Cook

A File Construction Tool

User Guide

Peter Miller
millerp@canb.auug.@.au

This document describes Cook version 2.28
and was prepared 21 September 2007.

This document describing the Cook program, and the Cook program itself, are
Copyright © 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Peter Miller; All rights reserved.

This program is free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your optionydater version.

This program is distributed in the hope that it will be usefut WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANABILITY or FITNESS
FOR A FRARTICULAR PURPOSE. See the GNU General Public License for more
details.

You should hae receved a opy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc.,&8ple Place, Suite 330,
Boston, MA 02111, USA.

1. Introduction

This document describeok, a maintenance tool designed to construct fil€ook may be used to
maintain consisterydoetween gecutable files and the associated source files that are used to generate them.
The consistencis designated by the rela# last-modified times of files and is thus automatically adjusted
each time a file is edited, compiled or otherwise modifiédok validates the consistepof a g/stem of

files and gecutes all commands necessary to maintain that consystenc

Cook is a tool for constructing files. It is\gn a %t of files to create, and instructions detailingvito
construct them. In annon-trivial program there will be prerequisites to performing the actions necessary
to creating anfile, such as extraction from a source-control syst€wmok provides a mechanism to define
these.

When a program is beinga#oped or maintained, the programmer will typically change one filevefale
which comprise the programCook examines the last-modified times of the files to see when the
prerequisites of a file ka dhanged, implying that the file needs to be recreated as it is logically out of date.

Cook also prwides a facility for implicit recipes, allowing users to specifyvio form a file with a gien
suffix from a file with a different sfik. For example, to creafdenameo from filenamec

1.1 Why You Want To Use Cook
» Cook is a replacement for the traditionahké1) tool.
« There is anake2cookitility included in the distribution to help ceert makefiles into cookbooks.
» Cook is more powerful than the traditiomaéketool.
» Cook has true variables, not simple macros.

» Cook has a simpleu powerful string-based description language with yrarilt-in functions. This
allows sophisticated filename specification and manipulation without loss of readability or
performance.

- Cook has user defined functions.
» Cook can build in parallel.

« Cook can distribute builds across your LAN.

Cook is able to build your project with multiple parallel threads, with support for rules which must be
single threaded. It is possible to distrib parallel builds wer your LAN, allowing you to turn your
network into a virtual parallel build engine.

Cook is able to use fingerprints to supplement file modification tiffikis allows build optimization
without contorted rules.

« Cook can be configured with ampticit list of primary source files. This allothe dependernc
graph to be constructeddter by not going down dead ends, and also allows better error messages
when the graph canbe ®mnstructed. Thisequires an accurate source file manifest.

In addition to walking the dependangraph, Cook can turn the input rules into a shell script, or a
web page.

- Cook has speciatascadedependencies, allowing powerful include depengeggecification,
amongst other things.

» And Cook doestt'interpret tab differently to 8 space characters!

If you are putting together a source-code distribution and planning to write efilmakonsider writing a
cookbook instead. Although Cook takes a day ay tavlearn, it is much more powerful and a bit more
intuitive than the traditionainake1) tool.

Peter Miller Page 1

1.2 How to Use this Manual
This manual is divided into twparts.
The first part is tutorial introduction tmok. This part runs from chapter 4 to chapter 5.

The second part is for reference and details preciselydook works. Thispart runs from chapter 6 to
chapter 14.

Users familiar with other programs similar ¢cook are advised to skim the tutorial part before diving into
the reference part.

1.3 Ancient History

Cook was aiginally developed because | was marooned on an operating system without anytling e
vaguely resemblingnake€l). Thiswas in 1988. Sincd had to write my own, | added afeémprovements.
When | finally escaped back teix, in 1990, it took only tw days to portcook to SystemV | have snce
deleted all code for that original operating system, although clues to its identity are still present.

After | had cook up onunix, the progress the world had made caught up with lheas gratifying that
mary of the features other makoid authors had thought necessary were either already present, or easily
and seamlessly added.

Cook was written with portability in mind. This does not means it is entirely portable, but it comes close.
Cook has been tested on numerons flavors. Thiswas made much simpler in 1994 when | started using
the GNU Autoconf utility This means that when you obtain the sources for Cook, all wauthao is un

the configurescript included in the distribution and Cook will be configured for your syst8ee the
BUILDING file in the source distribution for more information.

In 1996 Cook had internationalization support added, so that users coeldrfta messages and other
warning and informational messages printed in theinvedtinguage. Thisvas made possible by the GNU
Gettext utilities.

In 1997 Cook had a major re-write of significant portions of its inference engine. This enabled the addition
of parallel processing support, and simplified adding user-defined functions to the cookbook language.

Peter Miller Page 2

2. Cook from the Outside

This chapter is part of the tutorial onvindo use thecook program. Itfocuses on hwe to usecook, without
needing to kner how cook works internally.

2.1 What can cook do for me?

By far the most common use of cook, by experts and beginners alike, is to issue the command
cook
and cook will consult its cookbook to see what needs to be done.

In generalcook is used to tad a €t of files and che on them in some way to produce another set of files;
such as the source files for a program, and tooturn them into thexecutable program file. In order for
cook to do anything useful, it needs to kmavhat to do. "What to do" is contained in a file called
Howto.cookin the same directory as the files it is going to work &bu need to gecute the cook
command in the same directory as all of the files.

2.2 What is cook doing?

TheHowto.coolile was written by the same person who wrote the source files. It contains a set of recipes;
each of which, among other things, contain commands fertbaenanipulate the filesThe cook program
echos each of the commands it is abouk&z e, so that you can watch what it is doing as it goes.

If the Howto.coolfile contained only commands, you would be betteusihg a shell script. In addition to

the commands is information tellirepok which files need to be constructed before other files can be, and
from this informationcook determines the order in which tgeeute the commandsAlso, cook examines

other information to determine which commands it need not do, because the associated files are already up-
to-date.

2.3 What can cook always do?
If you are in a directory with Blowto.cookfile, you can expect aviecommon requests to work

cook clobber This command can be expected to reenany fies from the directory which
cook is able to reconstruct.

cook all This is the default action, and so can be obtained by a stouople request. It
causesook to construct some specific file or set of files.

cook clean This is similar to "cook clobber" ake, but it only remwes intermediate files,
and not not the final file or files which "cook all" constructs.

In addition to the ahe, manyHowto.cookiles will also define

cook install If a program or library or document is constructed in the directiwy this
command will install it into the correct place in the system.

cook uninstall The nerse of the abee, it removes ssmething from the system.

2.4 If something goes wrong

Most errors whilecook is constructing file are caused by errors in the source files, and rigotte.cook
file. In general, you can fix the problems in the source files, aeclite thecook command again, and
cook will resume from the command which incurred the error.

To help you while editing the files with the errocepk keeps a listing file of all the commands xeeuted,
and ay output of those commands, in a file calléawto.listin the current directory.

You may want cook to find all the errors it can before you doyasiting, do do this, use th&ontinue
option (it may be abbreviated tofor convenience).

Peter Miller Page 3

2.5 The Reference Manual

For more information about the command ling@ments and options of the various commands mentioned,
you should consult the on-line manual pages. The Cook Reference Manual is also a good source of this
information, and is\ailable from the same place as you obtained this manual.

Peter Miller Page 4

3. Cook from a Cookbook

This chapter describes the contents and meaning of a cookbook, a file which contains infarooktion
needs to do its joblt focuses on what a cookbook looks like, and touches ow aréas of hav cook
works does its job.

3.1 What does Cook do?

The basic building block farook is the concept of eecipe A recipe has three parts:
1. oneor more files which the recipe constructs, known agafgets of the recipe

2. zeroor more files which are used by the recipe to construct the target, knowniagréugentsof
the recipe

3. oneor more commands taxecute which construct the targets from the ingredients, known as the
bodyof the recipe.

When a number of recipes arev@n, some recipes may describewhto cook the ingredients of other
recipes. Wherook is asked to construct a particular target it automatically determines the correct order to
perform the recipe bodies to cook the requested target.

Cook would not be especially useful if you had teeiexlicit recipes for hw to cook every little thing.

As a result,cook has the concept of amplicit recipe. Animplicit recipe is \ery similar to an xplicit
recipe, except that the targets and ingredients of the recijpm#ieensto be matched to file names, rather
than explicit file namesThis means it is possible to write a recipe, for example which constructs a files
with a name ending ind’ from a file of the same name, but ending.éhrather than.o'.

In addition to recipesgook needs to knw whento construct targets from ingredient§ook has been
designed to cook as little as possible. "As little as possible" is determined by examining when eash file w
last modified, and only constructing targets when that are out of date with the ingredients.

3.1.1 When is Cook useful?
From the abee description,cook may be described as a tool for maintaining consigtehsets of files.

3.1.2 When is Cook not useful?

Cook is not useful for maintaining consistgraf sets of things which arwiithin files and thusook is
unable to determine when thevere modified.For example,cook is not useful for maintaining consistgnc
of sets of records within a database.

3.2 How do | tell Cook what to do?

Sets of recipes are gathered together into cookbddleencook is executed it looks for a cookbook of the
nameHowto.cookin the current directoryIf you did not name a file to be constructed on the command
line, the first target in the cookbook will be constructed.

The best way to understandvha@o write recipes is anxample. Inthis example, aprogram,prog, is
composed of three filefo.g bar.candbaz.c To inform cook of this, the cookbook
#include "c"

prog: foo.o bar.o baz.o

{
}

is sufficient forprog to be constructed.

cc -0 prog foo.o bar.o baz.o;

This cookbook has twparts. Thdine

Peter Miller Page 5

#include "c"
tells cook to refer to a system cookbook which tells it, among other things tt@onstruct asomething
file from asomething: file.

The second part is a recipe. The first line of this recipe
prog: foo.o bar.o baz.o

names the targeprog, and the ingredientdpo.q bar.oandbaz.o

The next three lines

cc -0 prog foo.o bar.o baz.o;

are the recipe bogdwhich consists of a singleq(1) command to bexecuted. Recipéodies are alays
within { curly braceg, and commands ®lays end with a semicolor)(

Thus, to updateprog after aly of the source files @ been edited, it is only necessary to issue the
command

cook prog
This could be simplified furthebecausecook will cook the targets of the first recipe by default; in this
caseprog

The power of cook becomes more apparent when include files are considered. If tlo®.flandbaz.c
include the filedefs.h this would automatically be detected ¢nyok. If defs.hwere to be edited, armbok
re-executed, this would causeook to recompile bottfoo.candbaz.¢ and relink prog. The information
about hav to turn .c files into .o files came from the#include "c" " l'ine, which read in the C recipes
distributed with Cook.

3.2.1 The common program case
The abee example may be simplifiedven further If the four filesfoo.q bar.c, baz.canddefs.hall resided
in a directory with a path dsome/where/mmg, then theHowto.cookKile in that directory need only contain
#include "c"
#include "program"
for prog to be cookd. Thisis because theptogram " cookbook looks for all of theomething: files in
the current directorycompiles them all, and links them into a program named after the current directory.

The default target in thepfogram " cookbook is calledll. The ingredient ofll is the program named
after the current directoryTwo aher targets are supplied by this cookbook:

clean remuwes dl of the something files from the current directory.

clobber remwes the program named after the current directand also remees dl of the something
files from the current directory.

3.3 Creating a Cookbook

To usecook you will usually need to define a cookbook, by creating a file, usually dddiedio.cookin the
current directorywith your favarite text editor.

This file has a specific formaflhe format has been designed to be easy to leasn fer the casual user
Much of the power o€ook is contained in he it works, without complicating the format of the cookbook.

Peter Miller Page 6

Example of what a cookbook looksdilkre scattered throughout this document. The following example is
the entire cookbook for mgirprograms, some quite large:

#include "c"

#include "yacc"

#include "usr.local"

#include "program”
As you can seeyen for mary complex programs, the cookbook is remarkably simple.

Peter Miller Page 7

4. Cooking in Parallel

Cook is able to use the dependendformation in the cookbook to schedule more than one recipe body at
once, where theare independent. In large projects this is almostgs possible.

Paallel processing is of most use on multi-processor systéinsre are cases, Wever, when running tw
jobs at once on a workstation cangalvantage of disk or network latencies.

Paallel processing requires more resources than the simple case. Because more commands are running,
more CPU is required,up also more virtual memory and more temporary file spa@eL need to be sure
that cooking in parallel is a sensible thing to be doing.

4.1 Command Line Option

The-PARallel option is used to tell Cook to run the recipe bodies in parallel. By default, 4 jobs run in
parallel. You may specify the number of jobs after the optmg.(-par=2) if you wish.

4.2 Cookbook Variable

It is also possible to set the number of jobs from within the cookbook by usimatakel jobs
variable. Thiscan be used to automate the selection of the number of jobs, based on the current host name:
if [not [defined parallel_jobs]] then
{
host = [os node];
if [in [host] cerberus] then
parallel_jobs = 3;
else if [in [host] zaphod] then
parallel_jobs = 2;
else if [in [host] hydra] then
parallel_jobs = 8;

In this way, the number of jobs will be set appropriately for each machingjded the number of jobsag
not already set by the command line option.

4.3 Recipe Writing

Most recipes run in parallel without fidulty, howeve some will require special treatment. The problems
arise from conflict for resources — usually temporary files.

The simplest example of thisyacq1). Theoutput filenames are hard-codederewhen you write a more
general recipe:
%.c: %.y
single-thread yy.tab.c

{
[yacc] [yacc_flags] %.y;
sed "'s/[yY]lyY]/%_/g™ yy.tab.c > [target];
rm yy.tab.c;

}

Replacing therY is a common method for getting more than one yacc grammar into a progvamn
into trouble with theyy.tab.c file becauseery one of the yacc grammars will need to use the same
temporary file name.

Thesingle-thread clause tells cook to find something else to do if it discothat it wants do tevof
these at the same time.

Peter Miller Page 8

The temporary file name may not be sadent as in the yacc case. The GNU Autoconf utilities use a
number of temporary files in the current directdiyt none of them appear in the text of the recipes.
%: %.in: config.status
single-thread conftest.subs

{
CONFIG_FILES\=[target] CONFIG_HEADERS\= config.status;
}
It is common, if your project uses GNU Autoconf, to generaterak files in this vay. Once the
config.status script is produced, all of these files will then be candidates for cook to generate — b

they can only be done one at a time.

Other resources, such as tapeveltj can also be described in tiagle-thread clause. ¥u can do
this by device namee(g./dev/irmt/0O) or by some descriptie gring. Thesingle threading is performed
by mutually exclusie gring sets, not by inode.

4.3.1 Concurrent Execution Threads

Each recipe, when its actions aseauted, is recuted within an xecution thread.Execution threads share
almost @erything in common; this includes all of thenables, the state of thisét” statement, the stat
cachegtc

If you need to create variable names, or temporary file names, which are unique to a thread, use the
[thread-id] variable. Thisvariable has a uniquealue for the life of a thread. No other concurrent
thread will hae the same value.

Note, havever, that the[thread-id] values of completed threads will be re-used; this ensures that when
it is used to construct variable names, theiables will be re-used. This memts memory bloat when
cooking large projects.

4.4 File Locking

The abwee dscussion applies to utilities which perform no file locking, and thus cannot detect or sequence
multiple accesses to a resource. Other programs, such as those which access databases,opitey ha
capable file locking mechanisms and are able to manage multiple parallel updates on theiviatimng ob

the need for theingle-thread clause.

4.5 Virtual Machine

It is possible to simulate a parallel machine if you are on aanktwCookis able to distribute tasks to
computers on a network, if it isvgn aufficient information.

The first information Cook requires is the list of machin&kis is done using thparallel_hosts
variable. Note: The tasks will be distributed amongst these machines independent of the setting of the
parallel_jobs variable. i.e. even if you are not doing parallel processing.

parallel_hosts = larry curly moe;
If you want to gve acne machine more wieghting than the others, (segause it is twice as fast) you simply
name it more than once. Cook will use these names in round-robin fashion.

4.5.1 Remote Shell Command
Cook uses the Beekeyrsh(1) command to woke the remote commandyYou can set the command, or the
command and some options, usingphaeallel_rsh variable. Thedefault value is
parallel_rsh = rsh;
In order to work in a useful &y, Cook males some assumptions about your environment and your account:

« That your system administrators allogih(1) to be used on your network.

« That your account nhame is the sameatirmachines (otherwise noven thersh - login-name
option will help).

Peter Miller Page 9

+ That the/etc/hosts.equiv file, or your~/.rhosts file, is set omall machines so that you
don't need to gie a @ssword.

« That all of the necessary files and directories are mounted in exactly the same place on all of the
machines; and that there the same filesn all machines, via NFS or similaAutomounters can
malke this especially messy.

« That your account start-up scripts set the necessaiiyoement settingse.g. command search
PATH without ary intervention required.

- That all of the machines are of the same architecture, or that the architectur¢ matsn’

« That the system time is synchronised on all machines, usatg1) from cron(8), or using NTPor
similar.

4.5.2 Limitations
There are some inherent limitations in thie(1) protocol.

- Your current environment variable settings are not transferred adiesther areulimit settingsetc
If any are important, you need to write the cookbook to explicitly replicate them.

- The «it status of the remote command is not reported in the exit status c$h(ti¢ command
There are internal contortions used by Cook to obtain the exit status; error about mysteriously named
files usually indicate that one or more of thexabasumptions is being broken.

4.5.3 Secure Shell

It is possible to use the Secure Shell (ssh) instead of Remote ShellTinghyives you fully authenticated,
fully encrypted sessions, botles your intranet andwen over the Internet. Once you ha it installed and
configured correctlyyou simply replace thesh command in the alve examples with thesshcommand.

This is accomplised by setting
parallel_rsh = "ssh";
Somewhere near the top of your cookbook.

4.5.4 Host Binding
In some cases, such as licensing conditions, some commands will only run on a limited set &dtbsts.
than perform all commands on those hosts, it is possible to bind recipes to specificTh@stsinding
overrides theparallel_hosts variable.
%.c: %.esql
host-binding shylock
{

esql %.esql > [target];

This example says that the embedded SQL preprocessor is only to be run on the database server called
“shylock’, probably due to usurious licensing feeslowever, you may want to perform your other
development activities on more lightly loaded machines; this clause only applies to this one recipe, other
recipes behse & normal.

The host-binding clause may hae nore than one host named, andythéll be used in round-robin
fashion. Thiss a recipe-leel variant of theparallel_hosts variable.

The host-binding clause will apply independent of the setting of the settpagallel_jobs and
parallel_hosts variables.

The recipe leel host-binding overrides the cookbook &l parallel_hosts when determining
which remote hosts should be used.

If the list of hosts gien to the host-binding clause is empfythe local host will be used (normal recipe
execution will occur).

1. The Berkelg sources certainly dottontain code to do this. Do wpother vendors hae a nore useful implementation?

Peter Miller Page 10

If you need to include the local host in the round robin,losalhost or [os node] , howeve this

will behave exactly the same as for a remote hosau should also consider hard coding the name, that
way you get the same behar no mater which of the machines in the rond robin the Cook command is
executed on.

4.5.5 Load Balancing
It is possible to uséost-bindingto perform load balancingThis is accomplished by usingip(1) to
discover which hosts are least bysind then using this information tovioke the system’ssh(1).

This may be accomplished by using

parallel_rsh = "cook_rsh";
someavhere near the top of your cookbook ¢mok_ish —sfor secure shell).You then gve dasses of hosts
to the host-bindingclause of the recipes, rather than specific host narSeg.cook rsifl) for more
information about setting up classes of hosts.

If you still need to gie pecific host names to some recipask _rsil) will cope with this, too.

4.6 Virtual Machine, Revisited

It is also possible to ka Cook run multiple processes in parallel without having tovkméhat machines
are aailable. Thismethod puts control of the nedvk resources in the hands of an external program, one
example of which igook_rsh , distributed with Cook.

Once you hee such a virtual network defined it becomes very easy to build projects for multiple platforms
or architectures in the sameild. It also allows easily adding wemachines, or disabling machines for
maintenance. Thertual network can be changed aydime without disturbing ongoing delopment.

The following examples will hae the form allowing multiple architecture builds, but of coursey tivél
work for single architecture as well.

4.6.1 cook_rsh

Thecook rsh system is just one way of defining the capabilities of/engietwork in a way that a single
program can makthe best choice of machine for aei job. It does so in a way that is reliable and does a
decent job of balancing loads acrosailable machines,wen with multiple developers doing builds at the
same time.

Each job that requested W@aok rsh picks the appropriate machine from those able to do the job at that
instant in time. In contrast foarallel_hosts or host-binding hostA hostB etc , it does not
work from a list which was current at the time a cook process started. Thus it is less vulnerable to
machines going 6fine or becoming werloaded as time passes.

Currentlycook_rsh usesrsh to actually &ecute the job, so requires the same network setup. Tkte ne
version may usenulticast instead for gen finer control and reliability.

There are minor differences in the setup to asek rsh control. Thefirst is that Cook no longer
requires a list of machineslt is not necessary to set thgarallel hosts variable. The
parallel_rsh variable is set as:

parallel_rsh = cook_rsh -v;
The-v option produces information as to what machine was actually picked for each job.

4.6.2 Host Binding
All recipe bodies which should run in parallel nedabat-binding setting. Rathethan list the hosts to
be used we form a name which is usedcbgk_rsh to select an appropriate machin€his name may
include ararchitecture component and @peration component.
%1/%.0: %.c
host-binding %1 _C
{

}

[%1_cc] -o [target] -c [resolve %.c];

Peter Miller Page 11

%1/%2: [addprefix %1/ [%2_objs]]
host-binding %1_L
{

}

This example says that the compiles for a certain architecture shoeldde& on ay machine designated

as a compile host for that architecture. And linking jobs should go to machines designated as a link host for
that architecture. Of course the same machine could probably do bothijblgsulget to define it as you

see fit, and change the designations from moment to moment. Current designations per architecture are:

[%1_1d] -0 [target] [resolve [need]];

_C Compile (Compilsource code)

L Link (link binary programs)
T Test (runautomatic tests)
_B Build (including cooking, or generic jobs)

And others may be added if necessary by simple extension.

4.6.3 Administration of cook_rsh

The definition of the virtual netwvk used bycook_rsh is contained in just a voonfiguration files.One
file lists designations, and lists machines belonging to each designation. The ottexcisdmfile, which
lists machines which should not be used for wresiteeason.

The designations file may be created by hand if desined htility calledrate_hosts is provided that
can generate thieost_lists.pl file, possibly after being customized for the particular requirements of
a gven environment.

The exclusion file lists machines that shouldende ®lected. Thexclusion file can be edited atyatime
and adding a machine will prent ary further jobs from going its ay. Remaving the name will agin
allow selection of that machineHow soon a job actually goes there depends greatly on theoretw
utilization. Theexclude_hosts file contains machine names and optional comments. Xample
exclude_hosts file might contain:

| ist of hosts to exclude from arch_hosts lists

f or whatever reason.

monolith # not a development machine - the ftp host
namshub # developer test station

tiamat # unreliable configuration

locutus # Being upgraded

This is handy for maintenance on machines. If a particular machine needs to be braughtdaimply
add its name to thexelusion file. Checking its process list will tell whenyaturrently running remee
jobs are done. After that it can safely be brought down without affectingctive huilds.

Peter Miller Page 12

5. Include File Dependencies

A significant factor in a cookbook accurately describing the dependencies in a program are the include file
dependencies. Theese three methods for doing this in Cook. The first is easily understandable but is too
slow to use on lage projects, the second is a little harder to understand, but works well for large projects.
The third method is rather cenluted, but works well for projects with mathousands of source files and
multiple simultaneous architectures built within the same source tree.

The recipes here are merelyagples and starting points; you will almost certainly need to enhance them
to suit the needs of your projectAreas you will need to address include (a) the existence df path

options, (b) the use dfearch_list variable and thegresolve] function, and (c) heterogeneous
development. Thetechniques also apply to other languages, such as Fortran, Pascal and Roff, but each
requires a language-specific include scanning program

5.1 The Manual Method

Well, actually there are four methods, if you count maintaining the dependencies mafih#hhas the
serious defect that humans tenddmet to update the cookbook. On a large project not altldeers are

familiar with the workings of Cook, and so thghy avay from updating the cookboolBy finding ways to

automate include dependgnprocessing, we reduce the risk that aaligper will forget to update the
cookbook, and we reduce the risk that the cooklzoddppendeng information is out-of-date.

Automatic include dependepenethods described belohaveflaws, and can ner replace a human for
flexibility and domain knwledge. Orthe other hand, humansueaketter things to do with their time than
grope files for include file dependencies€likrite neat software).

5.2 Debugging Cookbooks

Before we proceed furtheit is worth spending some time waing some of the methods for defging
your cookbook, because small mistakes in implementing the methods daidecome quite difficult to
locate.

5.2.1 Command Locations
Usually Cook will echo all the commands Xeeutes, just beforexecuting them. If you add the line
set tell-position;
near the top of your cookbook, Cook will add the filename and line number within the cookbook to each
command it echoes. This can be useful in figuring out which recipe Cook actually chxssite.e

5.2.2 Printing Stuff
Often you will want to hee Gook print various pieces of information. The wrong way to do it is with the
shell's "echo" command

echo variable "=" [variable];
because this iokes another process (which can neakkehugging parallel cookbooks harder) and because
of the optionaldata ... dataendavhich can follev commands (see the command statement in the language
definition, belav). Thecorrect method is to call the "print" function, dikhis

function print [__FILE__]: [__LINE__]: variable "=" [variable];
Note the use of the _ FILE__ and _ LINE__ builtins, which provide you with cookbook position
information.

5.2.3 Trigger Ingredients
Another useful piece of information is the ingredients which caused Cookdkeira farticular recipe
body The following function

function say-why =

{
if [count [@1]] then

2. Thec_inclprogram understands Roff, you just need to use-theption.

Peter Miller Page 13

@1 = [@1];
if [count [@2]] then

@2 = [@2];
local tt = [target];
if [defined targets] then

tt = [targets];

localt=;
if [in [count [younger]] 0 1 2 3] then
{
function print [@1] [@2]
Building [target]
because of [younger];
}
else
{
function print [@1] [@2]
Building [target] because of
[wordlist 1 3 [younger]] et al;
}
}
can be inserted at the beginning of a recipe
%.0: %.c
{
function say-why [FILE_ J[_LINE_ J;
cc -¢c %.c;
}

to say wly the recipe was wroked. Thiswill even include dependencies automatically determined by all of
the methods which folig, not just those named on the right-hand-side of the recipe itself.

5.3 Tools

All of the automated include file dependgmethods described belouse thec_incl1) program included
in the Cook distribtion. It has a number of options tailored for use with Cofkr exact information

about thec_incl command, consult the on-limearn(1) system (it should wa keen installed) or the Cook
Reference Manual.

Other tools are\ailable. Thecommonest is to use tlgecM option, which produces a list of include
files on the standard outpuBecause thgccM output is aimed at GNU Make, you will need ank(1)
or sedl) script to massage the output into a format suitable for Cook.

5.4 The Small Method

The easiest way to determine a §legiclude dependencies is within the reciiagredients.
%.0: %.c: [collect c_incl -api %.c]

{
}

Note the second colon — theecondset of dependencies are onlydeated after Cook has chosen to
activate the recipe (based on the first séthis does not guarantee that the file exists yet (it may tabe
generated biex or yacq, which is wly the--Absent-Program-Ignore option is required.

cc -c %.c;

This method has the aatage of simplicity It uses a single recipe which reads the way recipes usually
read, and does not containyamusual constructs.

There are tw problems with this method. The first is that it doésoale well. When there are only anfe
source files, the processing burden of runrinincl for every .c file every time Cook is imoked is hardly
noticeable. The_incl program caches the results of its scans, so that is can minimize the length of time

Peter Miller Page 14

taken, and this does help a littlelowever projects with hundreds or thousands of files fimehehe cached
performance an unreasonable burden; it is constantly re-calculating something which has not changed from
one run to the next.

The second problem is that theincl program is run when the dependgigcaph is being built, not when it
is being valked. Thismeans that the file (or a subordinatéh file) may hae keen out-of-date at the time.
When the graph is alked, it will have been regenerated, and theoteets of include files, those determined
by c_incl at graph building time, and those seencbwt graph walking time, may not agree — which may
result in compile-time errors.

5.5 The Large Method

For projects with large numbers of files, hundreds wenethousands, it is necessary to re-calculate the
include file dependencies only whercdile changes, or a subordinatefile. Ideally Cook should access
this information directlyrather than running a program to determine it or to fetch it.

The first task is to me the information whictc_incl caches into a format that Cook can access directly;
Cook can then read in this information as it scans the cook®Bwknaking a separat&lependency’file
for each.c file, we can use existing Cook mechanisms to descrivedkeep this file up-to-date.

The dependendile is generated and maintained as follows:
%.c.d: %.c
{
c_incl --no-cache %.c
"--prefix="%.0 "[target]": %.c™
"--suffix="set nodefault;™
-0 [target];
}

This recipe generates a file which contains a mini-cookbook describing the ingredientolbjetiéle.
The dependencies are in terms of the object file becausg dfahe .h files change, it is the object file
which is out-of-date, not the file. Themini-cookbook itself is also described, so that i ahthe source
files change, the mini-cookbook can be brought up-to-date again.

The recipe for the object file is less complicated than in théque section, because the mini-cookbooks
supplement it:
%.0: %.c

{
}

The only thing missing is oto get the information in the mini-cookbooks into the main cookbotikis
is done with an include diregg in the cookbook itself, but a special form of it. The names of the mini-
cookbooks can be determined the same way as the names of the object files, and this allows the cookbook
fragments such as the following to be written:

object_files = [fromto %.c %.0 [source_files]];

dependency_files = [fromto %.c %.c.d [source_files]];

cc -c %.c;

#include-cooked [dependency _files]

The#include-cooked directive fays to include the named files (there may be more than one) if the file
exist. Oncethe cookbook (and its includes)vealeen read in, the files included with this direetire
checled to see if theare up-to-date.If they are not, then theare re-cooked, and then Cook stari&ro
again; this time with up-to-date include dependencies.

The advantage of the method is that if the source files dbahge, the dependgninformation is not
recalculated, this can result in significantings. Also,no processes arevioked if nothing has changed,
Cook reads the information directlBecause file opens are significantly cheaper than proocexsaitions,
this results in a significant performance imment.

Peter Miller Page 15

The disadvantage of this method is that it is harder to describe and harder to implBonetuninitiated
the cookbook looks incomplete andedy complex.

Another problem is that if you delete an include file, Cook will complain that it is unable @ dei
dependengfile because the include file is not prese®imply delete the dependsnfile and start aajn.

To avoid the problem, remee references to include files, and re-build, before deleting the include files.
This problem is seen from time to time, but does not present a huge problem in normal practice.

5.6 The Cascade Method

When large numbers of files arevalved, it becomes clear that the more popular include files are being
scanned repeatedlyrhis can be un-necessarily time-consuming when a popular include file is touched, as
the dependendiles of all.c files which reference it ven indirectly must be re-calculated.

There is also a problem when you are attempting to perform heterogenous builds for multiple architectures
out of the same sourceshis is typically done by inserting the architecture name into the object file path as

a drectory. This presents another problem: nominating all of the architectures on the left-hand-side of the
regenerated dependencecipes. Especiallyf you add another one after the fact wnall the existing
dependengfiles must be recalculated, merely to add the arehitecture.

An alternatve is to £an each of the source files and include files once, and request cook to combine them
together at bild time, rather than at dependence scan time. This is doneeasngde recipes. These
recipes nominate additional ingredients (on their right-hand-size)yibathe files on their left-hand-size
appears in an ingredients list.

cascade foo.c = bar.h;
This recipe says that amecipe which hafoo.cfor an ingredient, also hdmr.hfor an ingredient.

This takes care of the heterogeneous case, because while the recipes remain specified in a simple manner
viz:
%1/%0%.0: %0%.c

{
%1-gcc -o [target] -c¢ %0%.c;

Any and all of them which compiléo.cwill depend orbar.h from thecascade recipe. (Thisexample
assumes that you are usiggn(1) in the usual &y, and that your architecture names match the GNyetar
names.)

The dependencfiles are generated and maintained in much the same way as before, except that you need
two: one for.c files and one forh files:
%0%.c.d: %0%.c
set no-cascade

{
c_incl --no-cache --no-recurs %0%.c
"--prefix="cascade %0%.c =™
"--suffix=";"
-0 [target];
}

%0%.h.d: %0%.h
set no-cascade

{
c_incl --no-cache --no-recurs %0%.h
"--prefix="cascade %0%.h ="
"--suffix=";"
-0 [target];
}
You will also need to add thé.d files to the#include-cooked lines, to ensure tlyeare generatedIf

there are angeneratedc or.h files, you will need to mention these, too.

Peter Miller Page 16

5.7 Dependencies on Derived Files

If the relationship between a target and av@eringredient appears only in a dexd cookbook, it is lilely

that a clean tild (solely from primary source files) wilkfl. It is recommended that relationships such as

this be placed in a primary source cookbook. Cook looks for such dependencies, and will warn you about
them.

An example of this is commonly seen when using 4tieoption with yacql). If you hare a gparate
lexical analyzer (the usual reason for usidg it will need to include the generated token definition file.

When you first add thgacql) grammar definition, Cook will generate both the and.h file from the
usual yacc recipes. It is only latevhen you hee deaned out all devid files (including the dependenc
files) that you may hee poblems. Wherés it recorded that Cook needs to regenerate the token definition
file before it can determine the include dependencies of Xfealenalyzer?(They were in ad file which

was “cleaned’ away.)

Cook will detect this situation at the first possible moment, aanth wou. But placing the dependgno a
non-derved cookbook €.g. Howto.cook) the warning will go way, and you will be able to do reliable
clean builds.

If you are convinced that Cook awayswrong in your case, it is possible to suppress tl@imimg. Place
the line

set no-include-cooked-warning;
in your main cookbook, and the warning will not be issued.

Suppressing the warning could lead to problefhss often better to add the ingredients recipegin the
warning to the cookbook,ven if you think it is redundantThis disables a single instance of tharming,
rather than all of them — subsequealid instances will still be reported(Implicit ingredients recipes,
rather than explicit ones, are a useful alteueaifiyou have a onsistent pattern.)

5.8 Renaming Include Files

A consistent problem when youveaitomatically generated include dependencies is that when yee mo
an include file, Cook complains that a required ingredient does not exist.

The easiest way tovaid this is to do a fe things before you build again after moving the include file.
» Move the include file to the mename.

« Where the include file wefsom, put a file containing the line
#error "I'm not here"
to male Cook happy (the ingredient will exist), but also Y& the compiler generate an error if you
miss a reference to it.

- Edit all the references to the old include file name to reference thearae. Dort worry if you
miss one or two, the previous step will catch it.

- Reluild the program.Cook will automatically re-calculate all of the include dependences and then
recompile.

- If you missed one of the include file references, Cook will not complain, but the compile(Tail
assumes you are using whole-project builds, as describedliarie Rojectschapter.)

- Once the program builds cleapntgmove the fake dd include file, because you kndor certain that
there are no longer gmeferences.

Peter Miller Page 17

6. Building Large Projects

This chapter ceers some of theissues you may come across in building large projectsves gi &eleton
for how you could use Cook to build a medium-to-large projects, aad @vers some heterogenousild
issues. Itis expected that you will use this chapter as a guide; yowelaggnent environment, and the
shape of each individual project, mean that you will probably change this to suit your own needs.

The material in this chapter uses mamary features of Cook. If you are not familiar with Cook, you may
want to read the rest of this User Guide to get a good idea of €ta@litures and capabilitiegven if you

are fimiliar with Cook, you may need to refer to the language guide and built-in function descriptions from
time to time.

6.1 Whole Project Build

The skeleton gen here builds the whole project as a single Cookodgation, @en when the project
consists of tens thousands of individual source fildss is distinct from a build process which has Cook
recursvely invoking itself in deeper directories, or a shell script doing much the same. Some of the
adwantages of doing whole project builds will be discussed in a later se€omow it is sufficient to say

that experience has shown repeatedly that this method does scale to significant projects.

The first thing about a single build pass is that it happensveelata sngle fixed place. The logical place
is the top of the project source tfedhis works well with theseach_list functionality, mentioned belw,
which simplifies the structure of pete work areas.

6.1.1 Project Directory Structure
In the examples use in this chaptle following directory structure is assumed:

(1 Project
— [Howto.cook
—(library

E [sourcelc

[source2c

[etc...
—(include

[apilh

[api2h

[etc...

— (T programl

[source3c
[sourcedc

[etc...
L program2

E [sourcesc

[source6e

[etc...

Below the project directory is dibrary directory which contains functions common to all of the
programs. Allsource files in this directory are to be compiled, and linked into a libfafigen the
programs are linked, tlgawill all reference this library.

Next to thelibrary directory is thénclude directory This describes intesites and data shared by the
project. Informatiorwhich is private to the internals of the library or a programs belongs there, not in the
shared include space.

The rest of the directories b&ldhe project directory are programs to halth Thesources files in each are
to be compiled and linked, together with the common libraoyform the programs. The name of the

3. If you ever want to use Aegis for configuration management, this is what Aegis expects.

Peter Miller Page 18

program will be taken from the directory.

This is a common enough picture, repeated forynanjects. Your indvidual projects may vary in the
details; you may hee nore directory lgels belaw thelibrary directory or dl of your programs may be
below a dngle commanddirectory With simple changes to the examplegegiin this chapteryou will be
able to cope with just aboutyaproject structure.

6.1.2 File Manifest
There are man ways of discuering the source files you are working witiMany configuration
management systems are able teegbu a list of them.For example, if you were using Aegis, yowuld
say
change_files =
[collect aegis -I cf -terse -p [project] -¢ [change]];
project_files =
[collect aegis -I pf -terse -p [project] -c [change]];
manifest =
[sort [change_files] [project_files]];

If you were using RCS, you could find all of the RCS files, and reconstruct the original filenames from
them,viz:
manifest =
[fromto ./%0RCS/%,v %0%
[collect find . -path "*/RCS/*,v" -print]
I;

Or you could simply scan the directory tree:
manifest =
[fromto ./%0% %0%
[collect find . I - type d -print]
I;
This is will find too much, but what foles will not be altered by this. If you want to get moreatbed,
however, it helps to hae an accurate primary source file manifest.

6.1.3 Compiling C Sources

Recalling that the build will takpace from the top of the source tree, this means that there it is going to
have © be drectory components in the filenames in the commamdwted by Cook, and in the recipes
Cook is to use.

This chapter uses Gamples, but the same techniques work just as will with Fortran or Groffytiag
else. Mosbf it maps directly; you may need to adjust for your specific compiler behavior.

This chapter starts with the lowestéeof building a project, the individual source files, and works iy w
upwards, building on the examples until the whole project, including the library and all programs edle link
in a single pass.

So, when cooking C sources, you need recipes of the form
CC = gCc;
cc_flags = -g -Wall -O;

%0%.0: %0%.c
{
[cc] [cc_flags] -c %0%.c
-0 [target];

}
The *%0 part of the patterns matches zero or more directory parts. If your compiler insists on putting the
output (o) file into the current directory (the tops&t one) you will need to mee it, after:

%0%.0: %0%.c

{

Peter Miller Page 19

[cc] [cc_flags] -c %0%.c;
mv %.0 [target];
}
But, most &isting sources will be assuming that most of their include files are in the same directory as the
source files.We reed include options to indicate this. This is most easily done by using more pattern
elements
%1/%0%.0: %1/%0%.c
{
[cc] [cc_flags] -1%1 -c %0%.c
-0 [target];
}
Or by using the dirname of the source file
%0%.0: %0%.c
{
[cc] [cc_flags] -I[dirname %0%.c] -¢c %0%.c
-0 [target];
}
For structures more than 2 directories deep, these mwoduce different options. Depending on your
project structure, if you W& deep directories, one will probably be more suitable than the.oee
elggant use for deeper directory structures is to reflect the C++ inheritance hiemdirebtly in the
directory hierarci.

The simple[cc_flags] variable is often not sfitient. Insteadyou may want to replace it with
[variable_by path "cc_flags" %0%.c] which will look for several variables (all prefixed with
"cc_flags") based on the name of the source Slkee thé=unctions Libary chapter for a description of this
function.

The common include file will also need to be searched. Because of where the command is issued, it is
rather simple to add thieclude directory,viz:
%0%.0: %0%.c

{
[cc] [cc_flags]
-I[dirname %0%.c] -linclude
-C %0%.c -0 [target];
}

It is important to note that all of these recipes, and the commangexbrite, are independent of the
location of the source file. It is possible to customizecthilags used, based on the target file, vere
the directory containing the file, without compromising the generality of the fecipe

6.1.4 Tracking Include Dependencies
When it comes to tracking include dependencies usimgl, you need to rememheagan, that the Cook
happens from a single place. All of the recipes thatclwrites for you must beelative to that place

Continuing our gample, and assuming we are using the cascade include method described widhe pre
chapterwe reed include dependentiles which look similar to

cascade programl source3c =

include/ apilh

Working backwards, we need to create the dependiecusing the following recipe:
%0%.c.d: %0%.c
set nocascade
{
c_incl -nc -ns -nrec
-I[dirname %0%.c] -linclude

4. Hint: use a function, and p&sarget] as the argument.

Peter Miller Page 20

%0%.c

-prefix "'cascade %0%.c ="
-suffix ;™

-0 [target];

}

For other source languages, you will need to usecthiecl --languae option.

The dependerycfiles need to be included in the magiaywso that Cook will build them again if there
out of date. This method needs the source file manifest i@ #rer names.
dep-files =
[addsuffix .d
[match_mask %0%.c [manifest]]
[match_mask %0%.h [manifest]]
I;
#include-cooked [dep-files]
These files will only be re-calculated if thare out of date; theare small and often zero-length, and so are
usually very quick to read, adding little to the time it takes to read the cookbook.

Notice that adding a mesource file will automatically cause it to be scanned for include dependencies,
without modification to the cookbook.

6.1.5 Linking Libraries
To link libraries with a generic recipe, you need a generalizay a¥ specifying their contentsA little
trickery with constructed variable names does the job:
%l/lib%.a: [[target]_obj]
set unlink
{

}

The right-hand-side of recipes has late binding, and we use the name of the target to tell us the name of the
variable which holds all of the object fileg\ssigning this variable looks bizarre, but it looks more logical
as you hee nore and more of them...
library/liblibrary.a_obj =
[fromto %0%.c %0%.0
[match_mask "library/%0%.c" [manifest]]

ar cq [target] [[target]_obj];

I;
The great thing about this construct is that you can build a loop, usingsGoof’'statement, that assigns a
variable for each of your libraries, if you Y& nore than one.

Notice that adding a melibrary source file will automatically cause it to be compiled into the library
without modification to the cookbook.

6.1.6 Linking Commands
We'll use a similar trick for each of the programs you want to link... First the link line
bin/%: [[target]_obj]
set mkdir

{
[cc] -o [target] [[target]_obj];

Then the objectsariable. Notehow we ad a libraryfilenamehere, this will still only use the library
portions actually referenced, not the whole libracyit won’t bloat your programs.
bin/ program_obj =
[fromto %0%.c %0%.0
[match_mask program/%0%.c [manifest]]

]
library/liblibrary.a

Peter Miller Page 21

Notice that adding a meprogram source file will automatically cause it to be compiled and linked into the
program, without modification to the cookbook.

The loop construct tends to obscure things, which ig thie essential assignment wasegi first. This
next fragment shows the whole loop.
programs =
[fromto %/main.c %
[match_mask %/main.c [manifest]]
I

program_list = [programs];

loop
{
program = [head [program_list]];
if [not [count [program]]] then
loopstop;
program_list = [tail [program_list]];
bin/[program]_obj =
[fromto %0%.c %0%.0
[match_mask [program]/%0%.c
[manifest]
]
]
library/liblibrary.a
}

And now tell Cook you actually want it to do somethingglibuild all of the programs...
all: [addprefix bin/ [programs]];

Notice thg way thecommands variable is constructed: just adding asneommand (and itsnain.c file)
will automatically cause it to be built, without modification to the cookbook.

6.2 Private Work Areas

This chapter is about large projects, but large projects usually means large numbemopede The
directory structure and cookbook presented axodoes not immediately lend itself to use by multiple
developers.

6.2.1 Directory Structure

The method suggested here uses CGogkach list functionality which nominates a search list of
directories that Cook looks in to find the files named in the recipbis can be used toverlay a prvate
work area on top of a master repository.

N Repository -
7 main.c -~ .
it partl.c,’ \ Comb[ned View
Wark Area prgiritT_f
main.c /// part2.c
part2.c e

When recipes are run, the results are written into tbek\area, which means that the repository can be
completely read-only.

It follows from this, that the directory structure of the work area exactly parallels the directory structure of

Peter Miller Page 22

the repository.Exceptyou only check out files into your work area that you actually need to change.

6.2.2 Finding the Cookbook
Setting the search list is done with a simple assignment. In your work area, create &iswipleook
file, containing only 3 lines:

set mkdir;

search_list = . /project/repository ;

#include /project/repository/Howto.cook
You only use this file if you dot’need to modify the cookbook itselffou can male it work aways, esen
if you are modifying the cookbook, by giving the cookbook a different namaén(cook), and changing
Howto.cook to alWways read

set mkdir;

search_list = . /project/repository ;

#include [resolve main.cook]
The [resolve] function walks the search list, looking for the JileThis gives you access to Coak’
internal search mechanisrhlowever, we dso need to modify each of the recipes teettile search list into
account.

The uneplained mkdir flag is used to request that directories be automatically created before recipe
bodies are run. This is common for large projects, where the source files are structurederatcssb-
directories, rather than all lumped together in the one place. This may be nedessaxgmple, if ac

file in the repository needs to be recompiled becaukefde in the work area has been changed.

6.2.3 File Manifest
The files could be in either of tnplaces. Yu need to merge them. Most configuration management tools
do this for you; in thisxemple we’ll scan the directory treesaaiy Fortunately Cook comes with a tool to
do this efficiently.
all_files_in_.=;
#include manifest.cook
manifest = [all_files_in_.];

/* This reduces re-scanning to a minimum. */
set fingerprint;

%0manifest.cook: ["if" [in "%0" "] "then" "." "else" "%0"]
set mkdir
{
cook_bom /* Bill Of Materials */
[addprefix *--dir=" [search_list]]
[need] [target] ;
}
At the end of this fragment, theanifest variable contains a complete list of all files in the directory
tree(s). Thissariable may then be taken apart with thatch_mask function to build ingredients lists.

Theif function is different to thé statement. lallows you to select one of bwalues (thehen part or
the else part) without creating a dummyasiable. Inthis example, it wuld be impossible to create a
dummy \ariable. Remembdbp quote thef , then andelse strings, otherwise Cook will think tlyeare

if, thenandelsekeywords, and gie you a syntax error.

The constructedhanifest.cooftiles work for both the top-ieel directory and individual sub-directories.

6.2.4 Compiling C Sources
The C compilation recipe needs to be changed to read...
%0%.0: %0%.c

{

5. The search list defaults to just dot (the current directory) if not set.

Peter Miller Page 23

[cc] [cc_flags]
[prepost "-I" /[[dirname %0%.c] [search_list]]
[prepost "-I" "/include" [search_list]]
-C [resolve %0%.c]
-0 [target];
}

This ensures that the rights places are searched for include files.

Theprepost function is used to add a prefix and a suffix to each of the remaining strings. Téig is v
useful when constructing filenames, as areatfgprefix =~ andaddsuffix ~ functions.

6.2.5 Tracking Include Dependencies
A similar change needs to be made to the include dependencies recipe...
%0%.c.d: %0%.c
set nocascade
{
c_incl -nc -ns -nrec
[prepost "-I" /[dirname %0%.c] [search_list]]
[prepost "-I" "/include" [search_list]]
[resolve %0%.c]
-prefix "'cascade %0%.c ="
-suffix ;™
[addsuffix "-rp=" [search_list]]
-0 [target];

Note that the form of the output of this recigg@es nothange. Thisneans that the recipes it write®nk
evan if you subsequently cgpa file from the repository to the work area, or uncope.

6.2.6 Linking Libraries
The library recipe needsviemodifications.
%l/lib%.a: [[target]_obj]
set unlink

{
}

The variable assignmentvgh above requires no modifications.

ar cq [target] [resolve [[target]_obj]];

6.2.7 Linking Commands
The command linking recipe requiresvfenodifications.
bin/%: [[target]_obj]
set mkdir

{
}

The variable assignment needs no modifications.

6.3 Whole Project Build Advantages

The advantage of using a whole project build is that the dependeaqeh is complete, and the order of
traversal may be freely determined by Cook. Breaking thddbinto fractured segments denies Cook
access to the whole graph, and dictates the ordervef$ed to one which, in the light of the entire graph,
would be incorrect.

[cc] -o [target] [resolve [[target]_obj]];

It greatly simplifies the creating of work areas foveepers, by using Cook'seach _list functionality.

A whole project build also permits tlo®ok -continueoption to work in the presence of a wider range of
errors.

Peter Miller Page 24

The whole project build also permits tbeok -paralleloption to parallelize more operations.

6.4 Heterogenous Build

Large projects frequently wolve nrumerous target architecture$his may be in the form a multiple nagi
compilations, performed in suitable hosts, or it may tihk form of cross-compilation.

In this ekample, we assume that the GNU C Compiler (GCC) is being used. When GCC is installed as a
cross compilerthe command namesd, as, Id , et are installed with the architecture name as a prefix.

For consistenyg, the natve ompiler is installed with itswn architecture names as a prefix, in addition to

the more commonly usegtc command. Thigxample will exploit this normal installation practice.

6.4.1 Cross Compiling C Sources
In order to support cross compiling, the C compilation recipe needs to be changed to read...
%1/%0%.0: %0%.c
host-binding [defined-or-null %1-hosts]

{
%1-gcc [cc_flags]
[prepost "-I" /[[dirname %0%.c] [search_list]]
[prepost "-I" "/include" [search_list]]
-C [resolve %0%.c]
-0 [target];
}

This uses the first directory element of ttaeget to be the architecture name. This allows multiple
architectures to be compiled in the same source tree, simultaneously.

Because of the practice of installing a duplicate GCC in the same form as the cross compilers, this same
recipe continues to work for ned huilds.

Thehost-bindingdline tells Cook to run the command on one of the hosts nominatedhimahle named for
the architecture (or as a nadi aoss-compiler of no such variablgigts). (Thedefined-or-null
function is &ailable in the “functions’library distributed with Cook.)

Remembering these architectures falilhe GNU cowmention, these lines could read

i386-linux-hosts = fast faster fastest ;
This will do two things for you: first, it will alvays execute linux compiles on linux hostsem when Cook
is not xecuted on one; second, it will use more than one of them when you uspaitadlel option.

It is possible to use implicit ingredients recipes to say that all object ofea gichitecture depend on a
magic include filee.qg.

i386-linux/%0%.0: include/linux-special.h;
could be used to say that all Linux object files depend on this include(Tites is a sledge-hammer
approach, and a more subtle method is preferable, but it is sometimes required.)

6.4.2 Tracking Include Dependencies
Because of the cascade form of include depenyldimere is no need to do yhing different for include
dependenciesyen if you add another architecture some time in the future.

6.4.3 Linking Libraries
The library recipe needsviemodifications.
%1/%/lib%.a: [%/1ib%.a_obj]
set unlink

{
}

The variable assignmentvgh above requires no modifications.

%1-ar cq [target] [resolve [%/lib%.a_obj]];

Peter Miller Page 25

6.4.4 Linking Commands
The command linking recipe requiresvfenodifications.
%1/bin/%: [bin/%_obj]
set mkdir
{

}

The variable assignment needs no modifications.

6.4.5 What to Build
The list of what to build becomes more interestityYpu can nominate anand all architectures for which
you have aoss compilers, or nat cmpilers and nate Iosts.

all:

%1-gcc -o [target] [resolve [bin/%_obj]];

[addprefix i386-linux/bin/ [commands]]
[addprefix sparc-linux/bin/ [commands]]
[addprefix sparc-solaris2.0/bin/ [commands]]
[addprefix m68k-sunos4.1.3/bin/ [commands]]

All of these architectures will be built in a single Cooltocation, on appropriate machines if necessary
The use of-continue and--parallel work over the entire scope of the build.

6.5 Installing Things

The biggest hassle is that timstall(1) command, which should kwchow to do nost installation tasks, has
completely incompatible interfaces on the various platforms. This ystehGNU autoconf system comes
with aninstall-shscript, which faithfully emulates the BSD option®@nce you hee a eliable command
line interface to aninstall(l) program (be it perl or shell) you can then write sensible installation
cookbooks.

If we have a Ist of commands, we would install as follows:
prefix = /usr/local;
bindir = [prefix]/bin;
install = install;

install: [addprefix [bindir]/ [commands]];
[bindir])/%60%: bin/%0% bin/%0.mkdir
{

}

That magichin/%0.mkdir file is used to record that the destination directodigte. Whileyou can
often assume this, it is notaays true when you are building thingsdiRPM packages.
bin/%0.mkdir:

{

[install] -m 755 bin/%0% [bindir]/%0%;

[install] -d [bindir]/%0
set errok;
touch [target];
}
The alternatie is to e
set mkdir;
at the top of your cookbook. This creates directories fgetarbefore rules are run. The install recipe then
reads
set mkdir;

[bindir])/%0%: bin/%0%
{

Peter Miller Page 26

[install] -m 755 bin/%0% [bindir]/%0%;
}
because there is no need for thankdir recipe. This,howerer gives you less crontrol wer the
directories permission modes, and it doebelp when you want to create empty directories as part of the
install. Usethe appropriate technique for your needs.

”

6.6 Miscellaneous

This section contains assorted material thatexa variety of topics.(As the manual expands, it will
probably be meed somewhere else.)

6.6.1 Lots of Dependencies
There are cases where you may want to nominate a whole category of files as depending on something else.
For example, you may want to say that all your fubar-language sources depend on your fubar caupiler Y
could say something such as

cascade [match_mask %0%.fubar [manifest]] = fubarcompiler;
but recall thatewverythingwhich has afubar file as an ingredient will also i@fubarcomplier as an
ingredient. Thignay not be what you wanted.

Recall, also, that compiler recipes carry specific informatigou could more specifically nominate the
compiler by saying
%0%.0: %0%.fubar: fubarcompiler

{

fubarcompiler -c %0%.fubar -o [target];

which would be much more seleai @out which uses of.fubar files also depend on
fubarcompiler

There are times when writing cross-compilation recipes when yi t@ nominate an operating-system-
specific include file for all of the object files:
%1/%0%.0: %0%.c
{
[* general cross compiler recipe */
%1-gcc -¢ %0%.c -o [target];
}
/* All windows NT objects depend on this include file */
i386-NT/%0%.0: winnt.h;

You can also useyatesto male you recipes more seleei The gating expression may be just about
anything, but is often a pattern match or simple set membership.

%.0: %.c
if [in [target] foo.o bar.o]
{
/* foo.o0 and bar.o are magic */
cc -DMAGIC [cc_flags] -c %.c;
}

The gate is most easily read as (tiiis condition)use this recipe”.

6.6.2 Error Processing

Cook stops processing a recipe at the first erlothe error occurs when constructing a command to be
executed, the command isot executed. Ifa recipe body contains more than one command, and one of
them gets an error (and doadmvetheerrok flag set) the rest of the command widit be executed.

In addition, if an error occurs whilexecuting a recipe bodyhe targets of the recipe will be deleted (on the
assumption that tlyeare probably only partially completed, or otherwise defegti To override this
behavior use thepreciousflag.

Peter Miller Page 27

6.6.3 NFS
A perennial problem for building projectse networks is that the clocks ddmhatch. Ifyou use theime-
adjustflag, this problem is largely sad. Thesimplest method is to put
set time-adjust;
at the top of your cookbook.

File fingerprints, while not directly relent to NFS, can offer significant performance imgroents, as
they can eliminate mancases of unnecessary re-compilatidio. turn them on, use

set fingerprint;
at the top of your cookbook. See belfor more discussion of fingerprints.

6.6.4 Symbolic Links

Symbolic links are follwed to the actual file, when determining file modification times. The modification
time of the symbolic link itself is not usedlhis means that “symlinkarms’ can be used when
constructing work areas, particularly when you want functionality more cantipdesearch_list can
provide.

6.7 File Fingerprints

Cook has the ability to supplement the last-modified time-stamps the operating system supplies for each file
with a “fingerprint”. This is a cryptographically strong checksum, with an mind-bogglingly lo
probability that tve different files will hare the same fingerprint.

When Cook needs to knaif a file has changed, it looks at the last-modified time-staifnip has changed

since the last time the fingerprint was calculated, the fingerprint is re-calculatbd.fingerprints match,

Cook knows the file contents are unchanged, and uses the old time-stamp, and also syppeegse an
actions which would otherwise happen if the file contents had actually changed. (Cook remembers the both
the nev and old time-stamps, so that it can bBc&nt about re-calculating checksums and still use the old
time stamp for out-of-date calculations.)

When recipe bodies are run, Cook knows that the target¢s) ten modified, so it doesmeed to re-
examine the operating systesidea of the last-modified time-stamp, it simply re-fingerprints.

It is tempting to try to achi® ©omething similar by writing recipe bodies which onlyeswrite their
targets if thg actually changedE.g.

%.0: %.c
{
if [exists [target]] then
{
[CC] -0 %.tmp -c %.c;
if cmp %.tmp %.0\;
then mv %.tmp %.0\;
else rm %.tmp;
}
else
[CC] -0 %.0 -Cc %.c;
}

However, this will not work (whether or not you la fingerprints turned on)Largely as a defense aigst
NFS time synchronization problems and stupid systems with very coarse file time-stampski@vek’ *
that because the recipe body was run the taifedriged’, causing all dawn stream dependencies to be
considered out-of-date.

In addition, this recipe would lga the last-modified time-stamp out-of-date if the file was unchanged.
This means the recipeowld trigger again in the next Coolkeeution, ngaing mary of the intended
savings.

Fingerprints are intended for this purpose, butehthe advantage of leaving the last-modified time-stamps
correct, and theneed to do half the I/O that tleen1) command doesAlso, all down stream dependent

Peter Miller Page 28

files are touched, to ensure their last-modified time-stamps are also condistemally, if they needed to
be re-built for some other reason, therytivauld be re-built, not simply touched.

While there is somewerhead in initially calculating the fingerprints for awnnevork area, thg repay that
overhead map times wer. This is especially true if your system has generated code in it, particularly
generated include files, but there are also savings for siraplaller projects.

6.7.1 Turning Fingerprints On
To turn fingerprints on, you need to add the lines
set fingerprint;
set time-adjust;
to your cookbook.That second line is no essential, but it corrects last-modified time-stamps when NFS
time synchronization problems would otherwise cause inconsistent behavior.

While it is possible to turn fingerprints on for a subset of the files in your project, it is not as straigfttforw
as it may seem. There is nawto bind the fingerprint request to a single file, only to recipes, so you need
to use the‘set fingerprint " recipe flag on all recipes between the vat¢ source file and the
ultimate taget. Thistends to be messy.

6.7.2 Vanishing Dependencies
It is quite common that you need to neild a file if one of the dependencies is reth Usually this is
quite hard to detect, because Cook has trouble seeing something thideis)’compared to the preus
execution. Havever an ingenious method has been described by Gilles Lamiral <lamiral@mail.dotcom.fr>
which “remembers’though a file:

function contents-remember =

{
/* @1 = name of contents file */
[* @2..N = the value of [need] */
[write [args]];
}
function contents-changed =
{
/* @1 = name of contents file *
[* @2..N = the value of [need] */
if [not [exists [resolve [@1]]]] then
return O;
local old-contents = [collect_lines cat [resolve [@1]]];
/* return O if nothing disappeared, >0 if did disappear */
return [count [stringset [old-contents] - [tail [arg]]]];
}

libfred.a libfred.contents: [fred_obj]
set ["if" [contents-changed libfred.contents [fred_obj]]
"then" forced]

unlink
{
ar cq [target] [resolve [fred_obj]];
[contents-remember libfred.contents [fred_obj]];
}

Note: because the set clausevidumated when the target isauated, the [need]ariable is not eilable.

In this example, you must Y& alculated the final value of [fred_obj] before the recipe appears in the
cookbook. Thesvduation of the set clause also limits the application of this techniqueplicierecipes; it

will not work for implicit (pattern) recipes, because the value of the pattern elements is wot &nthe
time the set clause isauated.

Peter Miller Page 29

6.8 Coping with Links

You will notice that the deafult operation of Cook copes with links (hard links and symbolic links) rather
poorly. For example, the recipe
two: one

{

In one two;

will always conclude that filéwo is out-of-date. This is bacause filesneandtwo have exactly the same
time stamp.

If you specify a weadr time constraint, Cook will al@ this kind of recipe to be written, amibt conclude
the files is alvays out of date:
two: one(weak)

{
}

The “(weak) " on the end of the ingredient name tells Cook to use the weak edge type, rather than the
strict edge type.

In one two;

This technique is useful for symbolic links, too.

One other thing which can berny useful for both link types, but particularly symbolic links to directories,
is the “set unlink recipe flag.
two: one(weak)
set unlink

{

In -s one two;

This remaes the target (if necessary) before the recipe body is run.

6.9 Coping with Version Stamps

In some systems, the version stamp gererated forwery build, but you dort’want to relink zillions of
executables just becaise the version stamp has changed, but nothing else has.

By using the*(exists) " edge type, you can tell Cook that an ingredient is needed foea giget, kut
that it should neer be mnsidered to makthe target out-of-datef-or example:

#include "c"
all: progl prog2;
version.c:
set forced
{
date "'+#define VERSION \"%C\"" > [target];
}
progl: progl.o mylib.a version.o(exists)
{
gcc -o [target] [need];
}
prog2: prog2.0 mylib.a version.o(exists)
{
gcc -o [target] [need];
}

This cookbook will generate awerersion.cfile every time that Cook is run, and thus aaneersion.dfile.
However, the progl andprog? files will not be re-linked unless something else changed as well.

Peter Miller Page 30

7. Cookbook Langua ge Definition

This chapter defines that language which cookbooks are written in. While some of its properties are similar
to C, do not be misled.

A number of sections appear within this chapter.
1. TheLexical Analysisection describes what the words of the cookbook language look like.

2. The Preprocessorsection describes the include mechanism and the conditional compilation
mechanism.

3. TheSyntax and Semantisgction describes owords in the cookbook may be combined to form
valid constructs (theyntay, and what these constructs mean ghmantics

The sections are laid out in the recommended reading order.

7.1 Lexical Analysis

The cookbook is made of a number of recipes, which are in turn maderd$.wThissection describes
what constitutes a word, and what does not.

7.1.1 Words and Keywords
Words are made of sequences of almogtcraracterand are separated by white space (including end-of-
line) or the special symbolsCook is aways case sensit when reading cookbooks.

The characters={}[] are the special symbols, and are words in themselves, needing no delimiting.

In addition to the special symbols, some words, knowkeasords have special meaning toook. The
keywords are:

else host-binding loopstop single-thread
fail if return then
function loop set unseten

You will meet the leywords in later sections.

7.1.2 Escape Sequences
The characteY is theescapecharacter If a character is preceded by ary specialness, if it had gnwill
be remwed. If it had no specialness it mayMeasome added.

This means that, if you want to ugeas a word, rather than a&yword, at least one of its characters needs
to be escaped, for exampié

The escape sequences which are special are as follows.

\b The backspace character
\f The form feed character
\n The newline or linefeed character
\r The carriage return character
\t The horizontal tab character
\nnn A character with a value afnhn where
nnn is an octal number of at most 3
digits.
An escaped end-of-line is totally ignored. It should be noted that a cookbook mayvacaryamn-
printing ASCII characters in it other than space, tab and end-of-line.

7.1.3 Quoting
Words, and sections of words, may be quoted. yffart of a word is quoted it cannot beapkord.

This means that, if you want to udeas a word, rather than &vord, at least one of its characters needs
to be quoted, for exampld’.

Peter Miller Page 31

Both single ') and double () quotes are understood legok, and one may enclose the othéf a quote is
escaped it does not open or close a quote as it usually would.

Cook does not lile rewlines within quotes.This is a generally good heuristic for catching unbalanced
guotes. Ifyou really want a newline within a string, use theescape.

7.1.4 Comments

Comments are delimited on the left By and on the right by/. If the/ character has been escaped or
guoted, it doesm’introduce a comment. Comments may be nested. Comments may span multiple lines.
Comments are replaced by one logical space.

7.2 Preprocessor

The preprocessor may be thought of as doing a littlk Wefore theSyntax and Semantisgction has its
turn.

The preprocessor is @dn by preprocessor diectives A preprocessor directt is a ine which starts with a
hash #) character Each of the preprocessor direet is described belw.

7.2.1 include
The most common preprocessor direetis
#include" fil enane"

This preprocessor diregt is processed as if the contents of the named file had appeared in the cookbook,
rather than the preprocessor include dikexti

The most common use of the #include direxis to include system cookbooks:or example, map small
programs can be deloped using the following simple cookbook:

#include "c"

#include "program”

The standard places to search are firgtmath specified with the nclude command line option, and then
$HOME/.cookand therfusr/share/cookn that order.

7.2.2 include-cooked

This directve looks similar to the one abg but do not be decedd.
#include-cooked filename..

You may name seeral filenames on the line, and thmay be expressions.

The search path used for these files is the same as that used for other cooked filessesazh thst
variable and theesolvebuilt-in function for more information.The order in which you set tis2ach list
and thefinclude-cookedlirectives is important. AWays set theseach_list variable first, if you are going
to use it.

Files included in this way are checked, afteythavebeen read, to makare thg are up-to-date. If the
are notcook brings them up-to-date and then re-reads the cookbook and strts o

You will only get a warning if the files are not foundlsually, cook will either succeed in constructing
them, in which case tlewill be present the second time around, oatalferror will result from attempting
to construct them. Note that it is possible to go into an infinite loop, if the files are constantly out-of-date.

The commonest use of this construct is maintaining include file depgnidgador source files.
obj = [fromto %.c %.0 [glob *.c]];

%.0: %.C

[cc] [cc_flags] -¢c %.c;

}

%.c.d: %.c

{

Peter Miller Page 32

c_incl -prefix "'%.0 "[target]": %.c™ -suffix ;"™
-no-cache %.c > [target];

}

#include-cooked [fromto %.0 %.c.d [obj]]
This cookbook fragment showsvadnclude file dependencies are maintained. Notice the .d files have
a recipe to construct them, and thatytteee also included.Cook will bring them up-to-date if necessary
and then re-read the cookbook, so that it vgagé working with the current include dependenci€Ehe
doubly nested quotes are to insulate the spaces and special characters froookbatid the shell.)

You could usegcc -MM if you prefer (you will need some extra shell scripfjhe c_incl program

understands absent files better but ddesnderstand conditional compilation, amptc understands
conditional compilation but ges fatal errors for absent include filegvarning: If you are usingeach list

you must usec_incl Gcc returns complete paths, which will resultdook failing to notice when an
include file is copied from later in the search list to earéied then modified.

There are times when you dowant the#include-cooked directives to be ated upon.You can oer-
ride it using the--no-include-cooked command line option, Ui it is often easier to use the
[command-line-goals] variable, and say something like

#if [not [match %1clean%?2 [command-line-goals]]]

#include-cooked [fromto %.0 %.c.d [obj]]

#endif
This construct means that wheaean eplicit ‘‘clean " goal (or similar) is requested, thénclude-
cooked lines will not be performed. This is sensible, because cleaning actions usuallyeremo
dependengfiles; there is no point making sure ytaee up-to-date first.

7.2.3 include-cooked-nowarn
This directive is dmost identical to the one ab® but no warning is issued for absent files.

#include-cooked-nowarn filename..
You may name seeral filenames on the line, and thmay be expressions.
724 if

The #if directve may be used to conditionally pass tokens to the syntax and semantics processing.
Directives take the form

#if expressionl

somethingl

#elif expression2

something2

#else

something3

#endif
There may be annumber ofelif clauses, and thelse clause is optional. Only one of tlsemethings
will be passed through.

7.2.5 ifdef

This directve takes a similar form to th& directive, but with a different first line:
#ifdef variable

This is syntactic sugar for

#if [defined variable
This is of most use in bracketidinclude directives.
7.2.6 ifndef

This directve takes a similar form to thé directive, but with a different first line:
#ifndef variable

This is syntactic sugar for
#if [not [defined variabl€]]

This is of most use in bracketidgnclude directives.

Peter Miller Page 33

7.2.7 pragma
This is for the addition of extensions.

7.2.7.1 once
This directive is to ensure that include files in which it appears are included exactly once.

This directve has the form
#pragma once

7.2.7.2 unknown extensions
Any pragma extensions not recognized will be ignored.

Peter Miller Page 34

7.3 Syntax and Semantics

The syntax is described using “train traakiagrams, with prose descriptions of the related semantics.

7.3.1 Overall Structure
The general form of the cookbook is defined as

L cc— f

|

A cookbook is defined as a sequence of statements. Each statement statexseuted.er a definition
of what it means when a statementisoaited, see the individual statement definitions.

cookbook

The nonterminal symbgaltatementwill be defined in the sections belo

Please note that a statement is nebgé evaluated when is is read, but at specific, well defined times.

7.3.2 The Compound Statement
A nonterminal symbol which will be referred to belas the compound_statemestymbol, defined as
follows:

cstmt \/{—\ m
L

L

The compound statement may be used anywhere a statement may be, and in particular

stmt Npereere
>l cstmt

7.3.3 Variables and Expressions
Cook provides variables to the user to simplify things.

7.3.3.1 The Assignment Statement
It is possible to assign to variables with the following statement.

v () :

When this statement isxecuted, the ariable whose name the left hand expressiaiuates to will be
assigned the value that the right hand expressionvhktates to.

For example:
program_obj = foo.o bar.o baz.o;

Note: It is possible to wer-ride the value of tilt-in functions and variables with this statement. This will
not produce an error messagewkeer it is usually not desirable as it will change the meaning of the rest of
your cookbook.

7.3.3.2 The Assign-Append Statement
It is possible to append to the value of variables with the following statement.

Peter Miller Page 35

v +(5) :

When this statement ixeuted, the ariable whose name the left hand expressi@uates to will hae its
vaue appended by the value that the right hand expressiowvdlaates to. Expression values are lists of
words, appending means to append to the word list; it doemean appending to the last string of the
value.

For example:
program_obj += [glob "deeper/*.0"];
Note: It is possible to wer-ride the value of wilt-in functions and variables with this statement. This will

not produce an error message (unlesuating them with no guments is an error), l@ver it is usually
not desirable as it will change the meaning of the rest of your cookbook.

7.3.3.3 The Setenv Statement
It is possible to assign to environment variables with the following statement.

(ssens) o

When this statement ixecuted, the environment variable whose name the left hgmegsion ealuates
to will be assigned the value that the right hand expressionvéistages to. It is an error if theaviable
does not already exist.

For example:
setenv PATH = [getenv PATH]":"[getenv HOME]/more-bin;

7.3.3.4 The Setenv-Append Statement
It is possible to append to the value of an environment variables with the following statement.

(ssens) o

When this statement ixecuted, the environment variable whose name the left hgmegsion ealuates
to will have its value appended by thalue that the right hand expression lighdleates to. Evaluation is
analogous to the assign-append statement.

For example:
setenv FRED += nurk;

7.3.3.5 Expressions
Many definitions malke reference to thexpr, dist and exprs nonterminal symbols. These are defined as
follows.

Theelistis a list of at least one expression,

elist < I a1 >
> epr

whereas thexprsis a list of zero or more expressions.

An expression is composed of words, variable references, functications, or concatenation of

exprs

Peter Miller Page 36

expressions. Theoncatenation is implied by abutting theotyarts of the expression togethexg:
"[fred]>thing "is an indirection onfred concatenated with the literal wordthing ".

expr

When an[elist] expression is waluated, theelist is evaluated first. If the result is a single word, then a
variable of that name is searched.fdf found the value of anxpression of this form is the value of the
variable.

If there is no wariable of the gien name, or theelistevduated to more than one word, the first word igtak
to be a built-in function name. If there is no function of this name it is an error.

The cat operator works as one would expect, joining the lagtvof the left expression and the firsbng

of the right expression togethend otherwise leaving the order of thegyeessions alone. One usually uses
the trivial case of single wordkpressions. & more comple concatenations, see the [catenate] and [join]
built-in functions.

7.3.4 Recipes
A number of forms ofstatementare concerned with tellingook how to cook things. There are three
forms, theexplicit recipe, themplicit recipe, and thengredientsrecipe.

7.3.5 The Explicit Recipe Statement
The explicit recipe has the form

stmt m exprs H flags H gae H cstmt H use ’%

The target(s) of the recipe are to the left of the colon, and the ingredienty, &eo the right. The
statements, usually commands, which are to be performed to (re)construct the target(s) are contained in the
compound statement. Tha&peessions are onlyduated into words when the recipe iseeuted. Recipe

bodies may hae local variables.

For example:
program: [program_obj]
{
[* use [need] rather than [program_obj] in case
there are additional ingredients recipes
(see below). */
ccC -0 program [need];
}

The target ®pressions and recipe flags aneleated when the recipe is instantiated. The ingredients
expressions and the recipe gate aveluated at graph building timeThe body and use statements are
executed at graph walking time.

The recipes also taka“ host-binding attribute. Seethe chapter on Cooking in Parallel forvihnthis is
attribute is written and used. If the host binding flag isgj it is alvays used, ¥en when not cooking in
parallel. If it is not gven and you are cooking in parallel, it will da@lt to the contents of the
[parallel_hosts] variable.

Peter Miller Page 37

7.3.5.1 Recipe Flags
Theflagsare defined as follows.

flags

(s o

Recipe flags areveluated when the recipe targets avel@ated. Atthis time,noneof the [target], [tagets],
[need] or [younger] variables are set, and neither ayefthe pattern matches (%, %eltc) available.

A number of flags may be used

clearstat Thdast-modified time of the files named ireeuted commands will be remed from
the last-modified time cache. This is essential for commands suei{ldsandmy(1).

noclearstat Dmot clear entries from the last-modified time cache. This is usually the default.

default If no tagets are specified on the command line, the first recipe wittiefaailtflag will

be used. Not meaningful for implicit recipes.

nodefult If no targets are specified on the command line, and there are no recipes wéfatlie
flag set, the first recipwithout the nodefaultflag will be used.Not meaningful for
implicit recipes.

errok Exitstatus from commands will be ignored.

noerrok Ifthe noerrokflag is specified, the commands within the actions bound to the recipe must
always be successful. This is usually the default.

fingerprint Filefingerprints are used to supplement last-modified time information about files, which
is howv cookdetermines if a file is out-of-date and needs to beexbokf a file appears to
have changed, from the last-modified time, it is fingerprinted, and the fingerprint
compared with what it was in the padthe file has changed if and only if the fingerprint
has also changedA cryptographically strong hash is used, so the chance of a file edit
producing an identical fingerprint is less than 1 in 2**200. Fingerprinting is disabled by
default.

nofingerprint Daonot use file fingerprinting. This is usually the default.
forced Iftheforcedflag is specified, the actions bound to the recipe wilagd be galuated.

noforced Ifthe noforcedflag is specified, the actions bound to the recipe will\auated when
the recipe is logically out-of-date. This is usually the default.

gae-after-ingredients Thiflags causes the recipe gate to beluated after the ingredients e been
evduated and determined to be cookable. This is usually the default.

gae-before-ingredients Thikag causes the recipatg to be applied before the ingredients amtuated
and determined to be cookabl€his is useful if the ingredientyauation itself needs to
be conditional.

implicit-ingredients
This flag may be used to specify that a respegredients may be satisfied by implicit
recipes. Thiss usually the default.

no-implicit-ingredients
This flag may be used to specify that a resipegredients may not be satisfied by

implicit recipes; this is of most use with utilities such as RCS where the recipe writer
knows that the ingredients cannot be constructed.

Peter Miller Page 38

include-cooked-warning Thilag may be used to enable warnings when the relationship betwegeta tar

and a deried ingredient appears only in a dexd cookbook. Thids usually the defult.
This flag is only meaningful at the cookbookde it is not meaningful for indidial
recipes or commands.

no-include-cooked-warning Thifag may be used to disable warnings when the relationship between a

taget and a deved ingredient appears only in a dexd cookbook. Thisflag is only
meaningful at the cookbook d, it is not meaningful for individial recipes or
commands.

ingredients-fingerprint Thiglag may be used to cause recipes to re-trigger when their ingredients list

chages in anway. This is especially useful, forxample, in causing libraries to be
rebuilt when a content source file is rered.

no-ingredients-fingerprint Cancelyaactive ingredients-fingerprinsetting.

match-mode-cook Use nati Cook pattern matching.

match-mode-regeUse POSIX regular expression pattern matching.

meter

nometer
mkdir

nomkdir

precious

noprecious

recurse

norecurse

silent

nosilent

stripdot

nostripdot

tell-position

no-tell-position

time-adjust

Peter Miller

Ifthe meterflag is specified, a summary of the CPU usage by the commands within this
recipe will be printed after each command. The silent optigaside this option.

Dot meter commands. This is usually the default.

If the mkdir flag is specified, the directories ofyatargets will be created before the
actions bound to the recipe argleated.

If the nomkdirflag is specified, the directories ofyarargets will need to be created by
the actions bound to the recipe. This is usually the default.

Ifthe preciousflag is specified, if the actions bound to the reciik fhe targets of the
recipe will not be deleted.

Ithe noprecioudlag is specified, if the actions bound to the recipe fall, the targets of the
recipe will be deleted.This is usually the default, so that erroneous targets will be re-
cooked.

Ifthis flag is specified, recipes will recurse upon theneselff one of their ingredients
matches one of their gets. Thisan cause problems, and so it is not the default.

Ithis flag is specified, the recipe will not recurse if one of its ingredients matches one of
its taigets. Thids the default.

Ifthe silentflag is specified, the commands within the actions bound to the recipe will not
be echoed.

Commandwill be echoed. This is usually the default.

Thisoption causesook to remae leading "./" prefixes from filenameghis is usually
the default.

Thisoption causesook to leave leading "./" prefixes on filenames.

Thisoption causes the filename and line number to be printed when echoing commands
just before the are executed, in addition to the command itself.

Thisoption supresses the printing of the filename and line number when echoing
commands just before there executed. Thids usually the default.

Thisoption causegook to check the last-modified time of the targets of recipes, and
adjust them if necessanp make wre the are consistent with (younger than) the last-
modified times of the ingredients. This usually adjusts the file time into the (near) future.
A warning message will be printed, telling youshmary seconds the file was adjusted.

Page 39

This results in more system calls, and cawghings down on some systefns

no-time-adjust Daot adjust the file last-modified times after performing the body of a recipe. This is
usually the default.

time-adjust-back This option causemok to force the last-modified time of the targets of recipes to be
exactly one (1) second younger than their youngest ingredient. This usually adjusts the
file time into the (recent) pasA warning message will be printed, telling youhmany
seconds the file was adjusted. This results in more system calls, and wathists
down on some systemsrThis is primarily useful when some later process is going to
compress file modification times; this provides smarter compression.

unlink If theunlink flag is specified, of gntargets will be unlinked before the actions bound to
the recipe are performed.

nounlink If the nounlink flag is specified, the recipe targets are not newhdefore the actions
bound to the recipe are performed. This is usually the default.

Each flag may also be specified in thgaige, by adding a "no" prefix, to werride ary existing positve
default setting. There is a strict precedence defined for the varieals & flag setting, see the end of the
"How Cook Works" chapter for details.

7.3.5.2 Recipe Gate
Each recipe may ke agate The gate is a way of specifying a conditional recipe; if the condition is not
true, the recipe is not used. The condition is in addition to the condition that the ingredients are cookable.

gae

() om

For example:
program: [program_obj]
if [not [in horrible.o [program_obj]]]
{

}

7.3.5.3 Then Clause
There are times when it is necessary tovktimat a recipe has been applied, but because the recipe was up-
to-date, the recipe body was not run.

k(then H cstmt ’—[

The then-clause is rurvery time the recipe is appliedyen if the recipe is up-to-date. It will be run after
the recipe bodyif the recipe body is run. All of the usual percent (%) substitutions and automatbles
will apply. Recipe then-clauses mayvaslocal variables.

cC -0 program [program_obj];

use

For example:
program: [program_obj]

CcC -0 program [program_obj];

6. This flag was once named thHapdate’ flag. Thename was changed to more closely reflect its function. The old name
continues to work.

Peter Miller Page 40

then
{

}

7.3.5.4 Double Colon

Most cookbooks are constructed so thatabk finds a suitable recipe for the target it is currently
constructing, it will apply the recipe and then conclude that it has finished constructingéte kasome
rare cases you will antcook to keep going after applying a recip& ecify this use a “double colan’
construction:

stmt m exprs H flags H gae H cstmt H use ’%

This operates li& a rormal explicit recipe, bt cook will continue on looking for recipes after applying this
one. Assoon as an applicable “single colonécipe is found and appliedpok will conclude that it has
finished constructing the target.

install-set += program;

For example:
all:: programs
| [print “all programs done"];
i\ll:: libraries
: [print "all libraries done"];

7.3.6 The Implicit Recipe Statement
Implicit recipes are distinguished fromxgdicit recipes in that and implicit recipe has a target witfoa ’
character in it.

7.3.6.1 Simple Form

In general the user will rarely need to use the implicit recipe form, as there are a huge range of implicit
recipes already defined in the system default recipes.

An example of this recipe form is
%: %.9z
{

gzcat %.gz > %;

This recipe tell€ook how to use thegzcafl) program.

7.3.6.2 Complex Form

The implicit recipe recipe has a second form where there areetw of ingredients, separated by another
colon. Inthis form, the ingredients specified in the first ingredients list are used to determine the
applicability of the recipe; if these are all constructible then the recipe will be appliedy @eamot
constructible then the recipe will not be applidtithe recipe is applied, the ingredients specified in the
second ingredients list are required to be constructibhe the second ingredients list section is known as
theforced ingredientsection.

Note: if you want the first ingredients list to be empty youistseparate the twoolons with a space,
otherwisecook will think this is a “double colorirecipe.

An example of this is the C recipe
%.0: %.c: [collect c_incl -api %.c]

{

cc -c %.c;

Peter Miller Page 41

This recipe is applied if thé.cfile can be constructed, and is not applied if it cannot be construthed.
include dependencies are onkpeessed if the recipe is going to be applied; but if tre expressed, the
mustbe constructible. This means that absent include files generate dn error

The nave form of this recipe
%.0: %.c [collect c_incl -api %.c]

{
}

will attempt to apply the_incl command before th&.c file is guaranteed toxest. Thisis because the
exprs2is performed after thexprslall exist (because tieare constructible, thehavebeen constructed).
In this nave form, absent include files result in the recipe not being applied.

7.3.6.3 Double Colon

Just as explicit recipes ¥&a ‘double colon’form, so do both types of implicit recipes. The semantics are
identical, with cook looking for more than one applicable implicit recipe, but stopping if it finds an
applicable “single colon’i mplicit recipe.

cc -c %.c;

As stated earlier in this manuabok first scans for explicit recipes before scanning for implicit recipes.
an explicit recipe has been appli@dok will not also look for applicable implicit recipesyen if all the
applicable explicit recipes were double colon recipes.

7.3.7 The Ingredients Recipe Statement
The ingredients recipe has the form

The target(s) of the recipe are to the left of the colon, and the prerequisites are to th€hggatare no
statements to perform to cook thegets of this recipe, it is simply supplementary tg ather recipe,
usually an implicit recipe.

For example:
program: batman.o robin.o;

The right-hand-side expressions are omgluated into words when the recipe is instantiated.
Ingredients recipes are usually explicit, but it is also valid to use implicit ingredients recipes.

For example:
some-%-program: %.0;

7.3.8 The Cascade Recipe Statement
The cascade recipe statement has the form

This recipe specifies on its right-hand-side additional ingredients yareaipe which has
ingredients mentioned on the left-hand-side of this cascade recipe.

Unlike dl other recipe forms, both the left-hand-sided the right-hand-side are
evduated when the recipe is instantiated.

For example:
cascade batman.c = robin.h;

7. This is not the recommended way of determining C include dependencies, see the “Include Depéerdaamiesfor more
information.

Peter Miller Page 42

cascade somelib.a = some-deeper-lib.a;

7.3.9 Commands
Commands may takseveal forms incook. They al have ae thing in common; tlyeexecute a command.

7.3.10 The Simple Command Statement
The simplest command form is

stmt o[elist || flags }9@

When eecuted, theelistis evaluated into a wrd list and used as a command to be passed to the operating
system. OrUJNIX this usually means that a shell izdked to run the command, unless the string contains
no shell meta-characters.

Theflagsare those which may be specified in the explicit recipe staterbsy. havea higher precedence
than either theetstatement or the recipe flags.

Some characters in commands are special both to the shell and toYoookill need to quote or escape
these characters. Each commandxiceted in a separate process, sodthecommand will not work, you
will need to combine it with the ralant commands, not forgetting to escape the semicolpaoh@racters.

When Cook needs to\voke a $ell to execute a command, it uses the shell named inShé&LL
ervironment \ariable. Ifthe cookbook is to be used byariety of users, each with a different shell setting,
it may be useful to add a

setenv SHELL = /bin/sh;
line at the top of your cookbook.

It is also important to note that unless #reok flag has been specified, the shell will beegithe -e
option, which will cause it to exit immediately after the first command

which returns a non-zero exit status. This can be important when

commands in the .profile or .bashrc (or similar) file fails.

7.3.11 The Data Command Statement
For programs which requirstdin to be supplied byook to perform their functions, the data command
statement has been provided.

stmt ﬁ’ elist H flags WdataH expr F(dataendH

In this form, theexpr is evaluated and used as input to the command. Betweeddteeand dataend
keywords the definition of the special symbols and whitespace change. There are ordgetial
symbols,[and], to dlow functions and variable references to appear in #pression. Inaddition,
whitespace ceases tovieats usual specialness; it is handed to the command, instead.

For those of you familiar with writing shell scripts, this is analogoubdm documents. lallows you to
create an input file without creating an explicit temporary fitealso allows you to create files that you
could not create usingchoredirected into the fife

Thedata keyword must be the last on a line, whitespace afted#be keyword up to and including end-of-
line, will notbe given to the command.

The dataend keyword must appear alone on a line, optionally surrounded by whitespace; if it is not alone,
it is not adataend keyword and will not terminate the expression.

An example of this may be useful.
{usr/fred/%: %

{

8. For example, Windows NT has a ludicrously small command line length limit.

Peter Miller Page 43

newgrp fred;

data

cp % /usr/fred/%

dataend

}
The newgrgl) command is used to change theadéfgroup of a process, and then thra shell; so the
“cp” is executed by this sub-shell when it reads its standard inifuhe directory/usr/fredhas read-only
permissions for others, and group write permissions, and belonged tofgrduand you were a member
of groupfred, the ab@e implicit recipe could be used to gpfhe file.

Here is an example of hoto cope with stupidly short NT command lines:
%.LIB: [%_obj]

{
cat > %.contents;

data

[unsplit "\n" [unix-to-dos [need]]]

dataend
link -lib "/out:"[unix-to-dos [target]] @%.contents;
rm %.contents;

}

The “@something m eans the linker should read file names fromsthr@ethindile.

This technique will also work with Unix if you 1@ nore then 5MB of command linegumentsand the
program is written to hae a option something lik this (mary havea-f option).

7.3.12 The Set Statement
It is possible to werride the dedults used byook or even those specified by thEOOK environment
variable, by using theetstatement.

The flag values are those mentioned inftagsclause of the explicit recipe statemeMany command-
line options hee euivalent flag settings. There is nanset’ statement, to restore the default settingg, b
it is possible to set flags the other wiay adding or removing the “nodprefix.

To st flags for individual recipes, use tha@gsclause of the recipe statements.

To st flags for individual commands, use flagsclause of the command statements.

7.3.12.1 Examples
Fingerprinting is not used by arflt, because it can cause & firprises, and takes a little more CPTb
enable fingerprinting for you project, place the statement

set fingerprint;
somavhere near the start of yotitowto.cookfile. The-No_FingerPrint command line option can still
override this, but the default behavior will be to use fingerprints.

To prevent echoing of commands as ytere executed, place

set silent;
someavhere in yourHowto.cookfile. The-NoSilent command line option can stiliverride this, but the
default behavior will be not to echo commands.

7.3.13 The Fail Statement
Cook can be forced to think that a recipe has failed by the uses f#ikistatement.

stmt {ail H exprs ’9@

This is hugely useful when programs do not return a usgfustatus, bt do fail. If they haveprinted an

Peter Miller Page 44

error message, but not produced the output file, you could use the Fail statement without arguments:
fred: other stuff

set unlink
{
brain-dead [need] -o [target];
if [not [exists [target]]] then
fail;
}

If you give the Fail statement grerguments, the will be printed as an error message before the recipe
fails:
fred: other stuff

set unlink
{
brain-dead [need] -o [target];
if [not [exists [target]]] then
fail Did not produce [target] file.;
}

7.3.14 The If Statement
The if statement has one ofdorms.

% expr F(thenH stmt }
\9(elseH stmt ’—/

In nested if statements, tikse will bind to the closestlselessif. An expression is false if and only if all
of its words are null or it has no words.

Note that one or both of the subordinate statements may be compound statements, should you need to say
something more comptehan a single statement.

7.3.15 The Loop and Loopend Statements
Looping is provided for irtook by the generic infinite loop construct defined kelo

stmt N \
/Kloop H stmt |

A facility is provided to break out of a loop atygioint.

stmt
>(loopstop }=>(;)

The statement following thi@op directive is executed repeatedly fover. Theloopstop statement is only
semantically valid within the scope ofapp statement.

Here is an example of hoto use the loop statement:

dirs=abcd;
src =;

tmp = [dirs];
loop

{

tmp_dir = [head [tmp]];
if [not [tmp_dir]] then

loopstop;
tmp = [tail [tmp]];

Peter Miller Page 45

src = [src] [glob [tmp_dir]"/*.c";

}

There is also a “for each'oop variant, allowing a more terse expression of exactly the same thing
dirs=abcd;
src =;

loop tmp_dir = [dirs]
{

}

You can use loopstop within such a loop. Note that the loop badstbe a compound statement.

7.3.16 Functions
It is possible to define your own functions.

7.3.16.1 Function Definition
User-defined functions are specified using something similar to an assignment.

function N :

Functions must be defined beforeytlaee used.

src = [src] [glob [tmp_dir]"/*.c"];

You need to ma& aure you do not re-define a built-in-function as this maxehdre consequences.

7.3.16.2 The Return Statement

You return values from a function by using the return statement:

stmt {return H exprs ’9@

Note that return statements are not meaningful outside a function definition.

7.3.16.3 Function Arguments

The arguments to the function are passed in‘dng™variable. Eactargument is also separately defined in
the ‘@1” to “‘@9” variables for direct accesglf there are more than 9, you will need to ugedrd n
[arg]]” for argument 10 and later). These variables are unique for each funetoation, @en if they are
nested.

You can use the “@1to “‘@9” variables as local variables if youMearo need of their values.

All of these special names are thread safe and recursion Bedey function ivokation receies its avn
set of them.

7.3.16.4 Example
An example of a function definition is a “capitalizEinction:
function capitalize =

{
@1=;
loop @2 = [downcase [argd]]
{
@1 += [upcase [substr 1 1 [@2]]][substr 2 99 [@2]];
}
return [@1];
}

This function capitalizes the first letter of each of its arguments.

User-defined functions arevioked in the same way a built-in functions.

Peter Miller Page 46

host = [os node];
Host = [capitalize [host]];

See the “Function Librarysection for additional function examples which are distributed with Cook.

7.3.16.5 Function Call Statement
User defined functions may bevgked in the same way as built-in functions, butytimay also be voked
in the same way as commands, providing a form of subroutine.

stmt Vs . - :
\\functlon H elist ’9@

If the function return alue is not zero, it is considered to fail, just as a command wailld The
commonest use of this is toviske the built-in print function for debugging cookbooks.
function print [__FILE__][LINE__] hello [getenv USER];

These function calls may be used in recipe bodies, or in the general cookbook.

7.3.16.6 Local Variables
Functions can he local \ariables simply by using theond local on the left-hand-side of the
assignment. Caneeeds to be taken with th@op statement and the= assignment, as the variable needs
to be established as a local variafiigt.

function capitalize =

{
local result =;
local tmp =
loop tmp = [downcase [arg]]
result += [upcase [substr 1 1 [tmp]]][substr 2 99 [tmp]];
return [result];
}

Functions may hae & mary local variables as thgdike.

Local variables are reentranfou can write recursie functions, and eachvacation of the function has an
independent set of local variables.

Local variables are thread-saf¥ou can use the same user-defined function ia parallel threads, and
their local variables are completely independent.

The “arg” and “@1” to “*@9” variables are implicitly local.

Peter Miller Page 47

8. Built-In Functions
This chapter defines each of the built-in functionsaafk

A built-in function is irvoked by using an expression of the form
[func-name a arg ..]
in most places where a literal word is valid.

8.1 addprefix

The addprefixfunction is used to add a prefix to a list oords. Thisfunction requires at least one
argument. Thdirst argument is a prefix to be added to the second and subsequent arguments.

8.1.1 See Also
addsuffix, patsubst, prepost, subst

8.2 addsuffix

The addsuffixfunction is used to add a suffix to a list oords. Thisfunction requires at least one
argument. Thdirst argument is a suffix to be added to the second and subsequent arguments.

8.2.1 See Also
addprefix, patsubst, prepost, subst

8.3 and

This function requires at least awerguments, upon which it forms a logical conjunction. Traue
returned is "1" (true) if none of the arguments are "™ (false), otherwise ™ (false) is returned.

8.3.1 Example

The following cookbook fragment showsviato use the [and] function in conditional recipes.
#if [and [defined change] [defined baseline]]
...do something...
#endif

This fragment will onlydo somethingf both thechangeandbaselinevariables are defined.

8.3.2 Caveat
This function is rather clumsynd probably needs to be replaced by a better syntax within the cokbook
grammar itself.

This function does not short-circuitauation.

8.3.3 See Also
or, not

Peter Miller Page 48

8.4 basename

The basenamdreats each argument as filenames, and extractsitathe suffix of each filename. If the
filename contains a period, the basename&ag/thing up to (but not including) the period. Otherwise, the
basename is the entire filename.

Please note: this is not the same behavior as the hBsenam@) utility. For this, [basename
[notdir argd] or [fromto %0%.c %0% argg may be more appropriate.

8.4.1 Example
Expression Result
[basename foo.c] foo
[basename foo/bai foo/bar
[basename baz] baz
[basename foo/bar/baz] foo/bar/baz

8.4.2 See Also

addsuffix, dirname, entryname, fromto, natdirffix

8.4.3 Caveat

This function is almost nothing kkthe Unix command of the same nanmeoperates in this manner for
compatibility with other packages.

8.5 cando

This function is used to test whether Cook knoww ho cook the gien targets. Itreturns all of the
arguments for which desétions can be found, or nothing if none can.

8.5.1 Caveat
This will use as much of the cookbook as has been read in up to the point where this functionTifigsed.
can mean that crucial recipessbaet to be parsed and instantiated.

8.5.2 See Also
cook, uptodate

8.6 catenate

This function requires zero or moregaments. Ifno aguments are supplied, the result is an emptydw
list. If one or more arguments are supplied, the result is a word list of one word being the catenation of all
of the arguments.

8.6.1 Example

Expression Result

[catenate a] a

[catenate a b] ab

[catenatea”"b] "ab"
Quotes used in the results for clarity.

8.6.2 See Also
split, unsplit, prepost, join

Peter Miller Page 49

8.7 collect_lines

The arguments are interpreted as a command to be passed to the operating¥ystesult is one "ard"
for each line of the output of the command.

8.7.1 Example
To read each line of a file into a variable:
files = [collect_lines cat file];
Spaces and tabs in the input lines will be preserved in the "words" of the result.

8.7.2 See Also
collect, execute, glob, read, read_lines, write

8.7.3 Caveat
You will probably get better performance using #iaclude-cooked directive, and a recipe to create
the included file.

8.8 collect

The arguments are interpreted as a command to be passed to the operating Bysteznult is one ard
for each white-space separated word of the output of the command.

The command will not be echoed unless the -No_Silent option is specified on the command line.

8.8.1 Example
Read the date and time and assign it to a variable:
now = [collect date];
Do not use the collect function to expand a filename wildcard, used the [glob] function instead.

8.8.2 See Also
collect_lines, recute, glob, read, read_lines, write

8.8.3 Also Known As
shell

8.9 cook

This function requires one or moregaments, filenames to be tested to see if #ne up-to-date, and be
brought up-to-date if thyeare not. The result are true ("1") if the files are (now) up-to-date, or false (") if
they could not be built.

8.9.1 Caveat
This will use as much of the cookbook as has been read in up to the point where this functionTifissed.
can mean that crucial recipes/baet to be parsed and instantiated.

This function works one argument at a time. This isvslothan the main cookbook, which will pursue all
targets simultaneously.

8.9.2 See Also
cando, uptodate

Peter Miller Page 50

8.10 count

This function requires zero or moregaments. Theesult is a word list of one word containing the
(decimal) length of the argument word list.

8.10.1 Example

This cookbook fragment echoes the number of files, and then the name of the last file:
echo There are [count [files]] files.;
echo The last file is [word [count [files]] [files]].;

8.10.2 See Also
head, tail, word

8.10.3 Also Known As

words

8.11 defined

This function requires a single argument, the name of a variable to be testettemae. Itreturns "1"
(true) if the named variable is defined and "™ (false) if it is not.

8.11.1 Example
This function is most often seen in conditional portions of cookbooks:
if [defined baseline] then
cc_flags = [cc_flags] -I[baseline];

8.12 dirname

This function requires one or more arguments, the names of files which wélltheir directory parts
extracted.

8.12.1 Example

Expression Result

[dirname a] ‘pwd’

[dirname a/b] a

[dirname a/b/c] a/b
When the answer ould be “.” (the current directory), the result is instead the absolute path of the current
directory This allows repeated [dirname] applications to climb the directory tree, no matter where you
start. Seeelative_dirnameor one which returns “.i nstead.

8.12.2 See Also
basename, entryname, notgliathname, relate_dirname, suffix

8.12.3 Also Known As
dir

Peter Miller Page 51

8.13 dir

This function requires one or more arguments, the names of files which walltheir directory parts
extracted.

8.13.1 Example

Expression Result
[dir a] .

[dira/b] a

[dir a/b/c] a/b

8.13.2 See Also
basename, entryname, notgliathname, relate_dirname, suffix

8.13.3 Also Known As
dirname

8.14 dos-path

This function requires one or more arguments, which will beeted from a UNIX path into a DOS path.
This is of most use underiddows-NT, to convert Cook’s internal pathnames into DOS pathnamgkhe
UNIX porting layer usually hides this from Cook.)

8.14.1 Example

Expression Result
[dos-path a/bl/c] a\b\c
[dos-path //c/temp] c:\temp

[dos-path //server/sti)f \\servenstuff

8.14.2 See Also
un-dos-path
8.15 downcase

This function requires one or more arguments, words to be forced into lower case.
8.15.1 Example

Expression Result
[downcase FOQ] foo
[downcase Bar] bar
[downcase baz] baz

8.15.2 See Also
upcase

Peter Miller Page 52

8.16 entryname

This function requires one or moregaments, the names of files which willvieaheir entry name parts
extracted.

8.16.1 Example

Expression Result
[entryname foo.c] foo.c
[entryname foo/bac] barc
[entryname baz] baz

8.16.2 See Also
basename, disuffix

8.16.3 Also Known As
notdir

8.17 execute

This function requires at least oneggament, andecutes the command\gin by the aguments. Ifthe
executed command returns non-zero exit status the resulting value is "™ (false), otherwise it is "1" (true).

The command will not be echoed unless the -No_Silent option is specified on the command line.

8.17.1 Caveat
This function is not often required as its functionalityvailable in a more useful form as recipe bodies.

8.17.2 Example
To get access to a wide range of Unix command, sutés§$), you can use this function in conditionals
if [not [test -d fubar]] then

{
rm -f fubar;
mkdir fubar;
}
8.17.3 See Also
collect
8.18 exists

This function requires one gument, being the name of a file to test fisence. Theesulting word list
is " (false) if the file does not exist, and "1" (true) if the file does exist.

8.18.1 Example
To remove the target of a recipe before building it again:

%.a: [%_obj]

{
if [exists [target]] then
rm [target]
set clearstat;
[ar] gc [target] [%_obj];
}

Note: youmustuse the clearstat, because otherwise okat cache” will be incorrect.

This is only an gample. Itis better to perform this particular activity using thenlink’’ flag. Seehe
[find_command] function, belg for an example.

Peter Miller Page 53

8.18.2 See Also
cando, find_command, uptodate

8.19 exists-symlink

This function requires onegument, being the name of a file to test fastence. Theest will not follow
symbolic links, so it may be used to test for tkistence of symbolic links themsels. Theresulting vord
listis " (false) if the file does not exist, and "1" (true) if the file does exist.

8.19.1 See Also
exists, readlink

8.20 expr

This function may be used to calculate simple integer arithma&peessions. Thenumbers and the
operators are expected to each be a sepamgienant. Theesult is a string containing the value of the
evduated expression.

8.20.1 Operators
The following operators are understood. ¥iavethe same precedence as the egent C operators.

Operator Associatity
() -
N

- —

+ - N
<< >> —
< <= > >= N
== I= N
& -
- -
| -
&& -
| -
?: -

Please note that there is no short-circuéleation of the?: or &&or|| operators.

You may need to quote some of the operators, to insulate them from their usual Cook interpretation (colon
and equals characters in particular).

Numbers may be gén in decimal, octal (with & prefix), or hexadecimal (with @x prefix). Theresult is
always decimal.

8.20.2 See Also

count

Peter Miller Page 54

8.21 filter_out

This function requires one or moregaments. Thdirst argument is a pattern, the second and later
arguments are strings to matchaamgt this pattern. The resulting wordlist contains those arguments which
did not match the patternvgn as he first argument.

8.21.1 Example

Expression Result

[filter_out %.c a.c a.0] a.o
[filter_out %.cc a.ca.0] a.ca.o

8.21.2 Match Mode
This function is affected by the selected match mode. SdaléhBlame Patternshapter for detalils.

8.21.3 See Also
filter, stringset

8.22 filter

This function requires one or moregaments. Thdirst argument is a pattern, the second and later
arguments are strings to matchaamgt this pattern. The resulting wordlist contains those arguments which
matched the pattern\gn as he first argument.

8.22.1 Example

Expression Result

[filter %.c a.c a.0] a.c
[filter %.cc a.c a.0]

8.22.2 Match Mode
This function is affected by the selected match mode. SdaléhBlame Patternshapter for details.

8.22.3 See Also
filter_out, stringset

8.22.4 Also Known As
match_mask

8.23 find_command

This function requires at least ongament, being the names of commands to search forARtEPThe
resulting word list contains either " (false) or a fully qualified path name for each commrand gi

8.23.1 Example
Some systems requiranlib(1) to be run on archés, and some do not. Here is a simple way to test:
ranlib = [find_command ranlib];

%.a: [%_obj]

set unlink
{
ar qc [target] [%_obj];
if [ranlib] then
[ranlib] [target];
}

Peter Miller Page 55

8.23.2 See Also
cando, exists, uptodate

8.24 findstring

The findstring function is used to match a fixed string against a set of stiihgsfunction takes at least

one agument. Theirst argument is the fixed string, the second and subsequgmhents are matched
against the first. The result contains one word for each of the second and subsequent arguments, each will
either be the empty string (false) or the string to be matched, if a match was found.

8.24.1 Example

Expression Result

[findstringaabc] a™""
[findstring a b]
Quotes are for claritfo enphasize the empty strings. Because the empty string is "false”, this can be used
in anif statement:
if [findstring fish [sources]] then
sources = [sources] hook.c;

8.24.2 See Also
filter-out, match, match_mask, patsubst, stringset, subst

8.25 firstword

This function requires zero or moregaments. Theavordlist returned is empty if there were n@aments,
or the first argument if there were arguments.

8.25.1 Example
You can iterate along a list using theop statement combined with tiiestwordandtail functions:

dirs=abcd;
src =;

tmp = [dirs];
loop

{

tmp_dir = [firstword [tmp]];
if [not [tmp_dir]] then
loopstop;
tmp = [tail [tmp]];
src = [src] [glob [tmp_dir]"/*.c";
}

More efficient ways exist to do this, this an example only.

8.25.2 See Also
count, glob, fromto, prepost, tail, word

8.25.3 Also Known As
head

Peter Miller Page 56

8.26 fromto

This function requires at least &verguments. Fromtaives the user access to the pattern transformations
available tocook. The first argument is the "from" form, the seconguanent is the "to" form. All other
arguments are mapped from one to the other.

8.26.1 Example
Given a list of C source files, generate a list of object files as follows:
obj = [fromto %.c %.0 [src]];

8.26.2 See Also
filter, filter_out, subst

See the pattern matching chapter for more information about patterns.

8.26.3 Match Mode
This function is affected by the selected match mode. SdaléhBlame Patternshapter for detalils.

8.26.4 Also Known As
patsubst

8.27 getenv

Each agument is treated as the name of an environmandle. Theresult is the value of eachgament
variable, or ™ if it does not exist (consistent with command shell behaviour).

8.27.1 Example

To read the value of the TERM environment variable:
term = [getenv TERM];

Values of variables are not automagically set from the environment, you must set each one explicitly:
cc = [getenv CC];
if [not [cc]] then
cC = gcg;
8.27.2 See Also
find_command, home

8.28 glob

Each argument is treated assigl) file name pattern, and@anded accordingly The resulting list of
filenames is sorted lexicographically.

You may need to quote the pattern, to protect square brackets from the meaning cook attaches to them.

Note: The character sequenée is a comment introduceend is a frequent source of problems when
combined with theylob function. Remembetio quoteglob arguments which need this character sequence.
See the [head] function, b&lpfor an example of this.

8.28.1 Example

To find the sources in the current directory:
src = [glob *.c];
obj = [fromto %.c %.0 [src]];

8.28.2 See Also
filter, filter_out, shell

8.28.3 Also Known As
wildcard

Peter Miller Page 57

8.29 head

This function requires zero or moregaments. Theavordlist returned is empty if there were n@aments,
or the first argument if there were arguments.

8.29.1 Example
You can iterate along a list using tleop statement combined with tieadandtail functions:

dirs=abcd;
src =;

tmp = [dirs];
loop

{

tmp_dir = [head [tmp]];
if [not [tmp_dir]] then
loopstop;
tmp = [tail [tmp]];
src = [src] [glob [tmp_dir]"/*.c";
}

More efficient ways exist to do this, this an example only.

8.29.2 See Also
count, glob, fromto, prepost, tail, word

8.29.3 Also Known As
firstword

8.30 home

The homefunction is used to find the home directory of the named ustng.may name more than one
user If no users are named, it returns the home directory of the current user.

8.31 if

This function requires one or more arguments, the arguments before the "tbeh"are used as a
condition. Ifthe condition is true the words between the "then" word and the "else" word are the result,
otherwise the wrds after the "else" word are thalwe. The'else" clause is optional. There is no way to
escape the "then" and "else" words.

8.31.1 Example
Here is an example of th&f*’ function. Pleaseote that‘if’’, ‘‘then” and “else” are reserved words, so
you need to quote them before\tivéll be recognised on the function context.

%: %_obj

set ["if" [defined all_shallow] "then" shallow]
{

[cc] -o [target] [%_obj];
}

8.31.2 Caveat
It is often clearer to use tlilestatementhan this function.

The recipe flags arevaluated at the same time as the recipgdat. Noneof the [target], [targets], [need],
[younger] variables or pattern matches (%, #it), are set at this time.

Peter Miller Page 58

8.32 in

This function requires one or moregaments. Theavordlist returned is a single word: the indef the
matching word (1 based) if the first argument is equal yohthe later ones; or ™ (false) if not.

This function can also be used for equality testing, just use a single element in the set.

Because it returns the index, the return valus can be used wijthdattg or [words] functions.

8.32.1 Example
Frequently seen in conditional parts of recipes:
%: [%_obj]

{
[cc] -o [target] [%0_obj];
if [in [target] [private]] then
chmod og-rwx [target];
}

8.32.2 See Also
stringset, word, words
8.33 interior_files

This function requires zero guments. Theesult is the list of files which are interior to the depengenc
graph. (Filesvhich are constructed by a recipe.) This function is only meaningful within a recipe body.

8.33.1 See Also
leaf files function, graph_interior_file variable, graph_interior_pattern variable
8.34 join

Thejoin function is used to join tavsets of strings togethegdement by element. The argument list must
contain an een number of aguments, with the first half joined pair-wise with the last half. There is no
marker of ag kind between the lists, so the user needs to ensyrartaéoth the same length.

8.34.1 Example

Expression Result
[[oinabcd] achd
[join a b] ab

8.34.2 See Also

basename, catenate, suffix

Peter Miller Page 59

8.35 leaf files

This function requires zero guments. Theesult is the list of files which are les of the dependenyc
graph. (Fileswhich are not constructed by a recip&his function is only meaningful within a recipe
body.

8.35.1 See Also
interior_files function, graph_leaf_file variable, graph_leaf pattern variable

8.36 matches

This function requires one or moregaments. Thdirst argument is a pattern, the second and later
arguments are strings to match against the pattern. The resulting wordlist contains "™ (false) if did not
match and the 1-based list indgrue) if it did.

The returned list indemay be used in combination with the [words] function.

8.36.1 Example
This function may be used to test for strings whickete @rticular form:
if [matches %1C%?2 [version]] then
cc_flags = [cc_flags] -DDEBUG
If the version contains a Capital-C charactieen turn on debugging.

8.36.2 Match Mode
This function is affected by the selected match mode. Sdeléhslame Patternshapter for details.

8.36.3 See Also
filter, filter-out, words

8.37 match_mask

This function requires one or moregaments. Thdirst argument is a pattern, the second and later
arguments are strings to match against this pattern. The resubirtflist contains those arguments which
matched the pattern\gn as he first argument.

8.37.1 Example

Expression Result

[match_mask %.c a.c a.0] a.c
[match_mask %.cc a.c a.0]

8.37.2 Match Mode
This function is affected by the selected match mode. Sdéléhslame Patternshapter for detalils.

8.37.3 See Also
filter-out, findstring, stringset

8.37.4 Also Known As
filter

Peter Miller Page 60

8.38 mtime

This function requires one gument, the name of a file to fetch the last-modified time of. The resulting
wordlist is ™ (false) is the file does noxist, or a string containing a (sortable) representation of the date
and time the files were last modified.

8.38.1 See Also

exists, mtime-seconds, sort_newest

8.39 mtime-seconds

This function requires one gument, the name of a file to fetch the last-modified time of. The resulting
wordlist is ™ (false) is the file does natist, or a string containing number of seconds since the epoch that
the files were last modified. This is more useful than [mtime] for doing arithmetic on.

8.39.1 See Also
exists, expymtime, sort_newest

8.40 notdir

This function requires one or more arguments, the names of files which vélltter entry name parts
extracted.

8.40.1 Example

Expression Result
[notdir foo.c] foo.c
[notdir foo/barc] batc
[notdir baz] baz

8.40.2 See Also
basename, dirname, relati dirname, suffix

8.40.3 Also Known As
entryname

8.41 not

This function requires zero or more arguments, the value to be logicghiede Itreturns "1" (true) if all
of the arguments are ™ (false), or there are nguawents; and returns " (false) otherwise. This is
symmetric with the definition of true and false for

8.41.1 Example
This is often seen in recipes:
%1/%0%2.0: %1/%0%2.c
single-thread %2.0

{
if [not [exists [dirname [target]]]] then
mkdir -p [dirname [target]]
set clearstat;
[cc] [cc_flags] -1%1 %1/%0%?2.c;
mv %2.0 [target];
}

Note that %0 matches zero or more whole filename portions, including the trailing slash. See the chapter
on pattern matching for more information.

This is an example onlyThe “mkdir” recipe flag creates the directory more efficiently.

Peter Miller Page 61

8.41.2 See Also
and, or

8.42 operating_system

This function requires zero or moregaments. Theaesulting wordlist contains the values ddrious
attributes of the operating system, as named in tgenaents. Ifno attributes are named, "system" is
assumed. Belwis a list of attributes:

node Thename of the computeook is presently running on.
system Thename of the operating systamok is presently being run undeFor example: if you

were running on SunOS 4.1.3, this would ret8nriOS'.

release Thepecific release of operating system, within natnek is presently being run under
For example: if you were running on SunOS 4.1.3, this would retdrh.3 "

version \ersion information. For SunOS 4.1.3, this would return the kernel build numiber
other systems it is often the kernel patch release number.

machine Thename of the hardare cook is presently running onFor example: If you were
running on SunOS 4.1.3 this would retusuii4 " or similar.

This function may be abbreviated to "0s".

8.42.1 Example

This function is usually used to determine the architecture (either system or machine):
arch=[os system]-[os release]-[os machine];
if [matches Sun0S-4.1%1-sun4%?2 [arch]] then

arch = sun4;
else if [matches Sun0S-5.%1-sun4%?2 [arch]] then
arch = sunb;

else if [matches Sun0S-5.%1-i86pc [arch]] then
arch = sunbpc;

else if [matches Convex0S-%1-%?2 [arch]] then
arch = convex;

else
arch = unknown;

8.42.2 Caveat

This function is implemented using theamé2) system call. Some systems do not implement this
correctly and therefore this function is less useful than it should be, and needs the pattern match appropach
used abwe.

8.42.3 See Also
collect

8.42.4 Also Known As
0s

Peter Miller Page 62

8.43 options

This functions takes no guments. Theesults is a complete list @ookoptions, exactly describing the
current options settings. This intended for use in constructing reearskinvocations.

The option setting generated are a combination of the command line options useskéocaok, the
contents of the COOK environmenanable, the results of thését” command and the variouset”
clauses.

8.43.1 Example
The top leel cookbook for a recurge project structure can be as follows:
%:

{
dirlist = [dirname [glob "*/Howto.cook’];
loop
{
dir = [head [dirlist]];
if [not [dir]] then
loopstop;
dirlist = [tail [dirlist]];
cd [dir]\; cook [options] %;
}
}
/*

* T his recipe sets the default.
* It d oesn't actually do anything.
*/
all;;
Please note the % hiding on the end of the nestelcommand, this is v the target is communicated to
the nestedook invocation.

8.43.2 Caveat

Recursve CGook is not recommended, because it segments the depgrgtaph and forces Cook toalk
the graph in (potentially) the wrong orderhis introduces a number of significant problemssingle top-
level cookbook is recommended.

8.43.3 See Also
The supplied ‘fecursve” cookbook does exactly this. In order to use it, you neddowato.cookfile
containing the single line

#include "recursive"

Peter Miller Page 63

8.44 or

This function requires at least awarguments, upon which it forms a logical disjunctiofhe \alue
returned is "1" (true) if anone of the arguments is not ™" (false), otherwise "™ (false) is returned.

8.44.1 See Also
and, not

8.45 pathname

The function requires one or more arguments, being files names to be replaced with their full path names.

8.45.1 Example
Relatve mmmes are made absolute, and redundant slashes and dots aesiremo
pwd = [pathname .];

8.45.2 See Also
basename, dirname, entryname

8.46 patsubst

This function requires at leastavarguments. BRtsubst gies the user access to the pattern transformations
available tocook. The first agument is the "from" form, the second argument is the "to" form. All other
arguments are mapped from one to the other.

8.46.1 Example
Given a list of C source files, generate a list of object files as follows:
obj = [patsubst %.c %.0 [src]];

8.46.2 Match Mode
This function is affected by the selected match mode. SdaléhBlame Patternshapter for details.

8.46.3 See Also
filter, filter_out, subst

8.46.4 Also Known As
fromto

8.47 prepost

This function must hae & least tvo aguments. Thdirst agument is a prefix and the second argument is a
suffix. Theresulting word list is the third and later arguments eaetnghe prefix and stik as defined by
the first and second arguments.

8.47.1 Example

Expression Result
[prepost sun4/ .0 ab] sund/a.o sun4/b.o
[prepost -1 "™ . bl] -1. -1bl

8.47.2 See Also
addprefix, addsuffix, patsubst, subst

Peter Miller Page 64

8.48 print

The arguments are printed as an informeatiressage. Theisual output wrapping is performed.he
function returns the empty list as a result.

This function is frequently use to debug cookbooks.

8.49 quote

Each argument is quoted by double quotes, with s#dicial characters escaped as necessary.

8.49.1 See Also
collect, execute
8.50 read_lines

The argument is interpreted as the name oktfile to be read. The result is one word for each line of the
file.

8.50.1 Example
Read a thexamplefile and assign it to a variable:
example = [read_lines example];

8.50.2 See Also
collect, collect_lines, read, write

8.51 readlink

The arguments are assumed to be symbolic links, and thleiesvare read. It is a fatal error if the files
named are not symbolic links.

8.51.1 See Also
collect, exists-symlink

8.52 read

The agument is interpreted as the name of a text file to be read. The result is one word for each white-
space separated word of the file.

8.52.1 Example
Read a thexamplefile and assign it to a variable:
example = [read example];

8.52.2 See Also
collect, collect_lines, read_lines, write

9. Seesh(1) andcsh1) for more information.

Peter Miller Page 65

8.53 relative_dirname

This function requires one or more arguments, the names of files which walltheir directory parts
extracted.

8.53.1 Example

Expression Result

[relative_dirname a]

[relative_dirname a/b] a

[relative_dirname a/b/c] a/b
Seedirnameif you want to climb the directory tree with repeated applicatioglgtive dirnamewill
continue to return “.once the current directory is reached.

8.53.2 See Also
basename, dirname, entryname, noithname, suffix

8.53.3 Also Known As
reldir

8.54 resolve

This huiltin function is used to resadvfile names when using tlseach list variable to locate filesThis
builtin function produces resolved file nhames as outpthis is useful when taking partial copies of a
source to perform controlled updates. The targets of recipesveagsatooked into the current directory.

8.54.1 Example
This function is used in cookbooks which usegbach list functionality:
search_list = . baseline;

%.0: %.c

{

[cc] [cc_flags] [addprefix -I [search_list]] [resolve %.c];

The cookbooks distributed with Cook contain full support forsearch_list functionality They are a
good source of examples ofvado write recipes which takthis into account.

8.55 shell

The arguments are interpreted as a command to be passed to the operating Bystezault is one ard
for each white-space separated word of the output of the command.

The command will not be echoed unless the -No_Silent option is specified on the command line.

8.55.1 Example
Read the date and time and assign it to a variable:
now = [shell date];
Do not use the shell function to expand a filename wildcard, used the [wildcard] function instead.

8.55.2 See Also
collect_lines, recute, wildcard

8.55.3 Also Known As
collect

Peter Miller Page 66

8.56 sort_newest

The aguments are sorted by file last-modified time, youngest to oldest. File names are resolved first (see
the resole function, belav). Absentfiles will be sorted to the start of the list.

8.56.1 Example
This function is often used to "shorten thaitvwhen building large project, so that the file you edited most
recently is recompiled almost immediately:

src = [glob *.c];

obj = [sort_newest [fromto %.c %.0 [src]]];

This trick does not alays work as expected, and candaignificant time for little result.

8.56.2 See Also
fromto, glob, sort

8.57 sort

The arguments are sorted lexicographically.

Note: Duplicates armotremoved. Usethe stringsetfunction if you want to do this.

8.57.1 See Also
sort_newest, stringset

8.58 split

The split function is used to split strings into multiple stringsegithe separatorThis function requires at
least one gument. Thdirst argument is the separator charadtes second and subsequent arguments are
to be separated. The result is the separated strings, each as a separate word.

8.58.1 Example

Expression Result

[split ":" "foo:bar:baz"] foo bar baz
[split " " "New York"] New York
Each of the words in the result is a separate string.

This can be useful in splitting an environment variable into sepamatiswkor example:
path = [split ":" [getenv PATH]];

8.58.2 See Also
unsplit, join, catenate, strip

Peter Miller Page 67

8.59 stringset

Logical operations are performed on sets of strings. These include conjurgt@mirqplicit, disjunction
(*) and difference.

8.59.1 Example

Expression Result

[stringseta b a] ab
[stringseta b c * a] a
[stringsetabc-a] bc
[stringsetab-c+d] abd

The can be very useful in constructing lists of source files:
src = [stringset [glob "*.[cyl]"] - y.tab.c lex.yy.c];

8.59.2 See Also
filter, filter_out, glob, in, patsubst, subst

8.60 stripdot

Thestripdotfunction is used to remve leading “\ " directories from each of the path name arguments.

8.60.1 Example

Expression Result
[stripdot ./foo.c] foo.c
[stripdot baro] baro
[stripdot /fubar] /fubar

8.60.2 See Also
set stripdot

8.61 strip

The strip function is used to remve leading and trailing white space fronosds. Internakequences of
white space are replaced by a single space.

8.61.1 Example

Expression Result

[strip " " "foo " " bar"] "™ foo bar
[strip " really big "] "really big"
Quotes are used here for clarigid are not present in the internal representation of strings.

8.61.2 See Also
split

Peter Miller Page 68

8.62 substr

The substrfunction is used to perform substringtcton. Thdirst argument is the starting position in the
string, starting from one. The second argument is the number of charactexgraat. e Thirst and
subsequent arguments will be processed to extract sub-strings.

8.62.1 Example

Expression Result

[substr 1 1 Peter] P
[substr 3 99 Miller] ller

8.62.2 See Also
subst, patsubst

8.63 subst

The substfunction is used to perform string substitutions on itgiarents. Thigunction requires at least
two arguments. Thefirst argument is the "from" string, the secondjusnent is the "to" string.All
occurreneces of "from" are replaced with "to" in the third and subsequent arguments.

8.63.1 Example
This is a litteral replacement, not a pattern replacement:

Expression Result

[subst bufialo cress water.bfdlo] water.cress
[subst .c .0 test.c] test.o

[subst .c .0 stat.cache.c] stat.oache.o

Note that last case: it is not selgeti

8.63.2 See Also
filter, filter_out, patsubst

8.64 suffix

The suffixfunction treats each argument as a filename, and extracts tixefsuh each. If the filename
contains a period, the suffix iseeything starting with the last period. Otherwise, the suffix is the empty
string (as opposed to nothing at all).

8.64.1 Example

Expression Result
[suffix a.c foo hy] .c™My
[suffix stat.cache.c] .c
[suffix .eric]

Quotes are used here for clarigid are not present in the internal representation of strings.

The suffixfunctions in this way to alle sensible results when using tfeén function to re-unite filenames
dismembered by theasenameandsuffixfunctions.

8.64.2 See Also

basename, dirname, entryname, join, patsubst

Peter Miller Page 69

8.65 tail

This function requires zero or moregaments. Thevord list returned will be empty if there is less than
two arguments, otherwise it will consist of the second and later arguments.

8.65.1 See Also
count, head, word

8.66 un-dos-path

This function requires one or more arguments, which will beeted from a DOS path into a UNIX path.
This is of most use underidows-NT, to convert DOS pathnames into Coackinternal pathnameg(The
UNIX porting layer usually hides this from Cook.)

8.66.1 Example

Expression Result
[un-dos-path a\b\c] a/blc
[un-dos-path c:\temp] /lcltemp

[un-dos-path \\servenstilif //server/stuff

8.66.2 See Also
dos-path

8.67 unsplit

The unsplitfunction is used to glue strings togethasing the specified glue. The first argument is tie te
to go between each of the second and subsequent arguments.

8.67.1 Example

Expression Result
[unsplit ":" one tvo three] "one:tw:three"
[unsplit " " four five 9x] "four five 9x"

The quotes are necessary to isolate characters such as colon and space whialultcbakrmally treat
differently.

8.67.2 See Also
catenate, prepost, split

Peter Miller Page 70

8.68 upcase

This function requires one or more arguments, words to be forced into upper case.

8.68.1 Example

Expression Result
[upcase FOO] FOO
[upcase Bar] BAR
[upcase baz] BAZ

8.68.2 See Also

downcase

8.69 uptodate

This function may be used to determine if files are up-to-dateturns a word list containing the names of
the up-to-date files, or empty if none of them are up-to-deey are not brought up to date if tlyeare not
already This function requires one or more arguments.

8.69.1 Caveat
This will use as much of the cookbook as has been read in up to the point where this functionTifigsed.
can mean that crucial recipes/baet to be parsed and instanciated.

8.69.2 See Also
cando, cook

8.70 wildcard

Each argument is treated assldl) file name pattern, and expanded accordinglige resulting list of
filenames is sorted lexicographically.

You may need to quote the pattern, to protect square brackets from the meaning cook attaches to them.

Note: The character sequen¢e is a comment introduceend is a frequent source of problems when
combined with thevildcard function. Remembeto quotewildcard arguments which need this character
sequence.

8.70.1 Example

To find the sources in the current directory:
src = [wildcard *.c];
obj = [patsubst %.c %.0 [src]];

8.70.2 See Also
filter, filter_out, patsubst

8.70.3 Also Known As
glob

Peter Miller Page 71

8.70.4 Wordlist

This function may be used to extract a list of words from a larger list. The first argument is the starting
position, and the second argument is the ending poistion, welushe third and subsequentgaments

are the list to be extracted from. Positions are numbered starting from 1. If the start is bigger than the end,
they will be quietly svapped. Ifthe start is bigger than the list, the result will be empty.

8.70.4.1 Example

Expression Result
[wordlist 2 3 foo bar baz] bar baz
[wordlist 1 1 foo bar baz] foo
[wordlist 7 3 foo bar baz] baz

There are a number of functions which are similar

Expression Similato
[wordlist 1 1list] [headlist]
[wordlist 2 9999list] [tail list]
[wordlist N N list] [word N list]

8.70.4.2 See Also
firstword head, tail, word, words

8.71 word

Theword function is used to extract a specifions from a list of vords. Thefunction requires at least one
argument. Thedirst argument is the number of the word to extract from tbedlist. Thewordlist is the
second and subsequengaments. Arempty list will be returned if you ask for an elemerfttbe end of
the list.

8.71.1 Example

Expression Result

[word 1 one two three] one
[word 2 one tw three] two
[word 3 one two three] three
[word 5 one two three]

The last element of a list of words may be extracted as:
last = [word [count [list]] [list]];

8.71.2 See Also
count, head

Peter Miller Page 72

8.72 words

This function requires zero or moregaments. Theesult is a word list of one word containing the
(decimal) length of the argument word list.

8.72.1 Example

This cookbook fragment echoes the number of files, and then the name of the last file:
echo There are [words [files]] files.;
echo The last file is [word [words [files]] [files]].;

8.72.2 See Also
head, tail, word

8.72.3 Also Known As

count

8.73 write

This function requires one or moregaments. Thdirst argument is the name of the file to write, the
second an later arguments are lines to be written to thgTikés is specifically a text file.) The result is an
empty word list.

This function is very useful in writing command line file forindlows-NT, due to its absurdly short
command line interface.

8.73.1 See Also
read, read_lines

Peter Miller Page 73

9. Predefined Variables

A number of variables are defined tgok at run-time.

9.1 arg

This is the arguments list for user-defined functiohsdividual arguments are split out int@1” to
“@9". Thesecan also be used at automatigziables. Cautionarg and the automatic variables ateared
for parallel eecution, causing weird interactions if yoxeeute a command within the function.

9.2 command-line-goals

The value of this variable is the goals specified on the command ling, iffamone were specified, and the
default goal is in effect, the value will be empty.

9.3 FILE

The value of this ariable is the logical name of the file which contains it. In the caggénofude-
cooked files, the plgsical name may be obtained using the [resolve] function. The logical name may be
set using thétline directive.

9.4 __FUNCTION__

The value of this variable is the name of the function whixcwges it. It is not set for the global
cookbook scope or the recipe body scope.

9.5 graph_leaf file

File names which are listed in this variable could be leaf files of the depgngaph. (Seealso the
leaf filesfunction, for Cooks idea of the leaf files.)

9.6 graph_exterior_file
File names which are listed in this variable cannot be preseny iwaanin the dependepgraph.
9.7 graph_interior_file

File names which are listed in thianable could be interior files of the dependegraph. (Sealso the
interior_filesfunction, for Cooks idea of the interior files.)

9.8 graph_leaf pattern

File names which match the patterns in ttagable could be leaf files of the dependeg@ph. (Sealso
theleaf filesfunction, for Cooks idea of the leaf files.)

9.9 graph_exterior_pattern

File names which match the patterns in this variable cannot be preseptwayaim the dependeg@raph.

9.10 graph_interior_pattern

File names which match the patterns in ttasiable could be interior files of the dependegmaph. (See
also thenterior_filesfunction, for Cooks idea of the interior files.)

9.11 _ LINE__

The value of this variable is the line number within of the file which contains it. The line number may be
set using theétline directive.

9.12 need

The ingredients of the recipe currently being cooked.

Peter Miller Page 74

9.13 parallel_hosts

This variable may be set to indicate a list of hosts to use to distributeethgien of recipe bodies.

9.14 parallel_jobs

This variable may be set to the number of paraketation threads to perform simultaneousefaults to
1if not set.

9.15 parallel_rsh

This variable may be set to the command useddoute commands on remote machines. Assumes ¢o tak
argument in the same form as the BSB(1) command. Defaults torsh” i f not set.

9.16 search_list

This variable may be set to a list of directories to be searched for targets and ingredients. This list is
initially the current directory (.) and will alays hare the current directory prepended if it is not present.
This is useful when taking partial copies of a source to perform controlled updates. ts®ihebuilt-in

function to determine what file name cook actually found. The targets of recipeware @boked into the
current directory.

The cookbooks distributed with Cook contain full support forsierch_list functionality They are a
good source of examples ofvado write recipes which takthis into account.

9.17 self

The namecook was invoked as, usually "cook".Be careful what you call cook, because anything with the
string "cook" in it will be changed, including bnot limited to) file suffxes and environmentaviable
names.

9.18 target

The target of the recipe currently being cooked, or the first target if there is more than one.

9.19 targets

The targets of the recipe currently being aeabk Thisincludes all tagets of the recipe, should there be
more than one.

9.20 thread-id

This variable has a unique value for eagbcation thread, for the lifetime of that thread. This value may
be used to construct thread-uniqueiable names, thread-unique temporary file names, or anything else
that needs to be unique to eaotecaition thread. The thread IDs are re-used, and geraehreads in
sequence may kia the same thread ID; it is only guaranteed that no other simultaneous threadevitidha
same thread ID. By re-using thread IDs, generatmiblble names are also re-usedgiding memory
bloat.

9.21 younger

The subset of the ingredients of the recipe currently being cooked which are younger than the target.

9.22 version

The version otook currently executing.

Peter Miller Page 75

10. Functions Library

There is a file of functionsvailable to you by using a
#include "functions”
line in your cookbook. The file defines a number of useful functions.

The functions in the file also seras @amples of hav you can write your own functions.

10.1 capitalize

The capitalizefunction maps all of its arguments into lower case, and then the first letter of gaoteat
is mapped to upper case. Zero, one or more arguments mayebe gi

10.2 defined-or-null

The defined-or-nulfunction may be used to determine ifaiable has been set (on the command line, for
example) and return its value if so, otherwise return the empty list.

This function should only be wgn one argument - the name of the variable to look fadditional
arguments will be ignored.Too few aguments will produce a complaint about the " variable being
undefined.

10.3 defined-or-default

The defined-or-defaultunction may be used to determine if a variable has been set (on the command line,
for example) and return its value if so, otherwise return thenglefault value.

The first argument is the name of the variable to look for.

The second and later arguments (if present) are treultlefalue to be used if the named variable is not
defined. Optional.

10.4 repeat

The repeatfunction is used to repeatedly call another function, once for each of the spegjfieteats.
The can be useful when dealing with functions which do not automaticly acgapieatt lists in the form
you require.

There are maninstances where the repeat function call be used gangle avoid used to the “loop {
loopstop }’ construct.

The first argument is the name of the function yoantwvcalled. This function must accept a single
argument.

The second and subsequent arguments are argumeesuo be passed to the named function, one at a
time.

The results of the wrocations of the function are accumulated in the order in whighwlege calculated.
The accumulated results are returned.

10.5 variable_by path

The variable_by pathfunction is used toxract the union of option settings redat to a particular
compilation or link. By using aariable prefix, this function may be used to obtain the setting of a wide
variety of options and commands.

Global \ariables are searched in a no particular order for the necessary information. All are searched, all
found are used.

For example, the function calvariable_by path cc_flags foo/bar/baz.c] will hunt for
variables with the following namescc_flags foo/bar/baz.c and cc_flags_foo/bar and
cc_flags_foo andcc_flags . Itis expected that the vast majority of theswiables will not be set.

Duplicates are renved.

Peter Miller Page 76

11. Actions when Cooking

This section describes whaiok does when you ask it to cook something.

Cook performs the following actions in the order stated.

11.1 Scan the COOK Environment Variable

The COOK ervironment variable is looked forlf it is found, it is treated as if it consisted adok
command line @uments. Onlythe -Help option is illeggd. This could result is very strange behavior if
used incorrectly.

This feature is supplied torerride cook’s default with your own preferences.

11.2 Scan the Command Line

The command line is scanned as defined in chapter 3.

11.3 Locate the Cookbook

The current directory is scanned for the cookbook. Names which a cookbook veagdhade

howvto.cook Howto.cook .hmeto.cook
howto.cook Hav.to.cook .haev.to.cook
cookfile Cookfile .cookrc
cook file Cook.file .cook.rc
The first so named file found in the current directory will be udét order of search is not definedou
are strongly advised to ¥ just one of these name forms in ymlirectory The nameHowto.cookis the
preferred form.

11.4 Form the Listing Filename

The listing file, if not explicitly named in the environmemtriable or on the command line, will be the
name of the cookbook, with psuffix removed and '.list ’* appended.

11.5 Create the Listing file

The listing file is createdlf cook is executing in the background, or tAROT Ty option has been specified,
stdoutand stderr will be redirected into the listing filelf cook is executing in the foreground, and the
-NoT Ty option has not been specifiaidoutandstderrwill be redirected into a pipe totag1) command;
which will, in turn, copy the output into the named file.

A heading line with the name of the file and the date, is generated.

11.6 Scan the Cookbook

When cook reads the cookbook itvaluates all of the statements it finds in it. Usually these statements
instantiate recipes, although other things are possible.

Recipes contain statements that are n@luated immediatelybut which are remembered for later
execution when cooking a tget. Themeaning of a cookbook is defined in chapter X.

11.7 Determine targets to cook

If no target files are named on the command line, thgetsrof the first defined explicit or ingredients
recipe. Itis an error if this is none.

11.8 Cooking a Target

A derivation graph is formed using all of the gats gven. Oncethe denation graph is formed, it will be
walked, looking for files which are out of date.

Peter Miller Page 77

To huild the dervation graph for a target, each the following steps is performed in the ox@ar gi
1. Cook exploits knowledge of the desdtion graph that the user may provide to it:

« If the graph_exterior_filevariable is set, and the file name is listed in it, the file is not a leaf,
and the deviation will backtrack and try another alternai

- If the graph_exterior_patterrvariable is set, and the file name matches one of the patterns
listed in it, the file is not a leaf, and the dation will backtrack and try another alternagi

- If the graph_leaf_filevariable is set, and the file name is listed in it, the file is a leaf file of the
derivation. Thereis no need to attempt to applyyarecipes. Iwill be an error if the file does
not exist.

- If the graph_leaf_patterrvariable is set, and the file name matches one of the patterns listed
in it, the file is a leaf file of the degtion. Thereis no need to attempt to applyyarecipes.
It will be an error if the file does not exist.
These optimizations require an accurate source file manifest, but can result is substantial
performance impreements.

2. Cook scans through the instantiated ingredients recipes in the orderwilie defined. All
ingredients recipes with the target in their target list are used.

If a recipe is used, thenyimgredients also lve their dervation graph constructed. Wheraliing
the graph, if ap of the ingredients are younger than the target, all other explicit or implicit recipes
with the same target will be deemed to be out of tfate.

3. Cook then scans through the instantiateglieit recipes in the order tigavere defined. All gplicit
recipes with the target in their target list are used.

If a recipe is a used, the ingredients alseehheir dervation graph constructed. When walking the
graph, if aly ingredients are out of date or the target does noty&tt (@r the "forced" flag is set in

the recipes setclause) the recipe body will be performed. If a recipe has no ingredients, it will not
be performed, unless the target does not yet exist, or it is forced.

4. |If the target was not in the target list ofyamplicit recipe,cook then scans the instantiated implicit
recipes in the order tlgavere defined, in tev passes. Implicitecipes which not not ka pattern
elements in the basename of the targets are scanned before implicit recipes whigh térans
in the basenameUsually this has no significant effect,virver in heavily heterogeneousuilds
this method is often used in constructing the dependigles, so that all architectures may use the
one implicit dependencrecipe, rather than statingeey architecture eplicitly. Within each pass,
the order of scan is the order of definition.

Implicit recipe tagets and ingredients may contain a wildcard chara&t@r Which is wly they are
implicit. Whenexpressions arevaluated into word lists in an implicit recipe,yaword containing
the wildcard characteffg) will be expanded out by the current wildcard expansion.

If the target matches a pattern in the targets of an implicit recipe, it is a candidateingredient
of a candidate recipe is recwdy cooked. If ary ingredient cannot be cooked, then the implicit
recipe is not used. If all ingredients can be cooked, then the implicit recipe is used.

If an implicit recipe is a used, the forced ingredients alse tieeir derivation graph constructedt
is an error if a forced ingredient cannot be constructed.

Only the first implicit recipe to get to this point is used. The scan stops at this point.

5. If the taget is not the subject of wiingredients or explicit recipe, and no implicit recipes can be
applied, then seral dervations are attempted, in the order specified:

10. Atarget which does not exist yet is considered to be infinitely ancient, and/énythieg is younger than it.

Peter Miller Page 78

If the graph_interior_filevariable is set, and the file name is listed in it, the file is a not leaf
file of the denation. Cookwill backtrack and try another alternagi

If the graph_interior_patternvariable is set, and the file name matches one of the patterns
listed in it, the file is a not leaf file of the degtion. Cookwill backtrack and try another
alternatve.

If the graph_leaf_filevariable is set, and the file name is listed in it, the file is a leaf file of the
derivation. Itwill be an error if the file does not exist.

If the graph_leaf_patterivariable is set, and the file name matches one of the patterns listed
in it, the file is a leaf file of the destion. Itwill be an error if the file does not exist.

If either of thegraph_leaf_fileor graph_leaf patterrvariables are set, then the file is not a
leaf, and the derétion will backtrack and try another alternai

If the file exists, then it is up to date, and the file is a leaf file of theatien.

If the file does notxast thenCook doesnt know how, and the dewation will backtrack and
try another alternate.

If a command in the body of yamecipe #il, cook will not that body an further and will not perform the
body of ary recipe for which the target of the failed actions was an ingredient, directly or indirectly.

Cook will trap recursve looping of targets.
- If the file exists, the it is up to date, or

- If the file does not exist theawok doesnt know how.

11.9 The Dependency Graph

The abwe sction describes o Cook derves the dependerncgraph. Oncethe dependenycgraph has
been deried, it is then valked. Thenext section describes a little aboutvh@ook walks the dependenc
graph.

Cook is a simple kind ofxpert system.You give it a set of of recipes for to construct things, and a
target to be constructedThe recipes can be decomposed into pair-wise ordered dependencies between
files.

Cook determines ho to build the taget by constructing directed acyclic gagph The \ertexes of this
graph are the files in the system, the edges in this graph are the inter-file dependdémiedges of the
graph are directed because the pdse dependencies are ordered resulting acyclic graph — things
which look like loops are resolved by the direction of the edges.

For example, if you hee a $mple cookbook (with the recipe bodies omitted for simplicityg fikis:
program: one.o two.o;
one.o: one.c one.h;
two.o: two.c two.h one.h;

here is the corresponding directed acyclic graph.

Peter Miller Page 79

There are seeral things that can be done with the graph once it has beerdieri

* It can be walked to verify and regenerate the referential integrity of the files (the usual case), or

« it can walked to print the pair-wise dependencies{plags option), or

* it can be valked to generate a shell script (#seript option) which does something very similar to
the first option.

11.9.1 Edge Types
Each of the arrows in the abgaph hae a pecific type.

strict edges mean that Cook will decide that ayeéaris out-of-date if its time stamp is not strictly
younger than all of the ingredients. This is almostags what you want.

weak edges mean that Cook will decide that a target is out-of-date if its time stamp is olderytbfin an
the ingredients. This means that the times stamps of the target and ingredients may be equal -
this is useful for hard links and symbolic linkgou pecify edges of this type by appending the
“(weak) ” string to the name of the ingredient.

exsts edges mean that Cook will arrange for the ingredient to beecbbkfore the recipe is runytb
the time stamjis not consulted The ingredient cannotver make the target out-of-date. This is
useful form coping with version stamps which change often, but yot\want to re-link unless
something else change¥ou ecify edges of this type by appending th{exists) " string
to the name of the ingredient.
The default edge type isstrict”. You can use the "time-adjust”" setting (see the "set" command) ® mak
this simpler on very fast machines.

11.10 File Status

Cook determines the time a file was last modified by asking the operating system. Because this operation
tends to be performed frequenttpok maintains a cache of this information, rather thanemaklundant
calls to the operating system. Because this information is cached, it is possibbekisrmemory of a
file’s last-modified time to become inconsistent with thesfigetual last-modified time. In particulasook
doenot ask the operating system for the "new" last-modified time of a recipe target once a recipe body is
completed. Carefulise of theset clearstat clause will generally prent this. For example, the
following recipe needs to create a directory when writing its output:

bin/%: [%_obj]

if [not [exists bin]] then
mkdir bin;
[cc] -o [target] [need];
}
If there were seeral programs being cooked, elin/foo andbin/bar, the second timeook performed the
recipe, it would erroneously attempt to reake bin directory a second time - contrary to the tebhis is
becauségexists binJused the cache, and nothing tetek that the cache is mowrong. Therecipe should

Peter Miller Page 80

have been written
bin/%: [%_obj]

{
if [not [exists bin]] then
mkdir bin
set clearstat;
[cc] -o [target] [need];
}

which tellscook that it should remee any fies named in thenkdir command from the cache.

An alternatve way of performing the alve example is to set thekdir recipe flag:
bin/%: [%_obj]
set mkdir

{
}

This flag instructscook to create the directory for the g¢gat before running the recipe bodyhere is a
similar unlink flag, which unlinks the targets of the recipe before running the recipe Bbége tw flags
take care of most, but not all, uses of ttlearstatflag.

[cc] -o [target] [need];

A second mechanism used byok to determine the last-modified times of files is affilgerprint This is

a ayptographically strong hash of the contents of a file. The chance® affferent files having the same
fingerprint is less than 1 in 2**200f cook notices that a file has changed, because its last-modified time
has changed, a fingerprint is ¢zk of the file and compared with the remembered fingerprint. If the
fingerprints difer, the file is considered to be f#ifent. Ifthe fingerprints match, the file is considered not
to have changed.

This description of fingerprints is somewhat simplified, the actual mechanics depends on remembering tw
different last-modified times, as well as the fingerprint, in a file cadleok.fpin the current directory.

Fingerprinting can cause some surprisésr example, when you use theuch1) commandgook will
often fail to do anything, and report instead thairyghing is up-to-date. This is because the fingerprint
has not changed. In this situation, either reenthe .cook.fpfile, or use theNo_FingerPrint command
line option.

Peter Miller Page 81

12. Option Precedence

At various points in the description there are a number of flags and options with the same, qr similar
names. Thesare in fact different keels of the same option.

The different leels, from highest precedence to lowest, are as follows.
Error Thislevel is used to disable undesirable side effects when an error occurs.

Command Line Options specified on the command lineewide almost eerything. Thereare some
isolated cases where there is no egent command line optionThey are in scope for
the entirecook session.

Execute Whera cmommand attached to a recipe i®auted, the flags in thest’ clause are gien
this precedenceThey are in scope for the duration of theeeution of the command thie
are bound to.

Recipe Whera recipe is considered for use, the flags in He€ tlause are gien the precedence.
They are in scope for thevaluation of the ingredients names and thxecation of the
recipe body; theare not in scope while cooking the ingredients.

Cookbook Whera 'set’ statement is encountered in the cookbook, the option gea tiis priority.
They are in scope until the end of tleeok session.

Environment Variable
When the options in theCOOK ervironment variable are set, there gven this
precedence. Tlyeare in scope for the enti@ok session.

Default All options hae a cfault setting. The dallts noted in chapter 3 areven this
precedence. Tlyare in scope for the enti@ok session.

Peter Miller Page 82

13. File name patterns
There are tw pattern matchers to choose from.

The tough part about designing a pattern matcher for somethen@ditk is thatideally the patterns must

be reversible. Thats, it must be possible to use the same string both as a pattern to be matched against and
as a template for building a string once a pattern has matched. Raghelidiference between the left

and right sides of an editor search-and-replace command in an editor using the same description for both
the search pattern and the replace template. Thisyiclaksic regular expressions are not the default.

The choice of which pattern matcher to use is dictated by flag settings:

set match-mode-cook
This causes patterns to be matched using Gowaltive patterns. Thiss the default.

set match-mode-regex
This causes patterns to be matched using regular expressions.

The match mode to use may be set at the cookbwek le
set match-mode-cook;
or at the recipe iel

%.0: %.c

set match-mode-cook
{

[cc] -0 %.0 -c %.c;
}

if you want to change your mind temporarily.

The match mode alsofa€ts match functions, such fiker, filter_out fromto match_maskmatchesand
patsubst If you use these in your user-defined functions, you need to be extra careful about this.

The match mode also affects the graph variables, used to specify explicit graph interior and leaf files.

13.1 Cook Patterns

The natve ook pattern matcher has symmetric left-hand-side and right-hand-side paffbisds best
demonstrated with an example recipe:
%.c %.h: %.y
set match-mode-cook

{
yacc -d %.y;
mv yy.tab.c %.c;
mv yy.tab.h %.h;
}

Notice hav the left-hand-side of the recipe (the targets) uses the same style of patterns as the right-hand-
side (the ingredients and the recipe body).

This matcher has elen match "fields”, referenced & and%0 to %9. The% character can be escaped
as%%. The% and%1 to %9 forms match ay character except slash;(these forms may not match a
leading empty string, tovaid problems with false matches against absolute pathse.% 0 form matches
all characters, but must be either empiyhavewhole path components, including the trailihgn each
component.

A few examples will mak this clearer:

string doeshot match

%.c snot/fred.c
%1/%2.c etc/boolfred.c

Peter Miller Page 83

string matches setting
%.c fred.c %="fred"
%1/%2.c snot/fred.c %1="snot"
%2="fred"
%0%5.c fred.c %0=""
%5="fred"
%0%6.c snot/fred.c %0="snot/"
%6="fred"
%0%7.c etc/boo/fred.c %0="etc/boo/"
%7="fred"
/usr/%1/%1%2/%3.%2%4 /usr/man/manl/fred.1®61="man"
%2="1"
%3="fred"
%4="x"

The %0 behaior is designed to ali@ patterns to rangever subtrees in a controlled manneXote that the
use of this sort of pattern in a recipe will result in deeper searches thanvbeecgie designer auld
expect.

13.1.1 Examples
There are tw main places where patterns are used: withrtach_maslkand fromto functions, and in
recipes.

You can perform file name filtering and rewriting as follows:
source_files = [collect cat MANIFEST];
object files =
[fromto %0%.c %0%.0 [match_mask %0%.c [manifest]]]
[fromto %0%.y %0%.gen.o [match_mask %0%.y [manifest]]]

The recipes to go with the almfiles may be
%0%.0: %0%.c
single-thread ["if" %0 "then" %.0]

{
/* note: no slash before dot */
cc -C -1%0. %0%.c;
if %0 then
mv %.0 %0%.0;
}

This recipe can compile files in ad@r project, where source files appear in a number of sub-directories.
The *-1%0.” ensures that there are locally include-able files in the sub-directories. 1#40& had been
entirely omitted from the recipe, it will only compile files in the current directory.

A commonyaccrecipe, used when there is more than one yacc grammar in a project, ledkislik
%0%.gen.c %0%.gen.h: %0%.y
single-thread yy.tab.c yy.tab.h

{
yacc -d %0%.y
yy = [collect echo %0% | sed "'s/["A-Za-z0-9]/_/"T;
sed "s/yY]lyY]/'lyy]"_/g" yy.tab.c > %0%.gen.c;
sed "'s/[yYIlyY]/"[yy]"_/g™ yy.tab.h > %0%.gen.h;
rm yy.tab.c yy.tab.h;

}

To be nore selectie éout the “%0’ portion, use more pattern elements before or after it.

Peter Miller Page 84

13.2 Regular Expressions

The regular expression pattern matcher uses POSjXaeepressions. Ihas asymmetric left-hand-side
and right-hand-side patterns. This is best demonstrated with an example recipe:
WCHOW.e WCA)Wh: Wy
set match-mode-regex
{
yacc -d \1.y;
mv yy.tab.c \1.c;
mv yy.tab.h \1.h;

Notice hav the left-hand-side of the recipe (the targets) uses a completely different style of patterns as the
right-hand-side (the ingredients and the recipe body).

All those backslashes are necesshegause Cook uniformly applies C escapes to strings when it reads
them, and it doeshknow you mean a regular expression backslash until you use it in a recipe context.

Seere_forma(7) for a definition of POSIX 1003.2 regular expressions; you want the “bRgts.

Please note that characters which are special to Cook will need to be escaped with a backslash, or enclosed
in quotes. These include curly brace§ (‘and “} ’), square brackets‘[*’ and “]"’), colon (*'’) and

equals (="). Backslashalways needs to be escaped, whether encoded in a string or not, because within a
string it serves to escape the string terminator.

You dso need to remember that dot”() is a @mmon character in filenames, and frequenty significant in
file name patters, but it is a regular expression wildc¥oii need to escape it to mak literal.

You need to ma& asolutely certain that when recipesveanore than one left-hand-size (as in the yacc
example) that the patterradl assign identical values to their nested sub-expressions.

The usual right-hand-side replacements amlable: an escaped number is replaced withrttle nested
sub-epression; and the ampersan&’(") is replaced by the whole left-hand-side (if yow&arore than
one left-hand-side, this is ambiguous). Backslash may be used to escape them.

13.2.1 Examples
There are tw main places where patterns are used: withrtach_maslkand fromto functions, and in
recipes.

You can perform file name filtering and rewriting as follows:
set match-mode-regex;
source_files = [collect cat MANIFEST];
object files =
[fromto W(.*\)\\.c \1.0
[match_mask W\(.*\\)\\.c [manifest]]]
[fromto W(.*\\)\\.y \1.gen.o
[match_mask W\(.*\)\\.y [manifest]]]

The recipes to go with the almfiles may be
W(HH)\o: \.c
single-thread ["if" [not [in [relative_dirname \\1] .]]
"then" [notdir \\1.0]]

{
cc -c -I[[relative_dirname \1] \1.c;
if [not [in [relative_dirname \\1] .]] then
mv [notdir \1.0] \\1.0;
}

This recipe can compile files in ad@r project, where source files appear in a number of sub-directories.
The “-I\\1.” ensures that there are locally include-able files in the sub-directories.

Peter Miller Page 85

A commonyaccrecipe, used when there is more than one yacc grammar in a project, ledkislik
W(AW)W.gen.c WA \W)\.gen.h: \1.y
single-thread yy.tab.c yy.tab.h
{

yacc -d \\1.y

yy = [collect echo \1 | sed "'s/["A-Za-z0-9]/_/"T;
sed "s/lyY]lyY)"[yyl"_/g" yy.tab.c > \\1.gen.c;
sed "s/lyYIlyY)"[yyl"_/g" yy.tab.h > \\1.gen.h;
rm yy.tab.c yy.tab.h;

To be nore selectie éout the W\(.*\\) " portion, use more pattern elements before or after it.

Peter Miller Page 86

14. Supplied Cookbooks

A number of cookbooks are supplied wiibok. To make use of one, a preprocessor direetdf the form
#include" whi chone"
must appear at the start of your cookbook.

Cook does not hae any built-in" recipes. All recipes are stored in text files, soyrae more easily read,
understood, copied, hacked or corrected. The supplied cookbwels e /usr/share/cooklirectory.

You may supply your own "system" recipes, by placing cookbooks into a directory $&leME/.cookor
using the-lnclude command line option, possibly in yoR€OOKenvironment variable.

14.1 as

This cookbook defines oto use the assembler.

14.1.1 recipes

%.0: %.s Construct object files from assembler source files.

14.1.2 variables

as Theassembler command. Not altered if already defined.

as_flags Optionto pass the assembler commambt altered if already defined. The default is
empty.

as_src Assemblesource files in the current directory.

dot_src Sourcdiles constructable in the current directory (unioned wikiistang setting, if
necessary).

dot_obj Objectfiles constructable in the current directory (unioned witiisteng setting, if
necessary).

dot_clean Filesvhich may be remeed from the current directory in a clean target.

14.2 c

This cookbook describes Wwdo work with C files. Include file dependencies are automatically determined.

14.2.1 recipes

%.0: %.c Construct object files form C source files, with automatic include file dependenc
detection.

%.In: %.c Construct lint object files from C source files, with automatic include file depgndenc
detection.

14.2.2 variables

c_incl TheC include dependeganiffer command. Not altered if already defined.

cc TheC compiler command. Not altered if already defined.

lint Thelint command. Not altered if already defined.

cc_flags Optiongo pass to the C compiler command. Not altered if already defiflee.defult
is "-O".

cc_include_flags Optionpassed to the C compiler and c_incl controlling include file searchiai.
altered if already defined. The default is empty.

cC_src Csource files in the current directory.

Peter Miller Page 87

dot_src Sourcdiles constructable in the current directory (unioned witistang setting, if

necessary).

dot_obj Objectfiles constructable in the current directory (unioned witlisteng setting, if
necessary).

dot_clean Filesvhich may be remaed from the current directory in a clean target.

dot_lint_obj Lintobject files constructable in the current directory (unioned with existing setting, if
necessary).

14.2.3 See Also
The “library” cookbook, for linking C sources into a library.
The “program’ cookbook, for linking C sources into a program.

14.3 77

This cookbook describes wao work with Fortran files.

14.3.1 recipes

%.0: %.f77 Construct object files form Fortran source files.

14.3.2 variables

fr7 TheFortran compiler command. Not altered if already defined.

f77_flags Optiondo pass to the dftran compiler command. Not altered if already definéte
default is "-O".

f77_src fortran source files in the current directory.

dot_src Sourcdiles constructable in the current directory (unioned witiisteng setting, if
necessary).

dot_obj Objectfiles constructable in the current directory (unioned witlisteng setting, if
necessary).

dot_clean Filesvhich may be remaed from the current directory in a clean target.

14.3.3 See Also
The “library” cookbook, for linking Fortran sources into a library.
The “program’ cookbook, for linking Fortran sources into a program.

14.4 977

This cookbook is the same as tHé7’’ cookbook, but it sets thH&7 variable to the GNU Fortran compiler
girTr.

Peter Miller Page 88

14.5 gcc
This cookbook is the same as the' ‘@okbook, but it sets thec variable to the GNU C compilegcc .

14.6 home

This cookbook defined where certain directories are, and some common uses of those directovies, relati
to SHOME.

14.6.1 variables

home Thecurrent users’ home directory.

bin Thedirectory to place program binaries into.
include Thedirectory to place include files into.

lib Thedirectory to place libraries into.

cc_include_flags Thenclude] directory is appended to the search options.

cc_link_flags Th4lib] directory is appended to the search options.

14.7 lex

This cookbook describes Wwdo work with lex files.

14.7.1 recipes

%.c: %.l Construct C source files fronxlsource files.

14.7.2 variables

lex The lex command. Nogltered if already defined.

lex_flags Optiongo pass to the lecommand. Notltered if already defined. The default is empty

lex_src Le source files in the current directory.

dot_src Sourcdiles constructible in the current directory (unioned witkiséng setting, if
necessary).

dot_obj Objectfiles constructible in the current directory (unioned witkising setting, if
necessary).

dot_clean Filesvhich may be remaed from the current directory in a clean target.

dot_lint_obj Lint object files constructible in the current directory (unioned with existing setting, if
necessary).

Peter Miller Page 89

14.8 library

This cookbook defines hoto construct a library.

If an include file (or files) are defined for this libraypu will have o gopend them to [install] in your
Howto.cooKile.

14.8.1 variables

all tamgets of the all recipe

install tagets of the install recipe

me Thename of the library to be constructedefaults to the last component of the
pathname of the current directory.

ar Thearchve mmmand.

install tagets of the install command. Only defined if the [lib] variable is defined.

14.8.2 recipes

all constructhe targets defined in [all].

clean remue the files named in [dot_clean].

clobber remue the files name in [dot_clean] and [all].

install Constructhe files named in [install]. Only defined if the [lib] variable is defined.
uninstall Remue the files named in [install]. Only defined if the [lib] variable is defined.
14.9 print

This cookbook is used to print files. It will almost certainly need to be changedkfgrsite.

14.9.1 recipes

%.lw: %.ps Print a PostScript file.

%.Ip: % Print a text file.

14.9.2 variables

Ip Theprint command. Not altered if already defined.

Ip_flags Optionpassed to the print command. Not altered if already defined. Defaults to empty.

Peter Miller Page 90

14.10 program

This cookbook defines oto construct a program.

If your program uses gribraries, you will hae © gopend them to [Id_libraries] in yotfowto.cookile.

14.10.1 variables

all
install
Id

Id_flags

Id_libraries

me

Targets of the all recipe.
tagets of the install recipe

The name of the linker command. Not altered if already defiriget to the same as the
“cc” variable if set, otherwise set to the same as‘th@ " variable if set, otherwise set
to “Id”.

Notaltered if already defined. The default is empty.

Optiongpassed to the C compiler when linking, these are typically library search paths
(-L) and libraries {l). Notaltered if already defined. The default is empty.

Thename of the program to be constructddefaults to the last component of the
pathname of the current directory.

14.10.2 recipes

all
clean
clobber
install

uninstall

Constructhe targets named in [all].

Remee the files named in [dot_clean].

Remuee te files named in [dot_clean] and [all].

Constructhe files named in [install]. Only defined if the [lib] variable is defined.

Remue the files named in [install]. Only defined if the [lib] variable is defined.

14.10.3 See Also

The “c” cookbook, for C sources.

The “f77" cookbook, for Fortran sources.

The “usr” or *‘usr.local’ or *‘home” cookbooks, for defining install locations.

14.11 rcs

This cookbook is used to extract files from RCS.

14.11.1 recipes

%: RCS/%,v

%: %,V

Extract files from RCS.
Extract files from RCS.

14.11.2 variables

co

co_flags

Peter Miller

TheRCS checkout command.

Flag$or the co command, default to empty.

Page 91

14.12 recursive

This cookbook may be used to construct rewersibok direwctory structures, where the topde
cookbook only imokes aookbooks in deeper directories.

All largets given to this cookbook result in all sub-directories containingl@wvto.cookfile having cook
invoked with the same target.

14.12.1 Recipes
Theall recipe is defined, but it does nothing, it only exists to set the default target name.

14.13 sccs

This cookbook is used to extract files from SCCS.

14.13.1 recipes

%: SCCS/s.% Extract files from SCCS.

%: s.% Extract files from SCCS.

14.13.2 variables

get TheSCCS get command.

get flags Flagfor the get command, default to empty.

14.14 text

This cookbook is used to process text documents.

Include file dependencies are automatically detecfBae requirements for various preprocessors are
automatically detectee(g.eqn, tbl, pic, graf).

14.14.1 recipes

%.ps: %.t PostScript for generic *fafource.

%: %.t Straight text from *rdfsource.

14.14.2 variables

text_incl Thetext_incl command (finds include dependencies). Not altered if already set.
text_rof The text_rof command (finds preprocessor requirements). Not altered if already set.
roff_flags Aguments passed taxteroff, and indirectly to the *rdfprogram. Notaltered if already

set. Deéults to empty.

Peter Miller Page 92

14.15 usr.local

This cookbook defined where certain directories are, and some common uses of those directovies, relati
to /usr/local.

14.15.1 variables

bin Thedirectory to place program binaries into.
include Thedirectory to place include files into.
lib Thedirectory to place libraries into.

cc_include_flags Thenclude] directory is added to the search options.
cc_link_flags Th4lib] directory is added to the search options.
14.16 usr

This cookbook defined where certain directories are, velddi/usr.

14.16.1 variables

bin Thedirectory to place program binaries into.
include Thedirectory to place include files into.
lib Thedirectory to place libraries into.

14.17 yacc_many

This cookbook describes Wwao use yacc. The difference with the "yacc" cookbook is that this cookbook
allows you to hae nore that one yacc generated parser in the same program, by using theseld$}ic
hack of the output.

14.18 yacc

This cookbook describes Wdo use yacc.

You will have o add "-d" to the [yacc_flags] variable if you want %.h files generated.
If a y.outputfile is constructed, it will be mad to %.list.

14.18.1 recipes

%.c %.h: %.y Construct C source and header files from yacc source files. Applied if -d in [yacc_flags].

%.c: %.y Construct C source files from yacc source files. Applied if -d not in [yacc_flags].

14.18.2 variables

yacc_src Ydcc source files in the current directory.

dot_src Sourcdiles constructable in the current directory (unioned witiistang setting, if
necessary).

dot_obj Objectfiles constructable in the current directory (unioned witlisteng setting, if
necessary).

dot_clean Filesvhich may be remaed from the current directory in a clean target.

dot_lint_obj Lint object files constructable in the current directory (unioned with existing setting, if
necessary).

Peter Miller Page 93

15. Glossary

This document employs a number of terms speciftoti.

body

command

cook

cookbook

explicit recipe

fingerprint

flag

A set of statements, usually commands, to be performedd&the targets of arecipe
after theingredienst exist.

A command is a list of words to be passed todjherating systero be &ecuted.

When used as a verb, refers to the actioosk would perform to create &argd,
according to someecipe

A file containing input focook, usuallyrecipes.

An explicit recipe is one where thargets mntain no patterns. That is, there are no
percent (%) characters in anof thetargets.

A cryptographically strong hash of the contents of a file, use to determine if the file
contents hee dhanged.

A flag modifies the behavior of a cook sessiecipe or command.

forced ingredientA files which must exist beforetarget file of animplicit recipemay be cookd. The

function

gate

implicit recipe

ingredient

inability to construct a forced ingredient is an error.
A function is an action applied to a word list.

A gate is a condition which allows the conditional application oé@pe The ate
condition is in addition to the requirement that the ingredients are cookable.

An implicit recipe is a recipe with patterns in tiaegets. Thatis, there is a percentyg’)
character in at least one of ttzegets.

A files which must exist before target file may be coo&d. Inan implicit recipethe
inability to construct of an ingredient means that tbape will not be applied. In an
explicit recipe the inability to construct an ingredient is an error.

last-modified time

recipe

target

touch

variable

Peter Miller

unix imbues files with seeral attritutes. Oneof these is a time-stamp of when the file
was last modified. Usually this is when the file was last written to.

A recipeconsists of sgeral parts.
1. Aset oftarges to be ooked,
2. Aset of ingredients of thodargets, and
3. Anoptional set of forced ingredients.
4. Anoptional set of flags.
5. Anoptional gate.
6. Anoptional body .

The object of aecipg a ting which is cooked.

UNIX imbues files with seeral attritutes. Oneof these is a time-stamp of when the file
was last modified. Usually this is when the filasviast written to, heever it is possible

to simply adjust this attribute, rather than actually writing to the file; this is colloquially
known agouchng a file.

A variable is a named place holder foradue. Thevalue may be changed.

Page 94

CONTENTS

[T i oY [8{ox i o] o NSRRI 1
1.1 Why YOU WaNE D USE COOK ...ooiiiiiiiiiei ittt 1
1.2 Hawto USE thisS MANUAIuiiiiiiiiiii et e e e e e e e s 2
1.3 ANCIENT HISIOIY ..ottt ettt e e ekt e e e st e e e e s bbb e e e e s aabbe e e e e anbeeeeeaane 2
COOK frOM the OULSIAEceeiiiiee et ettt e e e e ettt e e e e e ettt s e e e s ee b e e e eesesbaseeseesrannnss 3
2.1 What can COOK O fOF ME2.. ...ttt e e e e e et e e e e e e a e e e e e e easb e aeeeees 3
2.2 WhatiS COOK AOING? .. .eiiiiiiiiiiiie ettt e et e e et e e e e st e e e e anbe e e e e e neee 3
2.3 What can COOKBEYS GO? ...oooiiiiiiiiiiiiiie et e e e s 3
2.4 1f SOMELNING JOBS WIOMQuetiiieeiitiie e ettt e e ettt e et e e e e sttt e e e e et b et e e e et b e e e e e e aabb e e e e e annbeeeeeannees 3
2.5 The ReferenCe MaANUAL..........coooeiiiiiiiiiieie ettt e e e e e e et e e e e e e esb e e eaees 4
COOK from @ COOKIBOOKvvueiiiiiiiiiiei ettt e e e e e e e e e e e e e bt e e e e s ee b e e e e e s enaaaneeas 5
G 70 ViV o F=Y Ao [0 1= TSR @0 T] Qo [0 1R SRR 5
3.2 Honvdo | tell COOK WHAL t0 AO?oovveiiiiiieieie ettt e e e e a e e e e e e s raanns 5
3.3 Creating @ COOKDOOKocuueiiieiiie e 6
(07eTo] o TR oI == 1= 11 1= RPN 8
ot R @ o1 .4 F= g (o [T 1=K @ o 11 o PR PP PR 8
N ©10To] (o ToTo] (V=T =1 o1 L= OO PRR 8
e B (1ot oYY 1] o o [P PP PP PP PPPPPPPO 8
T [o T {1 o PP PP PP PPPPPPN 9
I [¢ (U= 1Y, F= 1o o 11 o L= SOOI 9
4.6 Virtual Maching, REVISIEEAuuoiiiiiiiiiiiii ettt e e e e e e e e e e e e eeba e eaeas 11
INCIUAE File DEPENUENCIESottt e e e e e e et e et e e e e e e e e s s snbabeeeeeeeaaaeeesaaannnnenes 13
5.1 The Manual MENOMcoouuiiiiiiiiiii ettt e e e e e e s e et e e e e e e erba s 13
5.2 Debugging COOKDOOKScoiiiiiiiiiiie ettt e e e e e e st eeeaae e e e e s 13
LS TEC oo] PR 14
5.4 The SMall MEINOAiiie et e e e e e e e e e e e e e e s raanns 14
5.5 The Large MeThOUooiiiiiiiiiiiiiii ettt e et e e e st e e e e s anbeeeeesaaes 15
5.6 The CasCade METhOM..........oouuiiiiiiiii et e e et e e e e e e st e e e s eesaaas 16
5.7 Dependencies on DEH FIES eiiiiiiiiiiiiee e 17
5.8 Renaming INCIUAE FlESooo i 17
21011 (o T g o I = g0 oI = (o] [=Tox £ PPPPRPR 18
6.1 WHhOIE PrOjECt BUIIOeeiiiiiiiieieie ettt e e e e e e e e e s e aeeeeaaae s 18
I S oV (VLY o] AV (=T LTSRS 22
6.3 Whole Project BUild AVANTAgES........oooiuuiiiiiiiiiieee et e e e e e e eeeees 24
6.4 Heterogenous BUIlooiiiiiiiiiiiiii et 25
6.5 INSLAllING THINGS .ooiiiiiiiii e e e et e e s b e e e e 26
6.6 MISCEIIANEOUScovitiiiiiiiieiie et ettt e e e e et e e e e e e e et e e e e e s eea b e e e e eesabneeeeseeraannns 27
6.7 File FINGEIPIINTS .eeiiiiiiiiiiii ettt e e st e e e e st e e e e s aab b e e e e s sabneeeaean 28
6.8 COoPING WILh LINKS ettt e e s e e e st e e e e s anbreeeesaaes 30
6.9 Coping With VEISioN STAMPScoiiiiiiiiiiiiiiiie et 30
Cookbook Language DefiNitioN...............eeiiiiiiiiiiiiiee e e e e e e e e 31
A R (o= LN g = VS TP RPPPRR 31
7.1.1 WOrds and KYWOIAS ...oooeiiiiieiieeie et e e e e e e e e e e e e s e reeeaaaae s 31
T.1.2 ESCAPE SEOUEBICES. ... et eeeeeeeee e et ettt ettt a e e e e e e e e e e e e e aeeeeeaeeeaeeesesbbbsbannnnnnns 31
4% RS T © 18 To 1 o [PO PP PP PP PP PPPPPP 31
% A 00 411 0[] 01 £ PP PSRRI 32

7.2 PIEPIOCESSONceiiiiettt ettt ettt et e e e e s e e e ettt e e e e e e r e e et et e e e e e e eraeae s 32
% T 1 T [o = PP PPRP 32
7.2.2 INCIUAE-COOKEoeeeiiiiieieeiii ettt e e e e e e e eee s 32
7.2.3 INCIUdE-COOKEA-MIBIN ... e e eeeeeas 33
A S | TP TP PPPPPPRPOPPPPPN 33
T.2.5 AT e e e 33
T.2.6 INAET e a e e e e e e e e e e e nae 33
A A o1 =T |14 - TP P O PP PPPRTPPPRPI 34
7.3 SYNtAX AN SEMANTICS.ueiiiei ittt e e s e e e s e bt e e s anb e e e e e anbbeeeeeannees 35
7.3.1 OVEIAIlI STIUCTUIEvveiiiiiiiee ettt e e e e e e s e st e e e e e e e e e e s e e nneeereees 35
7.3.2 The CompouNd STAtEMENT.........ccciiiiiiieeiiiiie e 35
7.3.3 Variables and EXPrESSIONS.uuiiiiiiiiiieeiiiiie ettt 35
T.3.4 RECIPES ...ttt ettt e e e s an e s 37
7.3.5 The EXplicit RECIPE StAtEMENT.....oiuuiiiiiiiiiiee e 37
7.3.6 The Implicit RECIPe StAtEMENL.........uiiiiiiiiiii et 41
7.3.7 The Ingredients ReCipe StatemMeNL.........cccoiiiiiiiiiiiiieee i 42
7.3.8 The Cascade RecCipe StatemMenL.........ccoiiuiiiieiiiiiiie it 42
7.3.9 COMMANGS ..eetitiiiiiiiee ettt e e e e e e ettt eaeeae e e s e s aanbebbeeeeeeeaaeeesaaannnsbnbaeeeaaaaeaeaess 43
7.3.10 The Simple Command STAtEMENL.........c..uiiiiiiiiiiiee e 43
7.3.11 The Data Command StatemMENL...........uuiiiiiiiiiiiiiiiiiieeee e e e e e eeeees 43
7.3.12 The Set SEAtEMENL........uiiiiiiiiiie et e e e e e e e s e st eeeeaeaeeeeeanannnes 44
7.3.13 The Fail StAtEMENL......ccciiiiiiiiii e e e e e e e s e eeeeas 44
7.3.14 The If STAEMENToeeiiiiiiie it e e e e e e e e e e e s e e saneeereees 45
7.3.15 The Loop and Loopend StatemMentS..........uvviiiiiiiieiiiiei e 45
S T G U o 1 o PP PPPRURPT 46
8. BUII-IN FUNCLIONS ..ottt e e e e e e e e s et e et e e e e e e e e e e e s snnnbebeeeeeeas 48
S A= To [0 | o] £ 1 QT PP TP PP PPPTPPI 48
ST 2 To [0 [U PRSP PPURTRRPRP 48
SR T o[TP URURTT 48
S o T- 1T =] o - T 1 TSR URR SRR 49
S TS T o= g o o U EERRR PR 49
S I I o= (=10 - (= S TP 49
ST A oo | =T ot A 1 T PRSPPI 50
SRS T oo | T o) TP 50
SRS oo o | PRSP PURSURTR 50
S 700 IO T o701 | | RO TURTUPRPPP 51
S0 I Ao 1= {10 1= o [P PEURPPP 51
S0 2o 1 =g T PRSPPI 51
S G T o || PO PP PPPPTPPO 52
8.1 dOS-PALN .. e e e e et e e e e e e aeee 52
S ST o (011 Tor= T SRR 52
8.16 ENIIYNAME .iiiiiiiiiite ettt e e e e et r e e e e e e s e e e et e e e e e s n et e e e e ae s 53
S T A = of B | (= TP 53
o S =[S £ U UEER TR 53
8.19 EXISIS-SYMIINK ..t e e e e e et e e e s e e e e aae 54
ST O = o SO PO PP PPOPTPPUTRRRTPR 54
S 02 T 111 =] o 11 | S PP T PSP PPURTRRPRP 55
S 111 =] PP PURRRRTR 55
LS 072 TN 110 To [o7 o 4= 1 o I PP PUPERRPT 55
S S (1070 3 1 ¢ o o OO PPP PP PPN 56
SIS T 11651177 o] o PRSP PPURTRRPRR 56
S 02 G T 1 (0] 101 (TP PERRPPR 57

827 GBLBIV oottt e et e e e e et e e e 57
B.28 GlOD e e e et e e e b e e e e e e aeee 57
S 02 B o 1= - o PP PURPURTR 58
SRS 10 I o o1 1 1= U EERRR SRR 58
S 0 3 N | PP PRSP 58
S TR 72 | o PP TP U TP 59
RS B 1 01 1T [0 g 111 TR P PSPPI 59
LS 7 S 0| o PO P TP PPUPPRPTN 59
B.35 1EAF _fllES i e e e e e et e e e e e e e e e e e ana 60
Lo RS C o 1= o] 1= SRR PSPPI 60
8.37 MAICN_IMASK ..ottt et e e e e e e e s s e bbbt et e e e e e e e e e e e nnb b reeeeaeaeens 60
RSt T o 0111141 T PRSP 61
RS S B o 011 4 (ST Y=To o o RSP PSS O PPETRPR 61
S 1O o o) (o [USRS 61
S 7 1 R ¢ [0 | S PP OPOTURURUPPPPPPPPTPPPPINt 61
8.42 OPEIALING_SYSIEIM ...ttt ettt e s et e e e bt e e s an b b e e e e e e b e e e e e e nnees 62

S B o o 1[0 0 £SO PP P PP PP PPPPPPOP 63
S I S o] S PP P PP UTP TR 64
S R o F- 11 T 1= PP PP PP PRI 64
S R o F= 1510 o] A PP PP PP PP PP PR 64
S o1 1T o1 L PP PP PP PP PRTPTPPTI 64
S T o]] | AT PP PPTPPPPTP 65
849 UOLE .ottt e e e et e e e e e e a e 65
SIS T O I (= Vo I 1= PSRRI 65
S TSN A (= Vo |1 G PR OTPPPI 65
S TS YZ (=T Vo PRSPPI 65
8.53 relatVe difNAME ...t e e e e e et e e e e e e e e e areaaaaaeeas 66

ST S (= TTo 1Y PP PRURPRP 66
B.55 SREI e e et e e e e e e e e e b rrereaaaaaeeaaaaan 66
8.56 SO _NMEWEST ... et e e e e e e e e e e e e e et et e et et e e et bebe bbb b b 67
S TR Y A o | A TSP 67
LS} T o] [S TP P TP PPPPTT 67
SR I (1] 0o L= A TP PO UPPPP R PPPPRP 68
LS G101 oo [0 A PO P PP PP PPPPPTPPN 68
S) R {1 o PP PT T PPPPTP 68
S G2~ U o1 | USSR TP 69
S LG =T o1 U PURRTR PP 69
BB SUMTIX oottt e e e e et e e e e e e e e e are et e e e aeeeeeeaaannnreaeeees 69
S LG 1T - T PP URURT T 70
8.66 UN-0OS-PALN ...eiiiiitiiii ettt e e e e ab e e e e anre e e e 70
S Gl A U 0] o) | PP P PP PP PPPPPPPP 70
B.08 UPCASE .iiiiiiiiiietett ettt e et e e e e e e ettt e e e e e e a e 71
G 1 I U o] (oo [(PP PP PP PPPP R PPPPRP 71
S O Y71 [(= g o PRSP PPURTRRPRR 71
S T Y o P PUETTR PR 72
S 2 Yo o [T R TR 73
S T Y41 = PP EEUTTR PP 73
Predefined VAriabIles ... e e e e e e e 74
S (o PP TP PP TP PP PPPRTPT PRI 74
9.2 cOMMANT-INE-QOAISeiiiiiiiiiiiee ittt et e e et e e e s sbb e e e e s aabneeeeean 74

LS R T | P EP TR 74
S L0 | N[I 1 PP PUPPRPTN 74

10.

11.

12.
13.

14.

9.5 graph_leal_file ..o 74
9.6 graph_exterior_file oo 74
9.7 graph_interior_file ... e 74
0.8 graph_leal _Patlernoo oo e e 74
9.9 graph_eXterior _PATEIN......coi ittt 74
9.10 graph_iNteriOr_PATIEITIeii it ettt ettt e et e e s st e e e anbbr e e e e e nnneeee s 74

1S 8 5 R I8 1Y OO PP PP PP OPPPPPO 74
LS 1= =T o BT PP TP PPPPPPPPT 74
.13 PArAIIEI_NOSES ...t 75
.14 PArallE]_JODS ... e 75
.15 PAraAllEI_ISR oo e s e e e e 75
S I ST T ol o [1) SRR 75
S T | PP PU PRSPPI 75
SR B = 1o =] SO PP PP TP PPPPP 75
S R = 10 =] £ PP PPPPPPPPPPTPPN 75
1S O B (0] (=T To Ko E O PP PO PPP T PPPPPPN 75
S 0 V[0 TV [[0 =] PP TP PTOTPTPPPP 75
S Y £ (o] O PP PP PP PPPPPPOP 75
FUNCHONS LIDFAIY .o e et e e s st e e e e s annreeeeeaaes 76
0T R o= o] ¢= [4 PO P O PP PO PP PPPPPPPPPP 76
10.2 defiN@-OI-NUIL ..ot e sk e e s e e e e e e b e e e e e e 76
10.3 defiN@d-Or-AeFAUILcoiuiiieie e e e as 76
O (=T 0T | PP TP PP PP 76
10.5 variable_ DY Path ... 76
ACHONS WNEN COOKING ...teeiieiiiiiieei ittt ettt ettt ettt e e st e e e et e e e e e skt e e e e e e aabb e e e e e e anbreeeesanbnneeeeaa 77
11.1 Scan the COOK Environment Variable............cooouiiiiiiiiiiiiii e 77
11.2 Scan the ComMAaNd LiNE.........ooiiiiiiiiii ettt e e sbn e e e 77
11.3 Locate the COOKDOOK..........uuiiiiiiiii et e e 77
11.4 Form the LiSting FIlENAIMEoiiiiiiiiii e 77
11.5 Create the LiStNG file . ..o i e 77
11.6 Scan the COOKDOOK...........ueiiiiiiiiii e e 77
11.7 Determine targetS t0 COOKoiiuutiiiiiiiiiiie ettt ettt e e st e e e st e e e e e e e e e e nens 77
11.8 COOKING @ TANGET ...ieiieteeiiiee ettt ettt e s ettt e e et e e s e st b e e e e anb b et e e e anbbe e e e e annees 77
11.9 The DependeBESIapi coio ittt e st e e anee s 79
11,00 FlE STALUSueeeeiieiiiiee ettt ettt et e sttt e e et e e e e st b et e e ek et e e e e nbr e e e e e nne s 80
@01 (o] g o] (=Tot=To [T o [od = J O PP PSP PTPPPP 82
FIlE NAME PAIEIMIS. ...ttt e e et e e e ek bt e e e e st b e e e e e ab et e e s e nbr e e e e e nnnneas 83
R J0 R O o T [= 11 =] 1 E PP PP PPPP PP TPTPPPP 83
13.2 ReQUIAT EXPrESSIONS.....ciiiiiiiiii ittt e et e s et e e et e e e e 85
SUPPIIEA COOKDOOKS ..ottt et e e et e e e et e e e e s nb e e e e e nnees 87
LA.L 8BS iiiiiiiiiiii e e e e et et e e e e e e et et e e e e e et a e e e et e e e e e e nenaa 87
I o PP O PP PP PPPPPPPPOPPPRPI 87
I T TP PP P PP PPPPPPPN 88
I o P PP PP TP P P PUPPRPTP 88
S T o o] o OO PP PP PPRPPP 89
I T o (o]0 1S O OO PP P PP PP P PPPPPPON 89
I [PO PP O PP PP PPPPPPN 89
I T [1o] =1 VPO PP PP PPPPPPPO 90
I T o) 10| S TP OO TP PPP PRI 90
O o (0T | = o 4 PO TP PO PPPPTPTPRRTPPP 91

14.11 rcs

.. 91
0 2 = Tod | V(= PPN 92
7 T ol ot S PP 92
I (= PR 92
0 T U 1= 8 [Y= | PR 93
7 I U = PSP PORUPRTRNN 93
L1417 YACC_IMBNY ..tttieiiiiieeeiie ittt et e e e e e e s et et e et e e e s s e s b e e et et e e e e e e s e bbb e s e e et e e e e e e e s s nnnnrn e e eeees 93
I R V7= Yo o TP PP P PP PP TTR PR PTPPPN 93

T] (01T o PP PP PP P PPPPPPON 94

Vi

