values
	4.1.3.15. Concurrency
	4.1.3.16. Classes and Methods Provided by Rexx
	4.1.3.17. Summary of Methods by Class

	Chapter 5. The Collection Classes
	5.1. The Array Class
	5.1.1. NEW (Class Method)
	5.1.2. OF (Class Method)
	5.1.3. []
	5.1.4. []=
	5.1.5. AT
	5.1.6. DIMENSION
	5.1.7. FIRST
	5.1.8. HASINDEX
	5.1.9. ITEMS
	5.1.10. LAST
	5.1.11. MAKEARRAY
	5.1.12. MAKESTRING
	5.1.13. NEXT
	5.1.14. PREVIOUS
	5.1.15. PUT
	5.1.16. REMOVE
	5.1.17. SECTION
	5.1.18. SIZE
	5.1.19. SUPPLIER
	5.1.20. Examples

	5.2. The Bag Class
	5.2.1. OF (Class Method)
	5.2.2. []
	5.2.3. []=
	5.2.4. HASINDEX
	5.2.5. MAKEARRAY
	5.2.6. PUT
	5.2.7. SUPPLIER
	5.2.8. Examples

	5.3. The CircularQueue Class
	5.3.1. OF (Class Method)
	5.3.2. INIT
	5.3.3. MAKEARRAY
	5.3.4. PUSH
	5.3.5. QUEUE
	5.3.6. RESIZE
	5.3.7. SIZE
	5.3.8. STRING
	5.3.9. SUPPLIER
	5.3.10. Example

	5.4. The Directory Class
	5.4.1. []
	5.4.2. []=
	5.4.3. AT
	5.4.4. ENTRY
	5.4.5. HASENTRY
	5.4.6. HASINDEX
	5.4.7. ITEMS
	5.4.8. MAKEARRAY
	5.4.9. PUT
	5.4.10. REMOVE
	5.4.11. SETENTRY
	5.4.12. SETMETHOD
	5.4.13. SUPPLIER
	5.4.14. UNKNOWN
	5.4.15. DIFFERENCE
	5.4.16. INTERSECTION
	5.4.17. SUBSET
	5.4.18. UNION
	5.4.19. XOR
	5.4.20. Examples

	5.5. The List Class
	5.5.1. OF (Class Method)
	5.5.2. []
	5.5.3. []=
	5.5.4. AT
	5.5.5. FIRST
	5.5.6. FIRSTITEM
	5.5.7. HASINDEX
	5.5.8. INSERT
	5.5.9. ITEMS
	5.5.10. LAST
	5.5.11. LASTITEM
	5.5.12. MAKEARRAY
	5.5.13. NEXT
	5.5.14. PREVIOUS
	5.5.15. PUT
	5.5.16. REMOVE
	5.5.17. SECTION
	5.5.18. SUPPLIER

	5.6. The Queue Class
	5.6.1. []
	5.6.2. []=
	5.6.3. AT
	5.6.4. HASINDEX
	5.6.5. ITEMS
	5.6.6. MAKEARRAY
	5.6.7. PEEK
	5.6.8. PULL
	5.6.9. PUSH
	5.6.10. PUT
	5.6.11. QUEUE
	5.6.12. REMOVE
	5.6.13. SUPPLIER

	5.7. The Relation Class
	5.7.1. []
	5.7.2. []=
	5.7.3. ALLAT
	5.7.4. ALLINDEX
	5.7.5. AT
	5.7.6. HASINDEX
	5.7.7. HASITEM
	5.7.8. INDEX
	5.7.9. ITEMS
	5.7.10. MAKEARRAY
	5.7.11. PUT
	5.7.12. REMOVE
	5.7.13. REMOVEITEM
	5.7.14. SUPPLIER
	5.7.15. DIFFERENCE
	5.7.16. INTERSECTION
	5.7.17. SUBSET
	5.7.18. UNION
	5.7.19. XOR
	5.7.20. Examples

	5.8. The Set Class
	5.8.1. OF (Class Method)
	5.8.2. []
	5.8.3. []=
	5.8.4. AT
	5.8.5. HASINDEX
	5.8.6. ITEMS
	5.8.7. MAKEARRAY
	5.8.8. PUT
	5.8.9. REMOVE
	5.8.10. SUPPLIER

	5.9. The Table Class
	5.9.1. []
	5.9.2. []=
	5.9.3. AT
	5.9.4. HASINDEX
	5.9.5. ITEMS
	5.9.6. MAKEARRAY
	5.9.7. PUT
	5.9.8. REMOVE
	5.9.9. SUPPLIER
	5.9.10. DIFFERENCE
	5.9.11. INTERSECTION
	5.9.12. SUBSET
	5.9.13. UNION
	5.9.14. XOR

	5.10. The Concept of Set Operations
	5.10.1. The Principles of Operation
	5.10.1.1. Set Operations on Collections without Duplicates
	5.10.1.2. SetLike Operations on Collections with Duplicates

	5.10.2. Determining the Identity of an Item
	5.10.3. The Argument Collection Classes
	5.10.4. The Receiver Collection Classes
	5.10.5. Classifying Collections

	Chapter 6. Other Classes
	6.1. The Alarm Class
	6.1.1. CANCEL
	6.1.2. INIT
	6.1.3. Examples

	6.2. The Class Class
	6.2.1. BASECLASS
	6.2.2. DEFAULTNAME
	6.2.3. DEFINE
	6.2.4. DELETE
	6.2.5. ENHANCED
	6.2.6. ID
	6.2.7. INHERIT
	6.2.8. INIT
	6.2.9. METACLASS
	6.2.10. METHOD
	6.2.11. METHODS
	6.2.12. MIXINCLASS
	6.2.13. NEW
	6.2.14. QUERYMIXINCLASS
	6.2.15. SUBCLASS
	6.2.16. SUBCLASSES
	6.2.17. SUPERCLASSES
	6.2.18. UNINHERIT

	6.3. The WindowsMenuObject Class
	6.3.1. ISMENU
	6.3.2. ITEMS
	6.3.3. IDOF
	6.3.4. TEXTOF(position)
	6.3.5. TEXTOF(id)
	6.3.6. SUBMENU
	6.3.7. FINDSUBMENU
	6.3.8. FINDITEM
	6.3.9. PROCESSITEM

	6.4. The Message Class
	6.4.1. COMPLETED
	6.4.2. INIT
	6.4.3. NOTIFY
	6.4.4. RESULT
	6.4.5. SEND
	6.4.6. START
	6.4.7. Example

	6.5. The Method Class
	6.5.1. NEW (Class Method)
	6.5.2. NEWFILE (Class Method)
	6.5.3. SETGUARDED
	6.5.4. SETPRIVATE
	6.5.5. SETPROTECTED
	6.5.6. SETSECURITYMANAGER
	6.5.7. SETUNGUARDED
	6.5.8. SOURCE

	6.6. The Monitor Class
	6.6.1. CURRENT
	6.6.2. DESTINATION
	6.6.3. INIT
	6.6.4. UNKNOWN
	6.6.5. Examples

	6.7. The MutableBuffer Class
	6.7.1. INIT
	6.7.2. APPEND
	6.7.3. DELETE
	6.7.4. GETBUFFERSIZE
	6.7.5. INSERT
	6.7.6. LENGTH
	6.7.7. OVERLAY
	6.7.8. SETBUFFERSIZE
	6.7.9. STRING
	6.7.10. SUBSTR

	6.8. The Object Class
	6.8.1. NEW (Class Method)
	6.8.2. Operator Methods
	6.8.3. CLASS
	6.8.4. COPY
	6.8.5. DEFAULTNAME
	6.8.6. HASMETHOD
	6.8.7. INIT
	6.8.8. OBJECTNAME
	6.8.9. OBJECTNAME=
	6.8.10. REQUEST
	6.8.11. RUN
	6.8.12. SETMETHOD
	6.8.13. START
	6.8.14. STRING
	6.8.15. UNSETMETHOD

	6.9. The RegularExpression Class
	6.9.1. INIT
	6.9.2. MATCH
	6.9.3. PARSE
	6.9.4. POS
	6.9.5. POSITION

	6.10. The Stem Class
	6.10.1. NEW (Class Method)
	6.10.2. []
	6.10.3. []=
	6.10.4. MAKEARRAY
	6.10.5. REQUEST
	6.10.6. UNKNOWN

	6.11. The Stream Class
	6.11.1. ARRAYIN
	6.11.2. ARRAYOUT
	6.11.3. CHARIN
	6.11.4. CHAROUT
	6.11.5. CHARS
	6.11.6. CLOSE
	6.11.7. COMMAND
	6.11.7.1. Command Strings

	6.11.8. DESCRIPTION
	6.11.9. FLUSH
	6.11.10. INIT
	6.11.11. LINEIN
	6.11.12. LINEOUT
	6.11.13. LINES
	6.11.14. MAKEARRAY
	6.11.15. OPEN
	6.11.16. POSITION
	6.11.17. QUALIFY
	6.11.18. QUERY
	6.11.19. SAY
	6.11.20. SEEK
	6.11.21. STATE
	6.11.22. SUPPLIER

	6.12. The String Class
	6.12.1. NEW (Class Method)
	6.12.2. Arithmetic Methods
	6.12.3. Comparison Methods
	6.12.4. Logical Methods
	6.12.5. Concatenation Methods
	6.12.6. ABBREV
	6.12.7. ABS
	6.12.8. B2X
	6.12.9. BITAND
	6.12.10. BITOR
	6.12.11. BITXOR
	6.12.12. C2D
	6.12.13. C2X
	6.12.14. CENTER/CENTRE
	6.12.15. CHANGESTR
	6.12.16. COMPARE
	6.12.17. COPIES
	6.12.18. COUNTSTR
	6.12.19. D2C
	6.12.20. D2X
	6.12.21. DATATYPE
	6.12.22. DECODEBASE64
	6.12.23. DELSTR
	6.12.24. DELWORD
	6.12.25. ENCODEBASE64
	6.12.26. FORMAT
	6.12.27. INSERT
	6.12.28. LASTPOS
	6.12.29. LEFT
	6.12.30. LENGTH
	6.12.31. MAKEARRAY
	6.12.32. MAKESTRING
	6.12.33. MAX
	6.12.34. MIN
	6.12.35. OVERLAY
	6.12.36. POS
	6.12.37. REVERSE
	6.12.38. RIGHT
	6.12.39. SIGN
	6.12.40. SPACE
	6.12.41. STRING
	6.12.42. STRIP
	6.12.43. SUBSTR
	6.12.44. SUBWORD
	6.12.45. TRANSLATE
	6.12.46. TRUNC
	6.12.47. VERIFY
	6.12.48. WORD
	6.12.49. WORDINDEX
	6.12.50. WORDLENGTH
	6.12.51. WORDPOS
	6.12.52. WORDS
	6.12.53. X2B
	6.12.54. X2C
	6.12.55. X2D

	6.13. The Supplier Class
	6.13.1. NEW (Class Method)
	6.13.2. AVAILABLE
	6.13.3. INDEX
	6.13.4. ITEM
	6.13.5. NEXT
	6.13.6. Examples

	6.14. The WindowsClipboard Class
	6.14.1. COPY
	6.14.2. MAKEARRAY
	6.14.3. PASTE
	6.14.4. EMPTY
	6.14.5. ISDATAAVAILABLE

	6.15. The WindowsEventLog Class
	6.15.1. INIT
	6.15.2. OPEN
	6.15.3. CLOSE
	6.15.4. READ
	6.15.5. WRITE
	6.15.6. CLEAR
	6.15.7. GETNUMBER

	6.16. The WindowsManager Class
	6.16.1. FIND
	6.16.2. FOREGROUNDWINDOW
	6.16.3. WINDOWATPOSITION
	6.16.4. CONSOLETITLE
	6.16.5. CONSOLETITLE=
	6.16.6. SENDTEXTTOWINDOW
	6.16.7. PUSHBUTTONINWINDOW
	6.16.8. PROCESSMENUCOMMAND

	6.17. The WindowObject Class
	6.17.1. ASSOCWINDOW
	6.17.2. HANDLE
	6.17.3. TITLE
	6.17.4. TITLE=
	6.17.5. WCLASS
	6.17.6. ID
	6.17.7. COORDINATES
	6.17.8. STATE
	6.17.9. RESTORE
	6.17.10. HIDE
	6.17.11. MINIMIZE
	6.17.12. MAXIMIZE
	6.17.13. RESIZE
	6.17.14. ENABLE
	6.17.15. DISABLE
	6.17.16. MOVETO
	6.17.17. TOFOREGROUND
	6.17.18. FOCUSNEXTITEM
	6.17.19. FOCUSPREVIOUSITEM
	6.17.20. FOCUSITEM
	6.17.21. FINDCHILD
	6.17.22. CHILDATPOSITION
	6.17.23. NEXT
	6.17.24. PREVIOUS
	6.17.25. FIRST
	6.17.26. LAST
	6.17.27. OWNER
	6.17.28. FIRSTCHILD
	6.17.29. ENUMERATECHILDREN
	6.17.30. SENDMESSAGE
	6.17.31. SENDCOMMAND
	6.17.32. SENDMENUCOMMAND
	6.17.33. SENDMOUSECLICK
	6.17.34. SENDSYSCOMMAND
	6.17.35. PUSHBUTTON
	6.17.36. SENDKEY
	6.17.37. SENDCHAR
	6.17.38. SENDKEYDOWN
	6.17.39. SENDKEYUP
	6.17.40. SENDTEXT
	6.17.41. MENU
	6.17.42. SYSTEMMENU
	6.17.43. ISMENU
	6.17.44. PROCESSMENUCOMMAND

	6.18. The WindowsProgramManager Class
	6.18.1. ADDDESKTOPICON
	6.18.2. ADDSHORTCUT
	6.18.3. ADDGROUP
	6.18.4. ADDITEM
	6.18.5. DELETEDESKTOPICON
	6.18.6. DELETEGROUP
	6.18.7. DELETEITEM
	6.18.8. INIT
	6.18.9. SHOWGROUP
	6.18.10. Symbolic Names for Virtual Keys

	6.19. The WindowsRegistry Class
	6.19.1. CLASSESROOT
	6.19.2. CLASSESROOT=
	6.19.3. CLOSE
	6.19.4. CONNECT
	6.19.5. CREATE
	6.19.6. CURRENTKEY
	6.19.7. CURRENTKEY=
	6.19.8. CURRENTUSER
	6.19.9. CURRENTUSER=
	6.19.10. DELETE
	6.19.11. DELETEVALUE
	6.19.12. FLUSH
	6.19.13. GETVALUE
	6.19.14. INIT
	6.19.15. LIST
	6.19.16. LISTVALUES
	6.19.17. LOAD
	6.19.18. LOCALMACHINE
	6.19.19. LOCALMACHINE=
	6.19.20. OPEN
	6.19.21. QUERY
	6.19.22. REPLACE
	6.19.23. RESTORE
	6.19.24. SAVE
	6.19.25. SETVALUE
	6.19.26. UNLOAD
	6.19.27. USERS
	6.19.28. USERS=

	6.20. The Windows OLEObject Class
	6.20.1. DISPATCH
	6.20.2. INIT
	6.20.3. GETCONSTANT
	6.20.4. GETKNOWNEVENTS
	6.20.5. GETKNOWNMETHODS
	6.20.6. GETOBJECT
	6.20.7. GETOUTPARAMETERS
	6.20.8. UNKNOWN
	6.20.9. Type Conversion

	Chapter 7. Other Objects
	7.1. The Environment Object (.ENVIRONMENT)
	7.2. The Local Environment Object (.LOCAL)
	7.2.1. The Error Object (.ERROR)
	7.2.2. The Input Object (.INPUT)
	7.2.3. The Output Object (.OUTPUT)

	7.3. .METHODS
	7.4. The NIL Object (.NIL)
	7.5. .RS

	Chapter 8. Functions
	8.1. Syntax
	8.2. Functions and Subroutines
	8.2.1. Search Order
	8.2.2. Errors during Execution

	8.3. Return Values
	8.4. Builtin Functions
	8.4.1. ABBREV (Abbreviation)
	8.4.2. ABS (Absolute Value)
	8.4.3. ADDRESS
	8.4.4. ARG (Argument)
	8.4.5. B2X (Binary to Hexadecimal)
	8.4.6. BEEP
	8.4.7. BITAND (Bit by Bit AND)
	8.4.8. BITOR (Bit by Bit OR)
	8.4.9. BITXOR (Bit by Bit Exclusive OR)
	8.4.10. C2D (Character to Decimal)
	8.4.11. C2X (Character to Hexadecimal)
	8.4.12. CENTER (or CENTRE)
	8.4.13. CHANGESTR
	8.4.14. CHARIN (Character Input)
	8.4.15. CHAROUT (Character Output)
	8.4.16. CHARS (Characters Remaining)
	8.4.17. COMPARE
	8.4.18. CONDITION
	8.4.19. COPIES
	8.4.20. COUNTSTR
	8.4.21. D2C (Decimal to Character)
	8.4.22. D2X (Decimal to Hexadecimal)
	8.4.23. DATATYPE
	8.4.24. DATE
	8.4.25. DELSTR (Delete String)
	8.4.26. DELWORD (Delete Word)
	8.4.27. DIGITS
	8.4.28. DIRECTORY
	8.4.29. ENDLOCAL (Linux only)
	8.4.30. ERRORTEXT
	8.4.31. FILESPEC
	8.4.32. FORM
	8.4.33. FORMAT
	8.4.34. FUZZ
	8.4.35. INSERT
	8.4.36. LASTPOS (Last Position)
	8.4.37. LEFT
	8.4.38. LENGTH
	8.4.39. LINEIN (Line Input)
	8.4.40. LINEOUT (Line Output)
	8.4.41. LINES (Lines Remaining)
	8.4.42. MAX (Maximum)
	8.4.43. MIN (Minimum)
	8.4.44. OVERLAY
	8.4.45. POS (Position)
	8.4.46. QUEUED
	8.4.47. RANDOM
	8.4.48. REVERSE
	8.4.49. RIGHT
	8.4.50. RXFUNCADD
	8.4.51. RXFUNCDROP
	8.4.52. RXFUNCQUERY
	8.4.53. RXQUEUE
	8.4.54. SETLOCAL (Linux only)
	8.4.55. SIGN
	8.4.56. SOURCELINE
	8.4.57. SPACE
	8.4.58. STREAM
	8.4.58.1. Stream Commands
	8.4.58.1.1. Command Strings
	8.4.58.1.2. QUERY Stream Commands

	8.4.59. STRIP
	8.4.60. SUBSTR (Substring)
	8.4.61. SUBWORD
	8.4.62. SYMBOL
	8.4.63. TIME
	8.4.64. TRACE
	8.4.65. TRANSLATE
	8.4.66. TRUNC (Truncate)
	8.4.67. USERID
	8.4.68. VALUE
	8.4.69. VAR
	8.4.70. VERIFY
	8.4.71. WORD
	8.4.72. WORDINDEX
	8.4.73. WORDLENGTH
	8.4.74. WORDPOS (Word Position)
	8.4.75. WORDS
	8.4.76. X2B (Hexadecimal to Binary)
	8.4.77. X2C (Hexadecimal to Character)
	8.4.78. X2D (Hexadecimal to Decimal)
	8.4.79. XRANGE (Hexadecimal Range)

	Chapter 9. Rexx Utilities (RexxUtil)
	9.1. List of Rexx Utility Functions
	9.2. RxMessageBox (Windows only)
	9.3. RxWinExec (Windows only)
	9.4. SysAddFileHandle (Windows only)
	9.5. SysAddRexxMacro
	9.6. SysBootDrive (Windows only)
	9.7. SysClearRexxMacroSpace
	9.8. SysCloseEventSem
	9.9. SysCloseMutexSem
	9.10. SysCls
	9.11. SysCreateEventSem
	9.12. SysCreateMutexSem
	9.13. SysCreatePipe (AIX only)
	9.14. SysCurPos (Windows only)
	9.15. SysCurState (Windows only)
	9.16. SysDriveInfo (Windows only)
	9.17. SysDriveMap (Windows only)
	9.18. SysDropFuncs
	9.19. SysDropLibrary (Windows only)
	9.20. SysDropRexxMacro
	9.21. SysDumpVariables
	9.22. SysFileCopy (Windows only)
	9.23. SysFileDelete
	9.24. SysFileMove (Windows only)
	9.25. SysFileSearch
	9.26. SysFileSystemType (Windows only)
	9.27. SysFileTree
	9.28. SysFork (Linux, AIX, Solaris only)
	9.29. SysFromUnicode (Windows only)
	9.30. SysGetCollate (Windows only)
	9.31. SysGetErrortext
	9.32. SysGetFileDateTime
	9.33. SysGetKey
	9.34. SysGetMessage
	9.35. SysGetMessageX (Unix only)
	9.36. SysIni (Windows only)
	9.37. SysIsFile
	9.38. SysIsFileCompressed (Windows only)
	9.39. SysIsFileDirectory
	9.40. SysIsFileEncrypted (Windows only)
	9.41. SysIsFileLink
	9.42. SysIsFileNotContentIndexed (Windows only)
	9.43. SysIsFileOffline (Windows only)
	9.44. SysIsFileSparse (Windows only)
	9.45. SysIsFileTemporary (Windows only)
	9.46. SysLoadFuncs
	9.47. SysLoadRexxMacroSpace
	9.48. SysMapCase (Windows only)
	9.49. SysMkDir
	9.50. SysNationalLanguageCompare (Windows only)
	9.51. SysOpenEventSem
	9.52. SysOpenMutexSem
	9.53. SysPostEventSem
	9.54. SysProcessType (Windows only)
	9.55. SysPulseEventSem (Windows only)
	9.56. SysQueryProcess
	9.57. SysQueryProcessCodePage
	9.58. SysQueryRexxMacro
	9.59. SysReleaseMutexSem
	9.60. SysReorderRexxMacro
	9.61. SysRequestMutexSem
	9.62. SysResetEventSem
	9.63. SysRmDir
	9.64. SysSaveRexxMacroSpace
	9.65. SysSearchPath
	9.66. SysSetFileDateTime
	9.67. SysSetPriority
	9.68. SysSetProcessCodePage (Windows only)
	9.69. SysShutdownSystem (Windows only)
	9.70. SysSleep
	9.71. SysStemCopy
	9.72. SysStemDelete
	9.73. SysStemInsert
	9.74. SysStemSort
	9.75. SysSwitchSession (Windows only)
	9.76. SysSystemDirectory (Windows only)
	9.77. SysTempFileName
	9.78. SysTextScreenRead (Windows only)
	9.79. SysTextScreenSize (Windows only)
	9.80. SysToUnicode (Windows only)
	9.81. SysUtilVersion
	9.82. SysVersion
	9.83. SysVolumeLabel (Windows only)
	9.84. SysWait (AIX only)
	9.85. SysWaitEventSem
	9.86. SysWaitNamedPipe (Windows only)
	9.87. SysWinDecryptFile (Windows only)
	9.88. SysWinEncryptFile (Windows only)
	9.89. SysWinGetDefaultPrinter (Windows only)
	9.90. SysWinGetPrinters (Windows only)
	9.91. SysWinSetDefaultPrinter (Windows only)
	9.92. SysWinVer Windows only)

	Chapter 10. Parsing
	10.1. Simple Templates for Parsing into Words
	10.1.1. The Period as a Placeholder

	10.2. Templates Containing String Patterns
	10.3. Templates Containing Positional (Numeric) Patterns
	10.3.1. Combining Patterns and Parsing into Words

	10.4. Parsing with Variable Patterns
	10.5. Using UPPER, LOWER, and CASELESS
	10.6. Parsing Instructions Summary
	10.7. Parsing Instructions Examples
	10.8. Advanced Topics in Parsing
	10.8.1. Parsing Several Strings
	10.8.2. Combining String and Positional Patterns
	10.8.3. Conceptual Overview of Parsing

	Chapter 11. Numbers and Arithmetic
	11.1. Precision
	11.2. Arithmetic Operators
	11.2.1. Power
	11.2.2. Integer Division
	11.2.3. Remainder
	11.2.4. Operator Examples

	11.3. Exponential Notation
	11.4. Numeric Comparisons
	11.5. Limits and Errors when Rexx Uses Numbers Directly

	Chapter 12. Conditions and Condition Traps
	12.1. Action Taken when a Condition Is Not Trapped
	12.2. Action Taken when a Condition Is Trapped
	12.3. Condition Information
	12.3.1. Descriptive Strings
	12.3.2. Additional Object Information
	12.3.3. The Special Variable RC
	12.3.4. The Special Variable SIGL
	12.3.5. Condition Objects

	Chapter 13. Concurrency
	13.1. Early Reply
	13.2. Message Objects
	13.3. Default Concurrency
	13.3.1. Sending Messages within an Activity

	13.4. Using Additional Concurrency Mechanisms
	13.4.1. SETUNGUARDED Method and UNGUARDED Option
	13.4.2. GUARD ON and GUARD OFF
	13.4.3. Guarded Methods
	13.4.4. Additional Examples
	13.4.4.1. Semaphores
	13.4.4.2. Monitors (Bounded Buffer)
	13.4.4.3. Readers and Writers

	Chapter 14. The Security Manager
	14.1. Calls to the Security Manager
	14.1.1. Example

	Chapter 15. Input and Output Streams
	15.1. The Input and Output Model
	15.1.1. Input Streams
	15.1.2. Output Streams
	15.1.3. External Data Queue
	15.1.3.1. Unnamed Queues
	15.1.3.2. Named Queues
	15.1.3.3. Multiprogramming Considerations

	15.1.4. Default Stream Names
	15.1.5. Line versus Character Positioning

	15.2. Implementation
	15.3. Operating System Specifics
	15.4. Examples of Input and Output
	15.5. Errors during Input and Output
	15.6. Summary of Rexx I/O Instructions and Methods

	Chapter 16. Debugging Aids
	16.1. Interactive Debugging of Programs
	16.2. Debugging Aids
	16.3. RXTRACE Variable

	Chapter 17. Reserved Keywords
	Chapter 18. Special Variables
	Chapter 19. Useful Services
	19.1. Windows Commands
	19.2. Linux Commands
	19.3. Subcommand Handler Services
	19.3.1. The RXSUBCOM Command
	19.3.1.1. RXSUBCOM REGISTER
	19.3.1.2. RXSUBCOM DROP
	19.3.1.3. RXSUBCOM QUERY
	19.3.1.4. RXSUBCOM LOAD

	19.3.2. The RXQUEUE Filter

	19.4. Distributing Programs without Source

	Chapter 20. Windows Scripting Host Engine
	20.1. Object Rexx as a Windows Scripting Host Engine
	20.1.1. Windows Scripting Host Overview
	20.1.1.1. The Gestation of WSH
	20.1.1.2. Hosts Provided by Microsoft

	20.2. Scripting in the Windows Style
	20.2.1. Invocation by the Browser
	20.2.2. WSH File Types and Formats
	20.2.2.1. .wsf
	20.2.2.2. .wsc

	20.2.3. Invocation from a Command Prompt
	20.2.3.1. As a Conventional Object Rexx File
	20.2.3.2. As a Windows Scripting Host File

	20.2.4. Invocation as a COM Object
	20.2.4.1. Registering the COM Object
	20.2.4.2. Generating a Typelib
	20.2.4.3. Invoking
	20.2.4.4. Events
	20.2.4.4.1. COM Events
	20.2.4.4.2. Internet Explorer Events

	20.2.5. WSH Samples

	20.3. Interpretation of and Deviation from the WSH Specification
	20.3.1. Windows Scripting Host (WSH) Advanced Overview
	20.3.1.1. Hosts Provided by Microsoft
	20.3.1.2. Additional COM Objects
	20.3.1.3. Where to Find Additional Documentation

	20.3.2. Object Rexx in the WSH Environment
	20.3.2.1. Object Rexx Features Available
	20.3.2.2. Changes in Object Rexx due to WSH
	20.3.2.3. Parameters

	20.3.3. Properties
	20.3.4. The Object Rexx "Sandbox"
	20.3.4.1. Implications of Browser Applications That Run Outside the "Sandbox"

	20.3.5. Features Duplicated in Object Rexx and WSH
	20.3.5.1. Declaring Objects with Object Rexx or WScript
	20.3.5.2. Subcom versus the Host Interface
	20.3.5.3. .dll vs COM

	Appendix A. Using the DO Keyword
	A.1. Simple DO Group
	A.2. Repetitive DO Loops
	A.2.1. Simple Repetitive Loops
	A.2.2. Controlled Repetitive Loops

	A.3. Repetitive Loops over Collections
	A.4. Conditional Phrases (WHILE and UNTIL)

	Appendix B. Migration
	B.1. Error Codes and Return Codes
	B.2. Error Detection and Reporting
	B.3. Environment Variables
	B.4. Stems versus Collections
	B.5. Input and Output Using Functions and Methods
	B.6. .Environment
	B.7. Deleting Environment Variables
	B.8. Queuing
	B.9. Trace in Macrospace
	B.10. The RxMessageBox Function

	Appendix C. Error Numbers and Messages
	C.1. Error List
	C.1.1. Error 3 Failure during initialization
	C.1.2. Error 4 Program interrupted
	C.1.3. Error 5 System resources exhausted
	C.1.4. Error 6 Unmatched "/*" or quote
	C.1.5. Error 7 WHEN or OTHERWISE expected
	C.1.6. Error 8 Unexpected THEN or ELSE
	C.1.7. Error 9 Unexpected WHEN or OTHERWISE
	C.1.8. Error 10 Unexpected or unmatched END
	C.1.9. Error 11 Control stack full
	C.1.10. Error 13 Invalid character in program
	C.1.11. Error 14 Incomplete DO/SELECT/IF
	C.1.12. Error 15 Invalid hexadecimal or binary string
	C.1.13. Error 16 Label not found
	C.1.14. Error 17 Unexpected PROCEDURE
	C.1.15. Error 18 THEN expected
	C.1.16. Error 19 String or symbol expected
	C.1.17. Error 20 Symbol expected
	C.1.18. Error 21 Invalid data on end of clause
	C.1.19. Error 22 Invalid character string
	C.1.20. Error 23 Invalid data string
	C.1.21. Error 24 Invalid TRACE request
	C.1.22. Error 25 Invalid subkeyword found
	C.1.23. Error 26 Invalid whole number
	C.1.24. Error 27 Invalid DO syntax
	C.1.25. Error 28 Invalid LEAVE or ITERATE
	C.1.26. Error 29 Environment name too long
	C.1.27. Error 30 Name or string too long
	C.1.28. Error 31 Name starts with number or "."
	C.1.29. Error 33 Invalid expression result
	C.1.30. Error 34 Logical value not 0 or 1
	C.1.31. Error 35 Invalid expression
	C.1.32. Error 36 Unmatched "(" or "[" in expression
	C.1.33. Error 37 Unexpected ",", ")", or "]"
	C.1.34. Error 38 Invalid template or pattern
	C.1.35. Error 39 Evaluation stack overflow
	C.1.36. Error 40 Incorrect call to routine
	C.1.37. Error 41 Bad arithmetic conversion
	C.1.38. Error 42 Arithmetic overflow/underflow
	C.1.39. Error 43 Routine not found
	C.1.40. Error 44 Function or message did not return data
	C.1.41. Error 45 No data specified on function RETURN
	C.1.42. Error 46 Invalid variable reference
	C.1.43. Error 47 Unexpected label
	C.1.44. Error 48 Failure in system service
	C.1.45. Error 49 Interpretation error
	C.1.46. Error 90 External name not found
	C.1.47. Error 91 No result object
	C.1.48. Error 92 OLE error
	C.1.49. Error 93 Incorrect call to method
	C.1.50. Error 97 Object method not found
	C.1.51. Error 98 Execution error
	C.1.52. Error 99 Translation error

	C.2. RXSUBCOM Utility Program
	C.2.1. Error 116 The RXSUBCOM parameter REGISTER is incorrect.
	RXSUBCOM REGISTER EnvironmentName DllName ProcedureName

	C.2.2. Error 117 The RXSUBCOM parameter DROP is incorrect.
	RXSUBCOM DROP EnvironmentName [DllName]

	C.2.3. Error 118 The RXSUBCOM parameter LOAD is incorrect.
	RXSUBCOM LOAD EnvironmentName [DllName]

	C.2.4. Error 125 The RXSUBCOM parameter QUERY is incorrect.
	RXSUBCOM QUERY EnvironmentName [DllName]

	C.3. RXQUEUE Utility Program
	C.3.1. Error 119 The REXX queuing system is not initialized.
	C.3.2. Error 120 The size of the data is incorrect.
	C.3.3. Error 121 Storage for data queues is exhausted.
	C.3.4. Error 122 The name %1 is not a valid queue name.
	C.3.5. Error 123 The queue access mode is not correct.
	C.3.6. Error 124 The queue %1 does not exist.
	C.3.7. Error 131 The syntax of the command is incorrect
	C.3.8. Error 132 System error occurred while processing the command

	C.4. RexxC Utility Program
	C.4.1. Error 127 The REXXC command parameters are incorrect.
	C.4.2. Error 128 Output file name must be different from input file name.
	C.4.3. Error 129 SYNTAX: REXXC InProgramName [OutProgramName] [/S]
	C.4.4. Error 130 Without OutProgramName REXXC only performs a syntax check

	Appendix D. Notices
	D.1. Trademarks
	D.2. Source Code For This Document

	Appendix E. Common Public License Version 1.0
	E.1. Definitions
	E.2. Grant of Rights
	E.3. Requirements
	E.4. Commercial Distribution
	E.5. No Warranty
	E.6. Disclaimer of Liability
	E.7. General

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

