
The Journalling Flash File System

http://sources.redhat.com/jffs2/

David Woodhouse

dwmw2@cambridge.redhat.com

1



The Grand Plan

• What is Flash?

• How is it used?

– Flash Translation Layer (FTL)

– NFTL

• Better ways of using it

– JFFS

– JFFS2

• The Future

2



Flash memory technology - NOR flash

• Low power, high density non-volatile storage

• Linearly accessible memory

• Individually clearable bits

• Bits reset only in “erase blocks” of typically 128KiB

• Limited lifetime - typ. 100,000 erase cycles

3



Flash memory technology - NAND flash

• Cheaper, higher tolerances than NOR flash

• Smaller erase blocks (typ. 8 KiB)

• Subdivided into 512 byte “pages”

• Not linearly accessible

• Uniform interface — 8-bit data/address bus + 3

control lines

• “Out-Of-Band” data storage - 16 bytes in 512 for

metadata/ECC

4



So what do we do with it?

Traditional answer (FTL and NFTL):

• Emulate a standard block device

• Use a normal file system on top of that



So what do we do with it?

Traditional answer (FTL and NFTL):

• Emulate a standard block device

• Use a normal file system on top of that

This sucks. Obviously you need a journalling file

system on your emulated block device, which is itself

a kind of journalling pseudo-filesystem. Two layers

of journalling on top of each other aren’t the best

way to ensure efficient operation.

#include “CompactFlash is not flash.h”

5



Can we do better?

Yes!

We want a journalling file system designed speci-

fically for use on flash devices, with built-in wear

levelling.

This lends itself to a purely log-structured file system

writing log nodes directly to the flash. The log-

structured nature of such a file system will provide

automatic wear levelling.

6



And lo... our prayers were answered

In 1999, Axis Communications AB released exactly

the file system that we had been talking about.

• Log structured file system

• Direct operation on flash devices

• GPL’d code for Linux 2.0.



And lo... our prayers were answered

In 1999, Axis Communications AB released exactly

the file system that we had been talking about.

• Log structured file system

• Direct operation on flash devices

• GPL’d code for Linux 2.0.

Ported to 2.4 and the generic Memory Technology

Device system by a developer in Sweden, and subse-

quently backported to 2.2 by Red Hat for a customer

to use in a web pad device.

7



What does “Log structured” mean?

• Data stored on medium in no particular location

• Packets, or “nodes” of data written sequentially to

a log which records all changes, containing:

– Identification of file to which the node belongs

– A “version” field, indicating the chronological

sequence of the nodes belonging to this file

– Current inode metadata (uid, gid, etc.)

– Optionally: Some data, and the offset within the

file at which the data should appear

8



What does “Log structured” mean?

Storage Medium User Action

at offset zero 
in file

Write 200 bytes ’A’

at offset 200
in file

Write 50 bytes ’C’
at offset 175

Write 200 bytes ’B’

data: AAAA...
len: 200
offset: 0
Version: 1

version: 2
offset: 200
len: 200
data: BBBB...

version: 3
offset: 175
len: 50
data: CCCC...

9



Playing back the log

To read the file system, the log nodes are played back

in version order, to recreate a map of where each

range of data is located on the physical medium.

Node version 1:
 200 bytes @ 0

Node version 2:
 200 bytes @ 200

List StateNode playback

0−200: v1

200−400: v2

0−200: v1

0−175: v1

225−400: v2

175−225: v3
Node version 3:
 50 bytes @ 175

10



Dirty space

Some nodes are completely obsoleted by later writes

to the same location in the file. They create “dirty

space” within the file system.

Dirty

Clean

Empty

11



Garbage Collection

So far so good. But soon the log reaches the end

of the medium. At this point we need to start to

reclaim some of the dirty space.



Garbage Collection

So far so good. But soon the log reaches the end

of the medium. At this point we need to start to

reclaim some of the dirty space.

So we copy the still-valid data from the beginning of

the log to the remaining space at the end...



Garbage Collection

So far so good. But soon the log reaches the end

of the medium. At this point we need to start to

reclaim some of the dirty space.

So we copy the still-valid data from the beginning of

the log to the remaining space at the end...



Garbage Collection

So far so good. But soon the log reaches the end

of the medium. At this point we need to start to

reclaim some of the dirty space.

So we copy the still-valid data from the beginning of

the log to the remaining space at the end...

...until we can erase a block at the start.

12



Limitations of the original JFFS

• Poor garbage collection performance on full file

systems

• No compression

• File names and parent inode stored in each node

along with other metadata

– Wasting space

– Preventing POSIX hard links

13



Enter JFFS2

JFFS2 started off as a project to add compression to

JFFS, but because of the other problems with JFFS,

it seemed like the right time to do a complete rewrite

to address them all at once.

• Non-sequential log structure

• Compression

• Different node types on medium

• Improved memory usage

14



Log structure

Erase blocks are treated individually and references

to each are stored on one of many lists in the JFFS2

data structures.

• clean list — Erase blocks with only valid nodes

• dirty list — Erase blocks with one or more

obsoleted nodes

• free list — Empty erase blocks waiting to be

filled

• ...and others...

15



Garbage Collection

• 99 times in 100, pick a block from the dirty list
to be garbage collected, for optimal performance

• The remaining 1 in 100 times, pick a clean block,

to ensure that data are moved around the medium

and wear levelling is achieved

16



Compression

Although ostensibly the purpose of the exercise, com-

pression was the easy part. Some useful and quick

compression algorithms were implemented, followed

by the import of yet another copy of zlib.c into the

kernel tree.

In order to facilitate quick decompression, data are

compressed in chunks no larger than the hardware

page size.

17



Node types - common node header

JFFS2 introduces different node types for the entries

in the log, where JFFS only used one type of structure

in the log.

The nodes share a common layout, allowing JFFS2

implementations which don’t understand a new node

type to deal with it appropriately.

0x19 0x85
Magic Bitmask

MSB LSB

Total Node Length

Node Header CRC

Node Type

18



Compatibility types

The Node Type field in the header has a unique

identification number for the node type, and the

two most significant bits are used to indicate the

expected behaviour if the node is not supported.

• JFFS2 FEATURE INCOMPAT

• JFFS2 FEATURE ROCOMPAT

• JFFS2 FEATURE RWCOMPAT DELETE

• JFFS2 FEATURE RWCOMPAT COPY

19



Directory entry nodes

• Parent (directory) inode number

• Name

• Inode number

• Version

Inode number zero used to signify unlinking

20



Inode data nodes

Very similar to JFFS v1 nodes, except without the

parent and filename fields:

• User ID, Group ID, Permissions, etc.

• Current inode size

• Optional data, not crossing page boundary, possi-

bly compressed

21



Clean block marker nodes

Introduced to deal with the problem of partially-

erased blocks.

Losing power during an erase cycle can result in a

block which appears to be erased, but which contains

a few bits which are in fact returning random data.

Writing a marker to the beginning of the block after

successful completion of an erase cycle allows JFFS2

to be certain the block is in a usable state.

22



Memory Usage

Polite behaviour under system memory pressure

through normal actions of VM — prune icache

• Store in-core at all times only the bare minimum

amount of data required to find inodes

• Build full map of data regions for an inode only on

read inode() being called

• Free all extra data on clear inode()

23



Mounting a JFFS2 filesystem

Four-pass process

• Physical scan, allocating data structures and ca-

ching node information.

• Pass 1: Build data maps and calculate nlink for

each inode, adding jffs2 inode cache entries

to hash table.

• Pass 2: Delete inodes with nlink == 0

• Pass 3: Free temporary cached information

24



Data structures - raw node tracking

next_in_ino

next_phys

totlen

flash_offset

next_in_ino

next_phys

totlen

flash_offset

next_in_ino

next_phys

totlen

flash_offset

Obsolete flag

Unused flag

next

nodes

ino

nlink

NULL

struct jffs2_inode_cache

struct jffs2_raw_node_ref

25



Read inode

On jffs2 read inode() calls, we look up the

jffs2 inode cache in the hash table, and read

each physical node belonging to the inode in que-

stion, building up a fraglist representing the whole

range of data in the file.

26



Data structures - node fragments

next_in_ino

next_phys

totlen

flash_offset

raw

ofs

size

frags

raw

ofs

size

frags

next_in_ino

next_phys

totlen

flash_offset

node

size

ofs

node_ofs

next

node

size

ofs

node_ofs

next

node

size

ofs

node_ofs

next

struct jffs2_raw_node_refstruct jffs2_full_dnodestruct jffs2_node_frag

27



File read

• Look up file range in fraglist.

• For each frag in range:

– Call jffs2 read dnode() to read the range

indicated by the node fragment.



File read

• Look up file range in fraglist.

• For each frag in range:

– Call jffs2 read dnode() to read the range

indicated by the node fragment.

This means that where two ranges of bytes in a given

node are visible, we read and decompress the whole

node twice. We could probably optimise this to do

only one read/decompress cycle.

28



Flash space allocation

Allocate flash space with jffs2 reserve space()
function:

• Caller specifies the minimum acceptable allocation.

• Garbage collection is triggered if necessary to make

space.

• Returns the maximum amount of space which is

currently available (or -ENOSPC).

• Successful allocations lock the alloc sem sema-

phore, used to ensure sequential writes.

29



File write

• Allocate space with jffs2 reserve space() as

shown.

• Compress as much data as we can into the available

space.

• Write node.

• Adjust inode fragment list accordingly.

• Call jffs2 complete reservation() to release

alloc sem

30



Garbage Collection - core operation

For each jffs2 raw node ref in the block to be

erased:

• If it’s already obsolete, skip it.

• Follow the next in ino chain to find the inode

number.

• Call iget for the inode in question to ensure the

fraglist etc. is built.

• Obsolete the node we’re looking at by writing the

same data out again.

31



Garbage Collection - continued

Each type of node requires different stuff to be

written out to obsolete it:

• Normal directory entries - just write the same out

again.

• “Deletion” directory entries - see TODO.

• Data nodes with data - write new data node with

the current data for the same range of the file.

• Data nodes without data. Erm, yes...

32



Fun stuff - truncation and holes

Potential problems with data “showing through” the

holes left by file truncation and subsequent expansi-

on.

JFFS1 didn’t suffer this problem, because of linear

garbage collection.

Initially attempted to solve it by writing zeroes to

the space between the new and old end-of-file on

truncation. Garbage collection was too hard.

Instead we writing zero data in the gaps whenever we

expand a file, to ensure that old data remain dead.

33



Future improvements — Checkpointing

Scanning the entire flash during mount is slow. The

suggested solution is to store sufficient information

in checkpoint nodes to avoid the need to read the

whole flash at startup.

• What to store?

– Per-inode nlink, list of raw node offsets/lengths.

– Per-eraseblock info

• When to store it?

– Periodic opportunistic checkpoints

– Checkpoint on clean unmount only

34



Future improvements — NAND support

Interesting problems for NAND:

• Easy bit — Moving the CLEANMARKER node.

• Harder bit — Garbage collection fixes.

• Mindbogglingly painful bit — Write batching, and
the associated problems:

– Early block erasure

– fsync(), sys sync()
– Write errors on delayed writes

35



Future improvements — Other

• Expose transactions to userspace

• Reduce garbage collection overhead

• Improve fault tolerance

• Not eXecute-In-Place

• Extra per-inode flags

– Compression control

– Preloading

36



The Journalling Flash File System

http://sources.redhat.com/jffs2/

David Woodhouse

dwmw2@cambridge.redhat.com

37


