/* * Optimized IEEE 754 single precision arithmetic for the ARM architecture. * * Author: Nicolas Pitre, or * Created: Feb 07, 2003 * Copyright: (C) Monta Vista Software, Inc. * * This file is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2, or (at your option) any * later version. * * In addition to the permissions in the GNU General Public License, the * author gives you unlimited permission to link the compiled version of * this file into combinations with other programs, and to distribute * those combinations without any restriction coming from the use of this * file. (The General Public License restrictions do apply in other * respects; for example, they cover modification of the file, and * distribution when not linked into a combine executable.) * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * Notes: * * The goal of this code is to be as fast as possible. This is * not meant to be easy to understand for the casual reader. * * Only the default rounding mode is intended for best performances. * Exceptions aren't supported yet, but that can be added quite easily * if necessary without impacting performances. */ @ This selects the minimum architecture level required. #define __ARM_ARCH__ 4 .global __negsf2 .global __subsf3 .global __addsf3 .global __floatunsisf .global __floatsisf .global __mulsf3 .global __divsf3 .global __gesf2 .global __gtsf2 .global __lesf2 .global __ltsf2 .global __nesf2 .global __eqsf2 .global __cmpsf2 .global __unordsf2 .global __fixsfsi .global __fixunssfsi __negsf2: eor r0, r0, #0x80000000 @ flip sign bit mov pc, lr __subsf3: eor r1, r1, #0x80000000 @ flip sign bit of second arg __addsf3: @ Compare both args, return zero if equal but the sign. eor r2, r0, r1 teq r2, #0x80000000 beq .ad_z @ If first arg is 0 or -0, return second arg. @ If second arg is 0 or -0, return first arg. bics r2, r0, #0x80000000 moveq r0, r1 bicnes r2, r1, #0x80000000 moveq pc, lr @ Mask out exponents. mov ip, #0x7f000000 orr ip, ip, #0x00800000 and r2, r0, ip and r3, r1, ip @ If either of them is 255, result will be INF or NAN teq r2, ip teqne r3, ip beq .ad_i @ Compute exponent difference. Make largest exponent in r2, @ corresponding arg in r0, and positive exponent difference in r3. subs r3, r3, r2 addgt r2, r2, r3 eorgt r1, r0, r1 eorgt r0, r1, r0 eorgt r1, r0, r1 rsblt r3, r3, #0 @ If exponent difference is too large, return largest argument @ already in r0. We need up to 25 bit to handle proper rounding @ of 0x1p25 - 1.1. cmp r3, #(25 << 23) movhi pc, lr @ Convert mantissa to signed integer. tst r0, #0x80000000 orr r0, r0, #0x00800000 bic r0, r0, #0xff000000 rsbne r0, r0, #0 tst r1, #0x80000000 orr r1, r1, #0x00800000 bic r1, r1, #0xff000000 rsbne r1, r1, #0 @ If exponent == difference, one or both args were denormalized. @ Since this is not common case, rescale them off line. teq r2, r3 beq .ad_d .ad_x: @ Scale down second arg with exponent difference. @ Apply shift one bit left to first arg and the rest to second arg @ to simplify things later, but only if exponent does not become 0. movs r3, r3, lsr #23 teqne r2, #(1 << 23) movne r0, r0, lsl #1 subne r2, r2, #(1 << 23) subne r3, r3, #1 @ Shift second arg into ip, keep leftover bits into r1. mov ip, r1, asr r3 rsb r3, r3, #32 mov r1, r1, lsl r3 add r0, r0, ip @ the actual addition @ We now have a 64 bit result in r0-r1. @ Keep absolute value in r0-r1, sign in r3. ands r3, r0, #0x80000000 bpl .ad_p rsbs r1, r1, #0 rsc r0, r0, #0 @ Determine how to normalize the result. .ad_p: cmp r0, #0x00800000 bcc .ad_l cmp r0, #0x01000000 bcc .ad_r0 cmp r0, #0x02000000 bcc .ad_r1 @ Result needs to be shifted right. movs r0, r0, lsr #1 mov r1, r1, rrx add r2, r2, #(1 << 23) .ad_r1: movs r0, r0, lsr #1 mov r1, r1, rrx add r2, r2, #(1 << 23) @ Our result is now properly aligned into r0, remaining bits in r1. @ Round with MSB of r1. If halfway between two numbers, round towards @ LSB of r0 = 0. .ad_r0: add r0, r0, r1, lsr #31 teq r1, #0x80000000 biceq r0, r0, #1 @ Rounding may have added a new MSB. Adjust exponent. @ That MSB will be cleared when exponent is merged below. tst r0, #0x01000000 addne r2, r2, #(1 << 23) @ Make sure we did not bust our exponent. cmp r2, #(254 << 23) bhi .ad_o @ Pack final result together. .ad_e: bic r0, r0, #0x01800000 orr r0, r0, r2 orr r0, r0, r3 mov pc, lr .ad_l: @ Result must be shifted left. @ No rounding necessary since r1 will always be 0. #if __ARM_ARCH__ < 5 movs ip, r0, lsr #12 moveq r0, r0, lsl #12 subeq r2, r2, #(12 << 23) tst r0, #0x00ff0000 moveq r0, r0, lsl #8 subeq r2, r2, #(8 << 23) tst r0, #0x00f00000 moveq r0, r0, lsl #4 subeq r2, r2, #(4 << 23) tst r0, #0x00c00000 moveq r0, r0, lsl #2 subeq r2, r2, #(2 << 23) tst r0, #0x00800000 moveq r0, r0, lsl #1 subeq r2, r2, #(1 << 23) cmp r2, #0 bgt .ad_e #else clz ip, r0 sub ip, ip, #8 mov r0, r0, lsl ip subs r2, r2, ip, lsl #23 bgt .ad_e #endif @ Exponent too small, denormalize result. mvn r2, r2, asr #23 add r2, r2, #2 orr r0, r3, r0, lsr r2 mov pc, lr @ Fixup and adjust bit position for denormalized arguments. @ Note that r2 must not remain equal to 0. .ad_d: teq r2, #0 eoreq r0, r0, #0x00800000 addeq r2, r2, #(1 << 23) eor r1, r1, #0x00800000 subne r3, r3, #(1 << 23) b .ad_x @ Result is x - x = 0, unless x is INF or NAN. .ad_z: mov ip, #0xff000000 and r2, r0, ip, lsr #1 teq r2, ip, lsr #1 moveq r0, ip, asr #2 movne r0, #0 mov pc, lr @ Overflow: return INF. .ad_o: orr r0, r3, #0x7f000000 orr r0, r0, #0x00800000 mov pc, lr @ At least one of r0/r1 is INF/NAN. @ if r0 != INF/NAN: return r1 (which is INF/NAN) @ if r1 != INF/NAN: return r0 (which is INF/NAN) @ if r0 or r1 is NAN: return NAN @ if opposite sign: return NAN @ return r0 (which is INF or -INF) .ad_i: teq r2, ip movne r0, r1 teqeq r3, ip movne pc, lr movs r2, r0, lsl #9 moveqs r2, r1, lsl #9 teqeq r0, r1 orrne r0, r3, #0x00400000 @ NAN mov pc, lr __floatunsisf: mov r3, #0 b 1f __floatsisf: ands r3, r0, #0x80000000 rsbmi r0, r0, #0 1: teq r0, #0 moveq pc, lr mov r1, #0 mov r2, #((127 + 23) << 23) tst r0, #0xfc000000 beq .ad_p @ We need to scale the value a little before branching to code above. tst r0, #0xf0000000 movne r1, r0, lsl #28 movne r0, r0, lsr #4 addne r2, r2, #(4 << 23) tst r0, #0x0c000000 beq .ad_p mov r1, r1, lsr #2 orr r1, r1, r0, lsl #30 mov r0, r0, lsr #2 add r2, r2, #(2 << 23) b .ad_p __mulsf3: @ Mask out exponents. mov ip, #0x7f000000 orr ip, ip, #0x00800000 and r2, r0, ip and r3, r1, ip @ Trap any INF/NAN. teq r2, ip teqne r3, ip beq .ml_s @ Trap any multiplication by 0. bics ip, r0, #0x80000000 bicnes ip, r1, #0x80000000 beq .ml_z @ Shift exponents right one bit to make room for overflow bit. @ If either of them is 0, scale denormalized arguments off line. @ Then add both exponents together. movs r2, r2, lsr #1 teqne r3, #0 beq .ml_d .ml_x: add r2, r2, r3, asr #1 @ Preserve final sign in r2 along with exponent for now. teq r0, r1 orrmi r2, r2, #0x8000 @ Convert mantissa to unsigned integer. bic r0, r0, #0xff000000 bic r1, r1, #0xff000000 orr r0, r0, #0x00800000 orr r1, r1, #0x00800000 #if __ARM_ARCH__ < 4 @ Well, no way to make it shorter without the umull instruction. @ We must perform that 24 x 24 -> 48 bit multiplication by hand. stmfd sp!, {r4, r5} mov r4, r0, lsr #16 mov r5, r1, lsr #16 bic r0, r0, #0x00ff0000 bic r1, r1, #0x00ff0000 mul ip, r4, r5 mul r3, r0, r1 mul r0, r5, r0 mla r0, r4, r1, r0 adds r3, r3, r0, lsl #16 adc ip, ip, r0, lsr #16 ldmfd sp!, {r4, r5} #else umull r3, ip, r0, r1 @ The actual multiplication. #endif @ Put final sign in r0. mov r0, r2, lsl #16 bic r2, r2, #0x8000 @ Adjust result if one extra MSB appeared. @ The LSB may be lost but this never changes the result in this case. tst ip, #(1 << 15) addne r2, r2, #(1 << 22) movnes ip, ip, lsr #1 movne r3, r3, rrx @ Apply exponent bias, check range for underflow. subs r2, r2, #(127 << 22) ble .ml_u @ Scale back to 24 bits with rounding. @ r0 contains sign bit already. orrs r0, r0, r3, lsr #23 adc r0, r0, ip, lsl #9 @ If halfway between two numbers, rounding should be towards LSB = 0. mov r3, r3, lsl #9 teq r3, #0x80000000 biceq r0, r0, #1 @ Note: rounding may have produced an extra MSB here. @ The extra bit is cleared before merging the exponent below. tst r0, #0x01000000 addne r2, r2, #(1 << 22) @ Check for exponent overflow cmp r2, #(255 << 22) bge .ml_o @ Add final exponent. bic r0, r0, #0x01800000 orr r0, r0, r2, lsl #1 mov pc, lr @ Result is 0, but determine sign anyway. .ml_z: eor r0, r0, r1 bic r0, r0, #0x7fffffff mov pc, lr @ Check if denormalized result is possible, otherwise return signed 0. .ml_u: cmn r2, #(24 << 22) movle pc, lr @ Find out proper shift value. mvn r1, r2, asr #22 subs r1, r1, #7 bgt .ml_ur @ Shift value left, round, etc. add r1, r1, #32 orrs r0, r0, r3, lsr r1 rsb r1, r1, #32 adc r0, r0, ip, lsl r1 mov ip, r3, lsl r1 teq ip, #0x80000000 biceq r0, r0, #1 mov pc, lr @ Shift value right, round, etc. @ Note: r1 must not be 0 otherwise carry does not get set. .ml_ur: orrs r0, r0, ip, lsr r1 adc r0, r0, #0 rsb r1, r1, #32 mov ip, ip, lsl r1 teq r3, #0 teqeq ip, #0x80000000 biceq r0, r0, #1 mov pc, lr @ One or both arguments are denormalized. @ Scale them leftwards and preserve sign bit. .ml_d: teq r2, #0 and ip, r0, #0x80000000 1: moveq r0, r0, lsl #1 tsteq r0, #0x00800000 subeq r2, r2, #(1 << 22) beq 1b orr r0, r0, ip teq r3, #0 and ip, r1, #0x80000000 2: moveq r1, r1, lsl #1 tsteq r1, #0x00800000 subeq r3, r3, #(1 << 23) beq 2b orr r1, r1, ip b .ml_x @ One or both args are INF or NAN. .ml_s: teq r0, #0x0 teqne r1, #0x0 teqne r0, #0x80000000 teqne r1, #0x80000000 beq .ml_n @ 0 * INF or INF * 0 -> NAN teq r2, ip bne 1f movs r2, r0, lsl #9 bne .ml_n @ NAN * -> NAN 1: teq r3, ip bne .ml_i movs r3, r1, lsl #9 bne .ml_n @ * NAN -> NAN @ Result is INF, but we need to determine its sign. .ml_i: eor r0, r0, r1 @ Overflow: return INF (sign already in r0). .ml_o: and r0, r0, #0x80000000 orr r0, r0, #0x7f000000 orr r0, r0, #0x00800000 mov pc, lr @ Return NAN. .ml_n: mov r0, #0x7f000000 orr r0, r0, #0x00c00000 mov pc, lr __divsf3: @ Mask out exponents. mov ip, #0x7f000000 orr ip, ip, #0x00800000 and r2, r0, ip and r3, r1, ip @ Trap any INF/NAN or zeroes. teq r2, ip teqne r3, ip bicnes ip, r0, #0x80000000 bicnes ip, r1, #0x80000000 beq .dv_s @ Shift exponents right one bit to make room for overflow bit. @ If either of them is 0, scale denormalized arguments off line. @ Then substract divisor exponent from dividend''s. movs r2, r2, lsr #1 teqne r3, #0 beq .dv_d .dv_x: sub r2, r2, r3, asr #1 @ Preserve final sign into ip. eor ip, r0, r1 @ Convert mantissa to unsigned integer. @ Dividend -> r3, divisor -> r1. mov r3, #0x10000000 movs r1, r1, lsl #9 mov r0, r0, lsl #9 beq .dv_1 orr r1, r3, r1, lsr #4 orr r3, r3, r0, lsr #4 @ Initialize r0 (result) with final sign bit. and r0, ip, #0x80000000 @ Ensure result will land to known bit position. cmp r3, r1 subcc r2, r2, #(1 << 22) movcc r3, r3, lsl #1 @ Apply exponent bias, check range for over/underflow. add r2, r2, #(127 << 22) cmn r2, #(24 << 22) movle pc, lr cmp r2, #(255 << 22) bge .ml_o @ The actual division loop. mov ip, #0x00800000 1: cmp r3, r1 subcs r3, r3, r1 orrcs r0, r0, ip cmp r3, r1, lsr #1 subcs r3, r3, r1, lsr #1 orrcs r0, r0, ip, lsr #1 cmp r3, r1, lsr #2 subcs r3, r3, r1, lsr #2 orrcs r0, r0, ip, lsr #2 cmp r3, r1, lsr #3 subcs r3, r3, r1, lsr #3 orrcs r0, r0, ip, lsr #3 movs r3, r3, lsl #4 movnes ip, ip, lsr #4 bne 1b @ Check if denormalized result is needed. cmp r2, #0 ble .dv_u @ Apply proper rounding. cmp r3, r1 addcs r0, r0, #1 biceq r0, r0, #1 @ Add exponent to result. bic r0, r0, #0x00800000 orr r0, r0, r2, lsl #1 mov pc, lr .dv_1: @ Division by 0x1p*: let''s shortcut a lot of code. and ip, ip, #0x80000000 orr r0, ip, r0, lsr #9 add r2, r2, #(127 << 22) cmp r2, #(255 << 22) bge .ml_o cmp r2, #0 orrgt r0, r0, r2, lsl #1 movgt pc, lr cmn r2, #(24 << 22) movle r0, ip movle pc, lr orr r0, r0, #0x00800000 mov r3, #0 @ Result must be denormalized: prepare parameters to use code above. @ r3 already contains remainder for rounding considerations. .dv_u: bic ip, r0, #0x80000000 and r0, r0, #0x80000000 mvn r1, r2, asr #22 add r1, r1, #2 b .ml_ur @ One or both arguments are denormalized. @ Scale them leftwards and preserve sign bit. .dv_d: teq r2, #0 and ip, r0, #0x80000000 1: moveq r0, r0, lsl #1 tsteq r0, #0x00800000 subeq r2, r2, #(1 << 22) beq 1b orr r0, r0, ip teq r3, #0 and ip, r1, #0x80000000 2: moveq r1, r1, lsl #1 tsteq r1, #0x00800000 subeq r3, r3, #(1 << 23) beq 2b orr r1, r1, ip b .dv_x @ One or both arguments is either INF, NAN or zero. .dv_s: mov ip, #0x7f000000 orr ip, ip, #0x00800000 teq r2, ip teqeq r3, ip beq .ml_n @ INF/NAN / INF/NAN -> NAN teq r2, ip bne 1f movs r2, r0, lsl #9 bne .ml_n @ NAN / -> NAN b .ml_i @ INF / -> INF 1: teq r3, ip bne 2f movs r3, r1, lsl #9 bne .ml_n @ / NAN -> NAN b .ml_z @ / INF -> 0 2: @ One or both arguments are 0. bics r2, r0, #0x80000000 bne .ml_i @ / 0 -> INF bics r3, r1, #0x80000000 bne .ml_z @ 0 / -> 0 b .ml_n @ 0 / 0 -> NAN __gesf2: __gtsf2: mov r3, #-1 b 1f __lesf2: __ltsf2: mov r3, #1 b 1f __nesf2: __eqsf2: __cmpsf2: mov r3, #1 @ how should we specify unordered here? 1: @ Trap any INF/NAN first. mov ip, #0x7f000000 orr ip, ip, #0x00800000 and r2, r1, ip teq r2, ip and r2, r0, ip teqne r2, ip beq 3f @ Test for equality. @ Note that 0.0 is equal to -0.0. 2: orr r3, r0, r1 bics r3, r3, #0x80000000 @ either 0.0 or -0.0 teqne r0, r1 @ or both the same moveq r0, #0 moveq pc, lr @ Check for sign difference. The N flag is set if it is the case. @ If so, return sign of r0. movmi r0, r0, asr #31 orrmi r0, r0, #1 movmi pc, lr @ Compare exponents. and r3, r1, ip cmp r2, r3 @ Compare mantissa if exponents are equal moveq r0, r0, lsl #9 cmpeq r0, r1, lsl #9 movcs r0, r1, asr #31 mvncc r0, r1, asr #31 orr r0, r0, #1 mov pc, lr @ Look for a NAN. 3: and r2, r1, ip teq r2, ip bne 4f movs r2, r1, lsl #9 bne 5f @ r1 is NAN 4: and r2, r0, ip teq r2, ip bne 2b movs ip, r0, lsl #9 beq 2b @ r0 is not NAN 5: mov r0, r3 @ return unordered code from r3. mov pc, lr __unordsf2: mov ip, #0x7f000000 orr ip, ip, #0x00800000 and r2, r1, ip teq r2, ip bne 1f movs r2, r1, lsl #9 bne 3f @ r1 is NAN 1: and r2, r0, ip teq r2, ip bne 2f movs r2, r0, lsl #9 bne 3f @ r0 is NAN 2: mov r0, #0 @ arguments are ordered. mov pc, lr 3: mov r0, #1 @ arguments are unordered. mov pc, lr __fixsfsi: movs r0, r0, lsl #1 moveq pc, lr @ value is 0. mrs r1, cpsr @ preserve C flag (the actual sign) @ check exponent range. and r2, r0, #0xff000000 cmp r2, #(127 << 24) movcc r0, #0 @ value is too small movcc pc, lr cmp r2, #((127 + 31) << 24) bcs 1f @ value is too large mov r0, r0, lsl #7 orr r0, r0, #0x80000000 mov r2, r2, lsr #24 rsb r2, r2, #(127 + 31) mov r0, r0, lsr r2 tst r1, #0x20000000 @ the sign bit rsbne r0, r0, #0 mov pc, lr 1: teq r2, #0xff000000 bne 2f movs r0, r0, lsl #8 bne 3f @ r0 is NAN. 2: tst r1, #0x20000000 @ the sign bit moveq r0, #0x7fffffff @ the maximum signed positive si movne r0, #0x80000000 @ the maximum signed negative si mov pc, lr 3: mov r0, #0 @ What should we convert NAN to? mov pc, lr __fixunssfsi: movs r0, r0, lsl #1 moveq pc, lr @ value is 0. movcs r0, #0 movcs pc, lr @ value is negative. @ check exponent range. and r2, r0, #0xff000000 cmp r2, #(127 << 24) movcc r0, #0 @ value is too small movcc pc, lr cmp r2, #((127 + 32) << 24) bcs 1f @ value is too large mov r0, r0, lsl #7 orr r0, r0, #0x80000000 mov r2, r2, lsr #24 rsb r2, r2, #(127 + 31) mov r0, r0, lsr r2 mov pc, lr 1: teq r2, #0xff000000 bne 2f movs r0, r0, lsl #8 bne 3b @ r0 is NAN. 2: mov r0, #0xffffffff @ maximum unsigned si mov pc, lr